微胶囊化方法及常用壁材
- 格式:doc
- 大小:18.50 KB
- 文档页数:3
香精香料微胶囊化及其控制释放微胶囊技术(Microencapsulation)是20世纪30年代发展起来的一种利用天然或者合成的高分子材料,将固体、液体甚至是气体物质,包覆形成为直径在 1 ~1000 μm 范围内的微型胶囊以及保留或截留其他物质的微粒,从而达到保护、控释等效果,实现微胶囊化过程的技术。
该技术经过几十年的不断发展,目前已相继在食品、化工、医药、生物技术等领域中得到广泛的应用。
尤其在香精香料行业中近年来发展迅速,已有商品化产品生产。
香精香料微胶囊化技术是用壁材包裹香精香料确保其在食品加工过程中挥发而损失,食品的风味和香气是食品产品的主要质量指标之一,在世界消费趋向崇尚香味的潮流下,香精香料微胶囊化就显得越来越重要。
香精香料的微胶囊化和其他微胶囊技术相比,有其自身的特点:(1)风味物质是由多种对水和油的溶解性各不相同的成分组成,因此在微胶囊化过程中难免有所损失;(2)风味物质的沸点一般为30℃~180℃,挥发性强,易损失;(3)许多环境敏感性物质,对pH、氧、光、热要求苛刻,微胶囊化相对困难;(4)风味物质从微胶囊中的释放问题尤为重要,这就给壁材选用和制造工艺带来了更复杂的问题。
香精香料微胶囊化从20世纪50年代开始发展,至今这方面的研究仍处于方兴未艾之势,本文就香精香料微胶囊化的壁材种类、制备工艺及控制释放等方面作详细综述,以期促进香精香料微胶囊技术理论研究和实际应用的进一步发展。
1 香精香料微胶囊壁材种类通常把包在微胶囊内部的物质称为“芯材”,将微胶囊的外壳材料称为“壁材”,微胶囊壁材的选择在很大程度上影响其性能。
一般对香精香料微胶囊壁材的要求主要有:无毒稳定,符合食品添加剂卫生标准,不和芯材发生反应;壁材应具有高浓度低粘性;壁材在干燥过程中,溶剂能完全地被脱去;壁材能保护活性物质;壁材应保证良好的乳液稳定性和有效分散性,使香料能在合适的时间和部位释放。
要对食品中香料释放进行控制,就需要对香料化合物和食品主要成分(如油脂、多聚糖、蛋白质等)发生的物理化学反应有很好的了解。
二氧化硅壁材微胶囊及其制备方法与应用
二氧化硅壁材微胶囊是一种由二氧化硅材料构成的微胶囊,适用于各种应用领域。
以下是二氧化硅壁材微胶囊的制备方法和应用:
制备方法:
1. 溶剂挥发法:将含有二氧化硅前驱体的溶液滴加到有机溶剂中,通过溶剂挥发使得二氧化硅形成微胶囊。
2. 水热法:将二氧化硅前驱体溶液加入到高温水中进行水热反应,形成二氧化硅微胶囊。
3. 模板法:使用模板材料作为二氧化硅的模板,将二氧化硅前驱体溶液浸渍到模板上,经过煅烧去除模板后形成二氧化硅微胶囊。
应用:
1. 药物缓释系统:将药物包裹在二氧化硅微胶囊中,通过控制二氧化硅的孔径和壁厚,实现药物的缓慢释放,延长药物的作用时间。
2. 催化剂载体:将催化剂包裹在二氧化硅微胶囊中,提高催化剂的稳定性和活性,增加反应效率。
3. 生物传感器:将生物传感器反应物固定在二氧化硅微胶囊表面,通过传感器与生物分子的特异性相互作用,实现生物分子的检测与分析。
4. 化妆品领域:利用二氧化硅微胶囊的多孔结构和大比表面积,可以将活性成分包裹在微胶囊中,起到渗透调理、保湿、滋养皮肤的效果。
5. 传统建筑材料改性:将二氧化硅微胶囊添加到传统建筑材料中,可以提高材料的耐久性、耐磨性和抗污染性。
微胶囊的概念微胶囊是指一种具有聚合物壁壳和微型容器或包装物。
微胶囊造粒技术就是将固体、液体或气体包埋、封存在一种微型胶囊内成为一种固体微粒产品的技术。
微胶囊化:用涂层薄膜或壳材料敷涂微小的固体颗粒、液滴或气泡。
微胶囊直径:毫米级到微米级。
微囊是具有一定通透性的球状小囊泡,外层为半透膜,内部为液体内核。
近几年来,微囊技术被广泛应用于微生物、动植物细胞、酶和其他多种生物活性物质和化学药物的固定化方面。
常用的微囊为海藻酸/聚赖氨酸微囊。
由于制备技术比较复杂,成囊过程时间较长,对被包埋物质的生物活性有一定的影响,而且聚赖氨酸的价格比较昂贵,因而限制了这种微囊的使用。
制备微囊的基本材料通常具有蛋白质、脂类和糖等聚电解质。
壳聚糖是部分脱去乙酰度的甲壳素,后者具有优良的韧性和惰性,且亲水、无毒、多孔、均匀,同时甲壳素在自然界中含量也是十分丰富的。
鉴于此,本试验从甲壳素这种天然高分子功能团的特殊性,以及无毒、亲水性等优点出发,用浓碱脱乙酰化得到壳聚糖,然后用上述方法达到球形壳聚糖,并用适当的方法将酵母包埋在球形壳聚糖内,制备出性能较好的微胶囊,并探讨了壳聚糖成球条件、包埋酵母的最适条件,以及壳聚糖作为固定化物质载体的可行性。
编辑本段微胶囊的功能l 1)粉末化,将液体、气体等变成干燥的粉末l 2)降低挥发性,使一些容易挥发的物质变得难于挥发l 3)提高物质的稳定性(易氧化,易见光分解,易受温度或水分影响的物质)l 4)掩味l 5)隔离活性成分l 6)控制释放编辑本段微胶囊技术中常用的壁材类别可作壁材物质特点天然高分子材料明胶、阿拉伯胶、虫胶、紫胶、淀粉、糊精、蜡、松脂、海藻酸钠、玉米朊无毒,稳定,成膜性好半合成高分子材料缩甲基纤维素、甲基纤维素、乙基纤维素毒性小,粘度大,成盐后溶解度增加,但易水解,不耐高温,需临时配制全合成高分子材料聚乙烯、聚苯乙烯、聚丁二烯、聚丙烯、聚醚、聚脲、聚乙二醇、聚乙烯醇、聚酰胺、聚丙烯酰胺、聚氨酯、聚甲基丙烯酸甲酯、聚乙烯吡咯烷酮、环氧树脂、聚硅氧烷成膜性好,化学稳定性好编辑本段微胶囊的制造方法和一般步骤制造方法物理法喷雾干燥法喷雾冷冻法空气悬浮法真空蒸发沉积法复凝聚法多空离心法物理化学法水相分离法油相分离法囊心交换法挤压法锐孔法粉末床法化学法界面聚合法原位聚合法分子包囊法辐射包囊法微胶囊化的一般过程a-内相在介质中的分散;b-加入成膜材料(壁材);c-壁材的沉积;d-壁膜的固化SPG膜乳化法在微胶囊中的应用SPG膜乳化器主要用于制备尺寸均一的乳液、乳珠、微球、微胶囊等,可以制备W/O,O/W,W/O/W,O/W/O型不同乳液。
微胶囊化方法及常用壁材
一、微胶囊制备方法
1、微胶囊的常规制备方法
➢复凝聚法复凝聚法是利用两种带有相反电荷的高分子材料以离子间的作用相互交联,制成的复合型壁材的微胶囊一种带正电荷的胶体溶液与另一种带负电荷的胶体溶液相混,由于异种电荷之间的相互作用形成聚电解质复合物而发生分离,沉积在囊芯周围而得到微胶囊.
➢单凝聚法单凝聚法通常被称为沉淀法,该方法通过向含有芯材的某种聚合物溶液中加入沉淀剂,使该聚合物的溶解性降低,该聚合物和芯材一起从溶液中析出,从而制取微胶囊的方法该方法不需要事先制备乳液,也可以不使用有机交联剂,可以避免有机溶剂的使用,但通过该法制得的微胶囊粒径较大。
➢界面聚合法界面聚合法是将两种发生聚合反应的单体分别溶于水和有机溶剂中,其中芯材溶解于处于分散相溶剂中然后,将两种液体加入乳化剂以形成乳液,两种反应单体分别从两相内部向液滴界面移动,并在相界面上发生反应生成聚合物将芯材包裹形成微胶囊的方法该法的优点是反应物从液相进入聚合反应区比从固相进入更容易,所以通过该法制备的微胶囊适于包裹液体,制得的微胶囊致密性好在界面聚合法制备微胶囊时,分散状态在很大程度上决定着微胶囊的性能,搅拌速度溶液黏度以及乳化剂和稳定剂的种类用量对微胶囊的性质也有很大的影响。
➢原位聚合法原位聚合法应用的前提是形成壁材的聚合物单体可溶,而聚合物不溶该法需先将聚合物单体溶解在含有乳化剂的水溶液中,然后加入不溶于水的内芯材料,经过剧烈搅拌使单体较好的分散在溶液中,单体在芯材液滴表面定向排列,经过加热单体交联从而形成微胶囊如何让单体在芯材表面形成聚合物,是该方法需要控制的重点。
➢锐孔-凝固浴法锐孔-凝固浴法用的壁材要求是可溶性的通常将芯材物质和高聚物壁材溶解在同一溶液中,然后借助于滴管或注射器等微孔装置,将此溶液滴加到固化剂中,高聚物在固化剂中迅速固化从而形成微胶囊因为高聚物的固化是瞬间进行并完成的,所以将含有芯材的聚合物溶液加入到固化剂中之前应预先成型,所以需要借助于注射器等微孔装置锐孔-凝固浴法的固化过程可能是化学变化或物理变化.
➢喷雾干燥法喷雾干燥法是将芯材分散在壁材的乳液中,再通过喷雾装置将乳液以细微液滴的形式喷入高温干燥介质中,依靠细小的雾滴与干燥介质之间的热量交换,将溶剂快速蒸发使囊膜快速固化制取微胶囊的方法喷雾干燥法操作简单,综合成本较低,易于实现大规模生产但通过该方法制备微胶囊时,芯材会处于高温气流中,有些活性物质容易失活,限制了其应用范围;且通过该方法制备微胶囊溶剂蒸发较快,微胶囊的囊
壁容易出现裂缝,致密性有待提高,该方法目前主要用于生产粉末香料和粉末油脂.
二、微胶囊的新型制备方法
➢分子包埋法分子包埋法又被称为分子包接法或分子包囊法,此法采用的芯材必须含有疏水端用-环糊精为壁材,因为-环糊精是有疏水性空腔的环状分子含有疏水端的芯材可以进入空腔内,靠分子间的作用力结合成分子微胶囊陈梅香等用该法制备抗氧化剂BHT微胶囊取得较好的效果由于该法操作简单成本较低,因此具有广阔的应用前景。
➢微通道乳化法微通道乳化法是近几年才出现的一种制备尺寸大小均一的微胶囊的有效方法,该方法利用表面张力形成微小液滴,微通道的尺寸决定了液滴的尺寸可以选择适当孔径的膜制备出所需粒径的微胶囊。
➢超临界流体快速膨胀法难挥发物质在超临界流体中有很大的溶解度所以如果将溶质溶解在超临界流体中,然后通过小孔毛细管等减压,可在很短的时间内快速膨胀,使溶质产生很大的过饱和度,形成大量细小微粒超临界流体快速膨胀法就是将某种溶质溶解在超临界流体中,然后通过减压膨胀,使溶质以小颗粒的形式析出通过控制实验条件,可以析出具有一定粒径的空心微囊然后将生成的空心微囊与芯材高频碰撞接触,微囊即可均匀包裹在芯材外部,再除去未包埋的芯材,即可制得微胶囊产品.
➢酵母微胶囊法酵母微胶囊法与其他方法不同的是用酵母菌的细胞壁作为微胶囊的壁材该法的实施需先将酵母菌用酶溶解掉细胞内部的可溶成分,这使酵母菌的细胞壁内部成为空腔,即可以作为微胶囊壁材让芯材与酵母菌细胞壁空腔高频接触,芯材即可进入细胞壁内形成微胶囊,再除去多余的芯材即可.
➢层-层自组装法层-层自组装法是利用逐层交替沉积的方法,借助各层分子间的弱相互作用( 如静电引力氢键配位键等),使层与层自发地缔合形成结构完整性能稳定具有某种特定功能的分子聚集体或超分子结构的过程.
三、微胶囊常用壁材
➢海藻酸钠海藻酸钠分子式为( C6H7O6Na)n,是白色或淡黄色不定形粉末无味易溶于水吸湿性强持水性能好不溶于酒精氯仿等有机溶剂,是一种天然多糖,具有生物黏附性生物相容性并可生物降解等特点其黏度因聚合度浓度和温度的不同而不同海藻酸钠具有药物制剂辅料所需的稳定性溶解性黏附性和安全性,适用于制备药物制剂。
➢壳聚糖壳聚糖也称几丁聚糖,是甲壳素经浓碱加热处理脱去N-乙酰基的产物是白色或微黄色片状固体,壳聚糖含有氨基,是天然多糖中唯一的碱性多糖,易溶于盐酸和大多数有机酸,不溶于水和碱溶液壳聚糖具有良好的生物黏附性生物相容性生物降解性以及较好的成膜性,由于其优
越的功能性质和独特的分子结构,壳聚糖作为可生物降解材料用于新型给药系统,通过改变给药途径可大大提高药物疗效,具有控制释放增加靶向性减少刺激和降低毒副作用,以及提高疏水性药物通过细胞膜增加药物稳定性等作用的特点。
➢明胶明胶是一种不溶于冷水但可以溶于热水的蛋白质混合物又名白明胶,其外观为无色或淡黄色的透明薄片或微粒,可吸收本身质量5~l0倍的水而膨胀;不溶于乙醇氯仿乙醚等明胶能与甲醛等醛类发生交联反应,形成缓释层明胶具有生物相容性生物降解性以及凝胶形成性,适宜于做微胶囊壁材由于单一的壁材很难满足制备微胶囊各方面的要求,所以近年来很多学者在研究微胶囊时采用混合壁材肖道安等选用阿拉伯胶和-环状糊精作为杜仲叶提取物的微胶囊壁材,利用喷雾干燥进行微胶囊化研究发现,阿拉伯胶和-环状糊精的配比为1∶1时,微胶囊化能够达到较好的效果查恩辉等采用明胶和蔗糖以3∶7的质量比混合为壁材,另加入少量的蔗糖酯,包埋番茄红素,微胶囊的效率和产率最高,分别为91.26%和89.35% 杜静玲等以聚天冬氨酸和明胶为混合壁材,采用单凝聚结合喷雾干燥法制备VA棕榈酸酯微胶囊,并经过7天的高温加速氧化实验,研究表明: 聚天冬氨酸和明胶的质量比为1∶1时,微胶囊化效果较好,可以较好的增加VA棕榈酸酯的稳定性Gao等用聚脲-三聚氰胺甲醛树脂作为壁材制备出微胶囊产品,其密封效果和热力学稳定性比单一的聚脲壁材好。
➢多孔淀粉是一种新型的变性淀粉,它是将天然生淀粉经酶处理以后,使其表面形成小孔,并一直延伸到颗粒内部,是一种类似马蜂窝状的中空颗粒,可以盛装各种物质于其中,具有良好的吸附性近年来有学者用多孔淀粉作为微胶囊壁材,取得了较好的效果。
许丽娜等用多孔淀粉包埋葡萄籽油,并对产品进行氧化实验,结果表明产品的抗氧化性明显提高,可显著延长保质期刘勋采用多孔淀粉包埋花椒精油,认为此方法工艺简单,只需在常温常压下将多孔淀粉和花椒精油混合均匀即可,多孔淀粉对花椒精油的吸附量达到0.92g/g,包埋率达48%,高于其它包埋材料.。