电磁场与电磁波基础教程(第2版)习题解答
- 格式:doc
- 大小:1.68 MB
- 文档页数:35
电磁场与电磁波第二版课后答案第一章:电荷和电场1.1 选择题1.电场可以向量形式来表示。
2.使得电体带有不同种类电荷的原子或分子是离子化。
3.在法拉弹规定空气是电介质。
4.电荷量的基本单位是库仑。
5.元电荷是正负电荷的最小电荷量。
6.在电场中电荷所受力的方向完全取决于电荷性质和场的性质和方向。
7.电势能是标量。
8.空间中一点产生的电场是该点电荷所受电场的矢量和。
9.电场E的国际单位是NC−1。
10.电场强度受逼迫电荷的正负种类影响,但与电荷的量无关。
1.2 填空题1.空间中一点产生的电场是该点电荷所受电场的矢量和。
2.计算质点电荷q在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{q}{r^2}\\vec{r}$。
3.计算正半球壳在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{Q}{r^2}\\vec{r}$。
4.位置在球心,能量源是正半球壳带点,正半球在转轴一侧电势能是0。
5.半径为R的均匀带点球壳,带电量为Q,求通过球心的电束强度的公式是$\\frac{Q}{4\\pi\\epsilon_0R^2}$。
1.3 计算题1.两个带电量分别为q1和q2的点电荷之间的相互干扰力公式是$\\vec{F}=\\frac{q_1q_2}{4\\pi\\epsilon_0r^2}\\vec{r}$。
2.一个电荷为q的质点,和一个均匀带有电量Q的半球壳之间的相互干扰力公式是$\\vec{F}=\\frac{1}{4\\pi\\epsilon_0}\\frac{qQ}{r^2}\\vec{r}$。
第二章:电磁感应和电磁波2.1 选择题1.电磁感应是由磁通变化产生的。
2.电磁感应一定要在导电体内才能产生电流是错误的。
√3.在电磁感应现象中,即使磁通量不变时导体电流也会产生改变。
4.电磁感应现象是反过来实现的。
电磁场与电磁波理论第二版徐立勤,曹伟第2章习题解答第2章习题解答2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0Va ρρρρ=,()0a ρ≤≤。
试求总电量Q 。
解:2π200002d d d d π3laV VQ V z la aρρρρρ?ρ===?2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。
当球以角速度ω绕某一直径(z 轴)旋转时,试求其表面上的面电流密度。
解:面电荷密度为 204πS QR ρ=面电流密度为 00200sin sin sin 4π4πS S S Q Q J v R R R R ωθρρωθωθ=?=== 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J ?=。
已知导线的直径为d ,导线中的电流为0I ,试求0S J 。
解:每根导线的体电流密度为 00224π(/2)πI I J d d== 由于导线是均匀密绕,则根据定义面电流密度为04πS IJ Jd d ==因此,等效面电流密度为04πS IJ e d=2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。
为使中间的点电荷处于平衡状态,试求其位置。
当中间的点电荷带电量为-0q 时,结果又如何?解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。
由库仑定律,实验电荷受02q 的排斥力为实验电荷受0q 的排斥力为要使实验电荷保持平衡,即21F F =,那么由00222114π4π()q q x d x εε=-,可以解得如果实验电荷为0q -,那么平衡位置仍然为d d x 585.0122=+=。
只是这时实验电荷与0q 和02q 不是排斥力,而是吸引力。
2.7 边长为a 的正方形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E 。
解:设点电荷的位置分别为()00,0,0q ,()0,0,0q a 和()00,,0q a ,由库仑定律可得点(),,0P a a 处的电场为2.9半径为0R 的半球面上均匀分布着面电荷,电荷密度为0S ρ,试求球心处的电场强度;若同样的电荷均匀分布在半径为0R 的半球内,再求球心处的电场强度。
第一章1.1.,,/)102102cos(1026300p y v k f E m V x t y y E E 相速度相位常数度,频率波的传播方向,波的幅的方向,,求矢量设 --⨯+⨯==ππ解:m /V )x 102t 102cos(10y y E z E y E x E E 26300y 0z 0y 0x --⨯π+⨯π==++=∴ 矢量E 的方向是沿Y 轴方向,波的传播方向是-x 方向;波的幅度 m /V 10E E 3y -==。
s /m 10102102k V ;102k ;MHZ 1HZ 1021022f 826P 266=⨯π⨯π=ω=⨯π===π⨯π=πω=--―――1.2 写出下列时谐变量的复数表示(如果可能的话))3sin()6sin()()6(sin 1)()5()21000cos(10)()4(sin 2cos 3)()3(sin 10)()2()6sin(6)()1(πωπωωππωωωπω++=-=-=-=-=+=t t t U t t D t t C t t t A tt I t t V(1)解: 3/2/6/)(πππϕ-=-=z vj j e V j 3333sin 63cos 66)3(-=-==-∴πππ(2)解:)2cos(10)(πω--=t t I2)(πϕν-=zj eI j 10102=-=-∴π(3)解:)t t t A ωωsin 132cos 133(13)(-=j eA j 2313)2(+==-πθ则(4)解:)21000cos(10)(ππ-=t t CjeC j 10102-==∴π(5)(6)两个分量频率不同,不可用复数表示―――1.3由以下复数写出相应的时谐变量)8.0exp(4)2exp(3)3()2.1exp(4)2(43)1(j jC j C jC +=-=+=π(1)解:tt j t j t t j t j e j t j ωωωωωωωsin 4cos 4sin 3cos 3)sin )(cos 43()43(-++=++=+t t Ce RE t C t j ωωωsin 4cos 3)()(-==∴(2)解:)2.1cos(4)4()()(2.1-===-t e e RE Ce RE t C t j j t j ωωω(3)解:)8.0t (j )2t (j t j 8.0j j t j e 4e3e )e 4e3(Ce 2+ωπ+ωωω+=+=π得:)sin(3)8.0cos(4)8.0cos(4)2cos(3)()(t t t t Ce RE t C tj ωωωπωω-+=+++==―――1.4 写出以下时谐矢量的复矢量表示00000)cos(5.0)3()sin (cos 8)sin 4cos 3()()2()2cos(sin 4cos 3)()1(x t kz H z t t x t t t E z t y t x t t V t ωωωωωπωωω-=-++=+++=(1)解:00043)(z i y j x r V+-=(2)解:00)43cos(28)cos(5)(z t x t t V πωϕω--+=00430)88()43(285)(54arcsinz j x j z e x e r V++-=-==-πϕϕ其中 (3)解:00)]sin()[cos(5.05.0)(x kz j kz x e r H kz-==-―――1.6 ]Re[,)22(,)21(000000**⨯⋅⨯⋅-+-=+++=B A B A B A B A z j y j x B z j y j x A ,,,求:假定解:j B A B A B A B A z z y y x x 35-=++=⋅0000000000000025)()22(12113)22()32()31()61(z y x B A RE jj j j z y x B A jB A z j y j x B z j y j x j B B B A A A z y x B A zyxz y x-+=⨯--+=⨯--=⋅+--=--++++-==⨯****得到:则:――――1.7计算下列标量场的梯度xyzu xyy x u xz yz xy u z y x u z y x u =++=++=-+==)5(2)4()3(2)2()1(22222222(1)解:u u grad ∇=)(22022022022202220222222z z y x y yz x x z xy z zz y x y y z y x x x z y x ++=∂∂+∂∂+∂∂=(2)解:u u grad ∇=)( 000224z z y y x x -+=(3) 解:u u grad ∇=)(000)()()(z x y y z x x z y+++++=(4) 解:u u grad ∇=)(00)22()22(y x y x y x+++=(5) 解:u u grad ∇=)(000z xy y xz x yz ++=第二章――2.1.市话用的平行双导线,测得其分布电路参数为: R ’=0.042Ωm -1; L ’=5×10-7Hm -1; G ’=5×10-10Sm -1; C ’=30.5PFm -1. 求传播常数k 与特征阻抗Z c . 答:))((C j G L j R jk '+''+'=ωω)()(C j G L j R Z c '+''+'=ωω代入数据可得:k =(1.385-1.453i) ×10-5; Z c= (1.52 -1.44i) ×103Ω2.2.传输线的特征阻抗Z c = 50Ω,负载阻抗Z L = 75 +75j Ω,用公式和圆图分别求:(1)与负载阻抗对应的负载导纳; (2)负载处的反射系数;(3)驻波系数与离开负载第一驻波最小点的位置Z L解:(1)Y L =Z L1=1501j -(2)ΓL=Z ZZ Z C LCL+-=j j 751257525++=171(7+6j) (3)70863.0)7/6arctan()0(==ψ rad离开负载第一驻波最小点的位置 d min =))0(1(4πψλ+=0.3064λ 2.3min1max min max min 80,50,5/,/4,/2,3/8,,I ,I L C L Z Z Z V d l V V ρλλλλ===参看图,负载电压,求驻波系数,驻波最小点位置传输线长度处的输入阻抗以及。
电磁场与电磁波第二版课后答案本文档为《电磁场与电磁波》第二版的课后答案,包含了所有章节的练习题的答案和解析。
《电磁场与电磁波》是电磁学领域的经典教材,它讲述了电磁场和电磁波的基本原理和应用。
通过学习本书,读者可以深入了解电磁学的基本概念和原理,并且能够解决一些相关问题。
第一章绪论练习题答案1.电磁场是由电荷和电流产生的一种物质性质,具有电场和磁场两种形式。
电磁波是电磁场的振动。
电磁辐射是指电磁波传播的过程。
2.对于一点电荷,其电场是以该点为中心的球对称分布,其强度与距离成反比。
对于无限长直导线产生的电场,其强度与距离呈线性关系,方向垂直于导线轴线。
3.电磁场的本质是相互作用力。
电场力是由于电荷之间的作用产生的,磁场力是由于电流之间的作用产生的。
解析1.电磁场是由电荷和电流产生的物质性质。
当电荷存在时,它会产生一个电场,该电荷周围的空间中存在电场强度。
同时,当电流存在时,它会产生一个磁场,该电流所在的区域存在磁场。
电磁波是电磁场的振动传播。
电磁波是由电磁场的变化引起的,相邻电磁场的振动会相互影响,从而形成了电磁波的传播。
电磁辐射是指电磁波在空间中的传播过程。
当电磁波从一个介质传播到另一个介质时,会发生折射和反射现象。
2.在一点电荷产生的电场中,电场强度与该点到电荷的距离成反比,即\(E = \frac{{k \cdot q}}{{r^2}}\),其中\(E\)为电场强度,\(k\)为电场常数,\(q\)为电荷量,\(r\)为距离。
对于无限长直导线产生的电场,其电场强度与离导线的距离呈线性关系。
当离无限长直导线的距离为\(r\)时,其电场强度可表示为\(E = \frac{{\mu_0 \cdot I}}{{2 \pi \cdot r}}\),其中\(E\)为电场强度,\(\mu_0\)为真空中的磁导率,\(I\)为电流强度。
3.电磁场的本质是相互作用力。
当两个电荷之间有作用力时,这个作用力是由于它们之间的电场力产生的。
电磁场与电磁波第二版课后练习题含答案一、选择题1. 一物体悬挂静止于匀强磁场所在平面内的位置,则这个磁场方向?A. 垂直于所在平面B. 并行于所在平面C. 倾斜于所在平面D. 无法确定答案:B2. 在运动着的带电粒子所在区域内,由于其存在着磁场,因此在该粒子所处位置引入一个另外的磁场,引入后,运动着的电荷将会加速么?A. 会加速B. 不会加速C. 无法确定答案:B3. 一台电视有线播出系统, 将信号源之中所传输的压缩图像和声音还原出来,要利用的是下列过程中哪一个?A. 光速传输B. 超声波传输C. 磁场作用D. 空气振动答案:C4. 一根充足长的长直电导体内有恒定电流I通过,则令曼培尔定律最适宜描述下列哪一项观察?A. 两个直平面电流之间的相互作用B. 当一个直平面电流遇到一个平行于它的磁场时, 会发生什么C. 当两个平行电流直线之间的相互作用D. 当电磁波穿过磁场时会发生什么答案:C5. 电磁波的一个特点是什么?A. 电磁波是一种无质量的相互作用的粒子B. 电磁波的速度跟频率成反比C. 不同波长的电磁波拥有的能量不同D. 电磁波不会穿透物质答案:C二、填空题1. 一个悬挂静止的电子放在一个以5000 G磁场中,它会受到的磁力是____________N. 假设电子的电荷是 -1.6×10^-19 C.答案:-8.0×10^-142. 在一个无磁场的区域内,放置一个全等的圆形和正方形输电线, 则这两个输电线产生的射界是_____________.答案:相同的3. 一个点电荷1.0×10^-6 C均匀带电一个闪电球,当位于该点电荷5.0 cm处时, 该牛顿计的弦向上斜,该牛顿计的尺度读数是4.0N. 该电荷所处场强的大小约为_____________弧度.答案:1.1×10^4三、简答题1. 解释什么是麦克斯韦方程式?麦克斯韦方程式是一组描述经典电磁场的4个偏微分方程式,包括关于电场的高斯定律、关于磁场的高斯定律、安培环路定理和法拉第电磁感应定律。
第五章 恒定磁场重点和难点该章重点及处理方法与静电场类似。
但是磁感应强度的定义需要详细介绍,尤其要强调磁场与运动电荷之间没有能量交换,电流元受到的磁场力垂直于电流的流动方向。
说明磁导率与介电常数不同,磁导率可以小于1,而且大多数媒质的磁导率接近1。
讲解恒定磁场时,应与静电场进行对比。
例如,静电场是无散场,而恒定磁场是无旋场。
在任何边界上电场强度的切向分量是连续的,而磁感应强度的法向分量是连续的。
重要公式磁感应强度定义:根据运动电荷受力: B v F ⨯=q 根据电流元受力: B l F ⨯=d I 根据电流环受力: B m T ⨯=真空中恒定磁场方程: 积分形式: I ⎰=⋅ll B 0d μ⎰=⋅SS B 0d微分形式:J B 0 μ=⨯∇0=⋅∇B已知电流分布求解电场强度:1,A B ⨯∇=V V ''-'=⎰'d )(4)( 0 r r r J r A πμ2,V V ''-'-⨯'=⎰'d )()( 4)(3 0 r r r r r J r B πμ 毕奥─萨伐定律。
3,I ⎰=⋅ll B 0d μ安培环路定律。
面电流产生的矢量磁位及磁感应强度分别为S ''-'=⎰'d )(4)(0r r r J r A S S πμS ''-'-⨯'=⎰'d )()(4)( 30 r r r r r J r B S S πμ 线电流产生的矢量磁位及磁感应强度分别为⎰''-'=l r r l r A d 4)(0I πμ ⎰''-'-⨯'=l r r r r l r B 30 )(d 4)(I πμ矢量磁位满足的微分方程:J A 0 2μ-=∇无源区中标量磁位满足的微分方程: 0 2=∇m ϕ 媒质中恒定磁场方程: 积分形式: I l =⋅⎰l H d⎰=⋅SS B 0d微分形式:J H =⨯∇ 0=⋅∇B磁性能均匀线性各向同性的媒质:场方程积分形式:⎰=⋅lI d μl B⎰=⋅BS H 0d场方程微分形式: J B μ=⨯∇ 0=⋅∇H矢量磁位微分方程:J A 2μ-=∇ 矢量磁位微分方程的解:V V ''-'=⎰'d )(4)(r r r J r A πμ 恒定磁场边界条件:1,t t H H 21=。
电磁场与电磁波第二版(周克定著)课后
习题答案下载
电磁场与电磁波第二版(周克定著)课后答案下载
第一章矢量分析
第二章静电场
第三章恒定电流的电场和磁场
第四章静态场的解
第五章时变电磁场
第六章平面电磁波
第七章电磁波的辐射
第八章导行电磁波
附录一重要的矢量公式
附录二常用数学公式
附录三量和单位
电磁场与电磁波第二版(周克定著):内容提要
全书共分八章,内容包括:矢量分析、静电场、恒定电流的`电场和磁场、静电场的解、时变电磁场、平面电磁波、电磁波的辐射及导行电磁波。
本书内容精练,概念清晰,语言流畅,注重实践性与新颖性。
为便于学习使用,书中安排有较
多的例题。
本书可作为高等学校本科相关专业“电磁场与电磁波”课程的教材,也可作为有关科技人员的自学参考书。
电磁场与电磁波第二版(周克定著):图书目录
点击此处下载电磁场与电磁波第二版(周克定著)课后答案。
电磁场与电磁波课后习题答案(杨儒贵)(第二版) 全套第一章 题 解1-1已知三个矢量分别为z y e e e A x 32-+=;z y e e e B x 23++=;z e e C x -=2。
试求①|| |,| |,|C B A ;②单位矢量c b a e e e , ,;③B A ⋅;④B A ⨯;⑤C B A ⨯⨯)(及B C A ⨯⨯)(;⑥B C A ⋅⨯)(及C B A ⋅⨯)(。
解 ① ()14321222222=-++=++=z y x A A A A14213222222=++=++=z y x B B B B ()5102222222=-++=++=z y x C C C C② ()z y e e e A A A e x a 3214114-+===()z y e e e B B B e x b 2314114++===()z e e C C C e x c -===2515 ③ 1623-=-+=++=⋅z z y y x x B A B A B A B A④ z y zy zyxz y xz y B B B A A A e e e e e e e e e B A x x x5117213321--=-==⨯ ⑤ ()z y z y e e e e e e C B A x x 22311125117+-=---=⨯⨯因z y zy zyxz y xC C C A A A e e e e e e e e e C A x x x x x45212321---=--==⨯ 则()z y z y e e e e e e B C A x x 1386213452+--=---=⨯⨯⑥ ()()()152131532=⨯+⨯-+⨯-=⋅⨯B C A()()()1915027=-⨯-++⨯=⋅⨯C B A 。
1-2 已知0=z 平面内的位置矢量A 与X 轴的夹角为α,位置矢量B 与X 轴的夹角为β,试证βαβαβαsin sin cos cos )cos(+=-证明 由于两矢量位于0=z 平面内,因此均为二维矢量,它们可以分别表示为ααsin cos A A y e e A x += ββsin cos B B y e e B x +=已知()βα-=⋅cos B A B A ,求得()BA B A B A βαβαβαsin sin cos cos cos +=-即βαβαβαsin sin cos cos )cos(+=-1-3 已知空间三角形的顶点坐标为)2 ,1 ,0(1-P ,)3 ,1 ,4(2-P 及)5 ,2 ,6(3P 。
《电磁场与电磁波基础教程》(第2版)习题解答第1章1.1 解:(1)==A B=C(2))))23452A x y zB y zC x z ==+-=+=-,,;A a a a a a -a a a a a A(3)()()+2431223x y z x y z =+-+-+=--=+;A B a a a a a a A B (4)()()23411x y z y z ⋅=+-⋅-+=-;A B a a a a a (5)()()234104x y z y z x y z ⨯=+-⋅-+=---;A B a a a a a a a a (6)()()()1045242x y z x z ⨯⋅=-++⋅-=-;A B C a a a a a(7)()()()x 2104522405x y z x z y ⨯⨯=-++⨯-=-+A B C a a a a a a a a 。
1.2解:cos 68.56θθ⋅===︒;A B A BA 在B 上的投影cos 1.37B A θ===A ;B 在A 上的投影cos 3.21A B θ===B 。
1.3 解:()()()()()()()4264280⋅=-++-=正交A B 。
1.4 解:1110x x y y z z x y y z z y ⋅=⋅=⋅=⋅=⋅=⋅=,,;;a a a a a a a a a a a a 0x x y y z z ⨯=⨯=⨯=;a a a a a a x y z y z x z x y ⨯=⨯=⨯=;,a a a a a a a a a 。
1.5 解:(1)111000z z z z ρρϕϕρϕϕρ⋅=⋅=⋅=⋅=⋅=⋅=,,;,,a a a a a a a a a a a a ;000z z z z z ρρϕϕρϕϕρρϕ⨯=⨯=⨯=⨯=⨯=⨯=,,;,,a a a a a a a a a a a a a a a 。
(2)111000r r r r θθϕϕθθϕϕ⋅=⋅=⋅=⋅=⋅=⋅=,,;,,a a a a a a a a a a a a ;000r r r r r θθϕϕθϕθϕϕθ⋅=⋅=⋅=⨯=⨯=⨯=,,;,,a a a a a a a a a a a a a a a 。
1.6 解:()22223xy z x z z y xy z yz x y zΦΦΦΦ∂∂∂∇=++=+++∂∂∂a a a a a a 在点(2,-1,1)处 ()2-1133x y z l l ΦΦΦΦ∂∇=--=∇⋅=∇⋅∂,,;Aa a a a A()()11332233x y z x y z =--⋅+-=- a a a a a a 。
1.7 解:()221214x y z x y z x y z y z x y zΦΦΦΦΦ∂∂∂∇=++=++∇=++∂∂∂,,,a a a a a a a a a 。
1.8 解:()()()1113x y z x y z∂∂∂∇⋅=++=++=∂∂∂r 。
1.9 解:对z z ρρ=+r a a 取散度,()13zzρρρρ∂∂∇⋅=⋅+=∂∂r ,对r r =r a 取散度,()2213r r r r∂∇⋅=⋅=∂r ,看出对同一位置矢量r 取散度不论选取什么坐标系都应得同一值,坐标系的选取只是表示形式不同而已。
1.10 解:1100z c c c z ρρρρρρρρρρ⎛⎫⎛⎫⎛⎫∂∂∂∇⋅==∇⨯+⋅= ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭-1,=B a a B ,由亥姆霍兹定理判定这是载流源在无源区(0)==G J 产生的无散场。
1.11 解:1100zc c z ϕρρϕρρρ⎛⎫⎛⎫∂∂∂∇⨯=-=∇⋅== ⎪ ⎪∂∂∂⎝⎭⎝⎭,E a a E ,由亥姆霍兹定理判定这是电荷源在无源区()0g q ==产生的无旋场;将0∇⨯=E 与恒等式()0u ∇⨯∇=对比,可知E 与±u ∇等效,令标量位u Φ=得Φ=-∇E 。
1.12 解:F 满足无旋场的条件为0∇⨯=F ,在直角坐标系中表示为()03 2 x z x y z y az bx z cy z ∂∂∂=∂∂∂---+y a a a解得a =0,b =3和c =2。
1.13 解:()()2220x y xy x y∂∂∇⋅=--=∂∂,F ()()()()2222224xy z z xy x y xy x y y z z x y ⎡⎤∂∂∂∂∇⨯=-+-+--=⎢⎥∂∂∂∂⎣⎦F a a a a 由亥姆霍兹定理判定知,这是属于第三类的无散有旋场。
1.14 解:取2222221111:00sin rC C c c r r r r r r r r r θϕθθθ∂∂∂⎛⎫⎛⎫⎛⎫=∇⋅=⋅=∇⨯-= ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭,=F a F F a a ,属 于第一类的无散无旋场,由无旋性可以引入标量位的梯度来表示; 取2221r c c c r r r r r r ∂⎛⎫=∇⋅=⋅= ⎪∂⎝⎭:,F a F 1110sin r c c r r r r θθϕθ∂∂⎛⎫⎛⎫∇⨯=-= ⎪ ⎪∂∂⎝⎭⎝⎭F a a ,属于第二类的有散无旋场,由无旋性可以引入标量位的梯度来表示; 取1:0sin c c r r r ϕθϕ∂⎛⎫=∇⋅== ⎪∂⎝⎭,F a F 111sin sin rc c c r r r r r r r r r r θϕθθθ∂∂∂⎛⎫⎛⎫⎛⎫∇⨯=-⋅+⋅ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭F a a a 2cot r c r θ=a ,属于第三类的无散有旋场。
第2章2.1 解:q 3受到q 1和q 2的作用力应当等值反向,所以3q 应位于1q 和2q 的连线上某点处。
由库仑定律和1323F F =,可写为()1132312222132313232q q q q q q KKr r r r ==,故23131.41r r =;又13131.41r r x +=解得130.4152.41xr x ==。
2.2 解:在图中z 轴上线元d z '处电荷元d l z ρ'可视为点电荷,它与场点P 的距离为R ,由库仑定律知,离导线为ρ处场点P 的电场强度为对20d d cos 4l z E Rρρθπε'= 在22ππ⎛⎫- ⎪⎝⎭,范围内对θ取积分。
由图可知sec R ρθ=,tan z ρθ=和2d sec d z ρθθ=,得0cos d d 4l E ρρθθπερ=2200cos d 42l l E πρπρρθθπερπερ-==⎰,02l ρρπερ=E a 。
2.3 解:圆环上线元d l '处电荷元d d 2l q q aπ'=可视为点电荷,它与圆环轴线上场点P的距离为R =由轴对称性知场点P 的电场强度只有z分量,由库仑定律知()3222200d 1d d cos 442z q q l zE R a a z απεπεπ'⎛⎫== ⎪⎝⎭+ 由图知式中α为d E 与d z E 的夹角。
对圆环取积分得()()332222220011 , 44z zqzqzE a z a z πεπε==++故E a圆环面中心点处0z =知0=E ,这是由于具有轴对称的电场强度不仅其径向分量等值反向,相互抵消,且在0z =处无轴向分量。
2.4 解:利用习题2.3的结果进行计算。
取盘上半径为ρ',宽度为d ρ'的圆环,环上电荷密度为d l S ρρρ'=。
该圆环在轴上点P 产生的电场,由于对称性,ρ分量相互抵消为零,只有z 分量()32220d d 2S z z E zρρρερ''='+对整个圆面积分()()()311022222222200d 11222aaSS S z z E z a z z ρρρρρεεερρ⎡⎤⎡⎤''⎢⎥⎢⎥==-=-⎢⎥⎢⎥''+++⎢⎥⎢⎥⎣⎦⎣⎦⎰故()1222012S z z a z ρε⎡⎤⎢⎥=-⎢⎥+⎢⎥⎣⎦E a 。
若S ρ保持不变,当0a →时,有0→E ;当a →∞时,有a →∞,有02Sρε→E 。
2.5 解:对于球对称分布,应用高斯定理 001d d SS q S ρεε⋅==⎰⎰ÑE S在区域r <a :100S ρ==,E ;在区域a <r <b :22210144S r E a ππρε=,21220S r a r ρε=E a ;在区域r >b :()22231201444S S r E a b ππρπρε=+,()22312201rS S a b rρρε=+E a 。
2.6 解:对于柱对称分布,应用高斯定理01d d S SS E S ρε⋅=⎰⎰ÑS在区域ρ<1:00S a ρ==,E ; 在区域a <ρ<112002:2S S a a b ρρπρρπερερ==E a a ;在区域ρ>()12123002:2S S S S a b a b b ρρπρρρρπερερ++==E a a 。
2.7 解:对于无限大面电荷分布,其电场垂直于无限大平面,具有面对称分布,应用高斯定理时可跨平面作矩形盒高斯面,得()0S z z S E E S ρε+=在区域z >0:02S z ρε=E a ;在区域z <0:02S z ρε=-E a 。
2.8 解:两无限长电流的磁场分布分别具有轴对称分布,应用安培环路定理和叠加原理,得在y =-a 处,12z I a π=H a ; 在y =a 处,22xI aπ=H a 。
故在坐标原点处()()00122z x Iaμμπ=+=+B H H a a 。
2.9 解:对于轴对称分布,应用安培环路定理d SI μ⋅=⎰ ÑB l在区域ρ<1:0a =B ;在区域a ≤ρ≤()()2222:S I b I J a b a πρπππ''==--,()()222222I a b a ϕμρπρ-=-B a ; 在区域ρ>03:2Ib ϕμπρ=B a 。
2.10 解:已知sin m B t ρω=B a 和n ab =S a ,磁通为1d sin d sin cos d sin 22m n m m SSSB t S B t t S abB t ρψωωωω=⋅=⋅==⎰⎰⎰B S a a由法拉第电磁感应定律知()1sin 2cos22in m m abB t ab B t t tψεωωω∂∂=-=-=-∂∂ 当线圈增至N 匝时,磁通增至N 倍,有cos 2in m Nab B t εωω=-。