应用数理统计复习题Word版
- 格式:doc
- 大小:368.00 KB
- 文档页数:8
应⽤数理统计作业题及参考答案(第⼀章)第⼀章数理统计的基本概念P261.2 设总体X 的分布函数为()F x ,密度函数为()f x ,1X ,2X ,…,n X 为X 的⼦样,求最⼤顺序统计量()n X 与最⼩顺序统计量()1X 的分布函数与密度函数。
解:(){}{}()12nn i n F x P X x P X x X x X x F x =≤=≤≤≤= ,,,.()()()()1n n n f x F x n F x f x -'=??=.(){}{}1121i n F x P X x P X x X x X x =≤=->>> ,,,. {}{}{}121n P X x P X x P X x =->>>{}{}{}121111n P X x P X x P X x =-?-≤??-≤??-≤()11nF x =-?-()()()()1111n f x F x n F x f x -'=??=?-.1.3 设总体X 服从正态分布()124N ,,今抽取容量为5的⼦样1X ,2X ,…,5X ,试问:(i )⼦样的平均值X ⼤于13的概率为多少?(ii )⼦样的极⼩值(最⼩顺序统计量)⼩于10的概率为多少?(iii )⼦样的极⼤值(最⼤顺序统计量)⼤于15的概率为多少?解:()~124X N ,,5n =,4~125X N ??∴ ??,. (i ){}{}()13113111 1.1210.86860.1314P X P X P φφ>=-≤=-=-=-=-=. (ii )令{}min 12345min X X X X X X =,,,,,{}max 12345max X X X X X X =,,,,.{}{}{}min min 125101*********P X P X P X X X <=->=->>> ,,,{}{}{}5551111011101110i i i i P X P X P X ===->=-?-()12~012X Y N -=,, {}{}121012*********X X P X P P P Y ---∴<=<=<-=<-{}()111110.84130.1587P Y φ=-<=-=-=.{}[]5min 10110.158710.42150.5785P X ∴<=--≈-=.(iii ){}{}{}{}{}55max max 1251151151151515115115i i P X P X P X X X P X P X =>=-<=-<<<=-<=-? {}5max 1510.9331910.70770.2923P X ∴>=-≈-=.1.4 试证:(i )()()()22211nni i i i x a x x n x a ==-=-+-∑∑对任意实数a 成⽴。
一 填空题 1设621,,,X X X 是总体)1,0(~N X 的一个样本,26542321)()(X X X X X X Y +++++=。
当常数C = 1/3 时,CY 服从2χ分布。
2 设统计量)(~n t X ,则~2X F(1,n) ,~12X F(n,1) 。
3 设n X X X ,,,21 是总体),(~2σu N X 的一个样本,当常数C = 1/2(n-1) 时,∑-=+-=11212)(n i i i X X C S 为2σ的无偏估计。
4 设)),0(~(2σεεβαN x y ++=,),,2,1)(,(n i y x i i =为观测数据。
对于固定的0x ,则0x βα+~ ()20201,x x N x n Lxx αβσ⎛⎫⎡⎤- ⎪⎢⎥++ ⎪⎢⎥ ⎪⎢⎥⎣⎦⎝⎭。
5.设总体X 服从参数为λ的泊松分布,,2,2,, 为样本,则λ的矩估计值为ˆλ= 。
6.设总体212~(,),,,...,n X N X X X μσ为样本,μ、σ2 未知,则σ2的置信度为1-α的置信区间为 ()()()()222212211,11n S n S n n ααχχ-⎡⎤--⎢⎥⎢⎥--⎢⎥⎣⎦。
7.设X 服从二维正态),(2∑μN 分布,其中⎪⎪⎭⎫ ⎝⎛=∑⎪⎪⎭⎫⎝⎛=8221,10μ令Y =X Y Y ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛202121,则Y 的分布为 ()12,02TN A A A A μ⎛⎫= ⎪⎝⎭∑ 。
8.某试验的极差分析结果如下表(设指标越大越好):表2 极差分析数据表则(1)较好工艺条件应为22121A B C D E 。
(2)方差分析中总离差平方和的自由度为 7 。
(3)上表中的第三列表示 A B ⨯交互作用 。
9.为了估计山上积雪溶化后对河流下游灌溉的影响,在山上建立观测站,测得连续10年的观测数据如下表(见表3)。
则y 关于x 的线性回归模型为 ()ˆ 2.356 1.813~0,1.611yx N εε=++ 10设总体12~(,1),,,...,n X U X X X θθ+为样本,则θ的矩估计量为 12x - ,极大似然估计量为 max{X 1,X 2,…,X n } 。
应 用 数 理 统 计 复 习 题1. 设总体X ~ N(20,3),有容量分别为10, 15的两个独立样本,求它们的样本均值之差的绝对值小于 的概率._ _ _ _ 1解:设两样本均值分别为 X,Y ,则X Y 〜N(0,—) 22. 设总体X 具有分布律其中 (01)为未知参数,已知取得了样本值X 1 1,X 2 2,X 3 1,求的矩估计和最大似然估计.解:(1) 矩估计:EX22 2 (1 ) 3(1)2 23令EX X ,得 ?-.6(2) 最大似然估计:得? 5 63.设某厂产品的重量服从正态分布,但它的数学期望和方差2均未知,抽查 10件,测得重量为 X斤i 1,2, ,10。
算岀给定检验水平0.05 ,能否认为该厂产品的平均重量为斤?附:(9)=(10)= (9)= (10)=解:检验统计量为T =|将已知数据代入,得所以接受H 。
4.在单因素方差分析中,因素A 有3个水平,每个水平各做 4次重复实验,完成下列方差分析表,在X - m 0 |s/、n 15.4 - 5.0t 二. __________ 10=2J3.6/ 9F O.95(2,9) 4.26 , F 7.5 4.26,认为因素A是显着的5.现收集了16组合金钢中的碳含量x及强度y的数据,求得x 0.125, y 45.7886丄拓0.3024, L xy25.5218,L yy2432.4566 .(1)建立y关于x的一元线性回归方程??,?x ;(2)对回归系数1做显着性检验(0.05).解:(1)? % 25.5218 84.3975l xx0.3024所以,? 35.2389 84.3975X(2)Q |yy ?|xy 2432.4566 84.3975 25.5218 278.4805拒绝原假设,故回归效果显着.(1)找岀对结果影响最大的因素;(2)找出“算一算”的较优生产条件;(指标越大越好)(3)写出第4号实验的数据结构模型。
应用数理统计(2000年)一、填空1 、设X1,X2,…X10 来自总体N(0,1) 的样本,若2 2 2y=k i(x i+2x2+3x3)+k2(x4+x5+…+X10) ~x (2),贝U k i= _________ k2= __________2、设x i,X2,…X2m来自总体N(4,9)的样本,若y=W(x2i-4)2,且Z= c(xi 二4),服z J y从t 分布,贝U c= ___ ,z~t( __ )3、设X i,X2,…X2m 来自总体N( p, 2)的样本,已知y=(X2-X i)2+(X4-X3)2+…+(X2m-X2m-i)2,且Z=cy为2的无偏估计,则c= ____4、上题中,Dz= __5、由总体F(x)与G(x)中依次抽得容量为i2和ii的样本,已计算的游程总个数U=i2,试在水平a =0.05下检验假设H。
:F(x)= G(x),其结论为 ___________ (U°.05(12, 11)=8)61 °X2 1二、设X i,X2,…X61 来自总体N(0,1)的样本,令y=^ x2,试求P{互兰丄}y y 15(t0.975(60)=2)三、设总体X的密度函数为(1+a)x: 0<x<1Lf(x)= F0, 其它而(X i,X2,…X n )为来自X的样本,试求〉的极大似然估计量。
2 2四、设x~N( p, 2),y~ N( p, 2)今抽取X的样本X i,X2,…X8;y的样本y i,y2, (8)计算得x =54.03,y =57.11,s;=3.25, £=2.751 .试在水平a =0.0下检验假设H0:p i=p,H i: p i> p22. 试求a =0.0时,p- p 的估计区间(t0.99(14)=2.6245)五、欲考察因子A,B,C,D及交互作用AXC,且知B也可能与其它因子存在交互作用,试在L8(27)上完成下列表头设计。
(完整版)数理统计考试题及答案1、离散型随机变量X 的分布律为P (X=x i )=p i ,i=1.2…..,则11=∑=ni ip2、设两个随机变量X ,Y 的联合分布函数F (x ,y ),边际分布Fx (x ),Fy (y ),则X 、Y 相互独⽴的条件是)()(),(y F x F y x F Y X ?=3、 X 1,X 2,….X 10是总体X~N (0,1)的样本,若2102221X X X +++=ξ,则ξ的上侧分位数025.0ξ=解:因为X~N (0,1),所以2102221X X X +++=ξ~)10(2χ,查表得025.0ξ=20.54、设X~N (0,1),若Φ(x )=0.576,则Φ(-x )= 解:Φ(-x )=1-Φ(x )=1-0.576=0.4245、设X 1,X 2,….X n 是总体),(~2σµN X 的样本,∑=-=ni iXY 122)(1µσ,则EY=n解:∑=-=ni iXY 122)(1µσ~)(2n χ,E 2χ=n ,D 2χ=2n⼆、设设X 1,X 2,….X n 是总体),(~2σµN X 的样本,∑=-=612)(51i i X X s ,试求)5665.2(22σ≤s P 。
解:因为),(~2σµN X ,所以有)5(~)(126122χσ∑=-i i X X ,则≤-= ≤-=≤=≤∑∑==8325.12)(5665.25)()5665.2()5665.2(261226122222σσσσi ii i X X P X X P s P s P 查2χ分布表得=≤)5665.2(22σs P≤-∑=8325.12)(2612σi i X X P =1-α=1-0.0248=0.9752 三.设总体X 的概率密度为f(x)= (1),(01) 0a x x α?+<,其他,其中α>0,求参数α的矩估计和极⼤似然估计量。
..复习题一一、选择题1.设随机变量 X 的概率密度 f (x)x 2x 1,则 = ( )。
x 1A . 1B .1C. -1D .3222.掷一枚质地均匀的骰子,则在出现偶数点的条件下出现4 点的概率为()。
1B .2C.1D.1A .36322~ 2( n 1 ),2 ~2( n 2 ) ,2 ,222 ~ ()。
3.设 121 2 独立,则 12A . 2 2 ~ 2(n)B .1 2 C.2 2 ~ t (n)D .122 2 122 212~ 2(n 1)~2(n 1 n 2 )4.若随机变量 YX 1 X 2 ,且 X 1, X 2 相互独立。
X i ~ N (0,1) ( i 1,2 ),则()。
A . Y ~ N (0,1)B . Y ~ N (0,2)C. Y 不服从正态分布D . Y ~ N (1,1)5.设 X ~ N (1,4) ,则 P{0 X1.6} = ()。
A . 0.3094 B . 0.1457 C.0.3541D . 0.2543二、填空题1.设有 5 个元件,其中有 2 件次品,今从中任取出 1 件为次品的概率为2.设 A, B 为互不相容的随机事件, P( A)0.1,P( B)0.7, 则 P(A U B)3.设 D ( X ) =5, D (Y) =8, X , Y 相互独立。
则 D ( XY )1, 0 x 10.24.设随机变量 X 的概率密度 f ( x)其它则 P X0 ,三、计算题1.设某种灯泡的寿命是随机变量X ,其概率密度函数为 f ( x)Be 5 x ,x 00,x 0(1)确定常数 B(2)求 P{ X 0.2}(3)求分布函数 F (x) 。
Word 资料 ...2.甲、乙、丙三个工厂生产同一种产品,每个厂的产量分别占总产量的40%,35%,25%,这三个厂的次品率分别为0.02, 0.04,0.05。
现从三个厂生产的一批产品中任取一件,求恰好取到次品的概率是多少?1x1x03.设连续型随机变量 X 的概率密度f ( x)1x0x1,求 E( X ), D ( X ) 。
应用数理统计复习题一、填空题1.设总体212~(,),,,...,n X N X X X μσ为样本,样本均值及样本方差分别为,221111,()n n i i i i X X S X X n n ====-∑∑,设112,,...n n X X X X +与独立同分布,则统计量~Y =。
2.设21~(),~T t n T 则。
3.设总体X 的均值为μ,12,,...,n X X X 为样本,当a = 时,E 21()nii Xa =-∑达到最小值。
4. 设总体212~(,),,,...,n X N X X X μσ为样本,1||,()nii D XE D μ==-=∑则5.设总体X 的均值和方差分别为a , b , 样本均值及样本方差分别为221111,()n n i i i i X X S X X n n ====-∑∑,则 E (S 2 )= 。
6.在总体~(5,16)X N 中随机地抽取一个容量为36的样本,则均值 X 落在4与6之间的概率 =6. 设总体X 服从参数为λ的泊松分布,1.9,2,2,2.1, 2.5为样本,则λ的矩估计值为ˆλ= 。
7. 设总体212~(,),,,...,n X N X X X μσ为样本,12211ˆ()n i i i c XX σ-+==-∑,若2ˆσ为2σ的无偏估计,则 c = 。
8. 设总体12~(,1),,,...,n X U X X X θθ+为样本,则θ的矩估计量为 ,极大似然估计量为 。
9. 设总体212~(,),,,...,n X N X X X μσ为样本,μ未知,σ2 已知,为使μ的置信度为1-α的置信区间长度不超过L ,则需抽取的样本的容量n 至少为 。
10. 设总体212~(,),,,...,n X N X X X μσ为样本,μ、σ2 未知,则σ2的置信度为1-α的置信区间为 。
11设X 服从二维正态),(2∑μN 分布,其中⎪⎪⎭⎫⎝⎛=∑⎪⎪⎭⎫ ⎝⎛=8221,10μ令Y =X Y Y ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛202121,则Y 的分布为 (要求写出分布的参数) 12. 设总体X 在区间]1,[+θθ上服从均匀分布,则θ的矩估计=θˆ ;=)ˆ(θD 。
一、填空题1.小概率原理是 .2.在数理统计学中,我们称研究对象的全体为总体母体,组成总体的每个单元为个体。
3.(12,,,n ξξξ )是总体2~(3,5)N ξ的样本,则()(1,2,,)__________i E i n ξ== 3 4.如果总体ξ的样本(n ξξξ,,,21 )满足下列条件:(1)n ξξξ,,,21 相互独立;(2)i ξ(1,2,,i n = )与总体ξ 同分布 ,则称(n ξξξ,,,21 )是总体的简单随机样本. 5.设0.05是假设检验中犯第一类错误的概率,H 0为原假设,则P {拒绝H 0|H 0真}= __0.05__.6.评价估计量好坏的标准最常用的有________无偏性、有效性、一致性7.设总体ξ服从参数为λ(λ>0)的泊松分布,(12,,,n ξξξ )为总体ξ的一个样本,其样本均值5ξ=,则λ的矩估计值λˆ=____5____ 8.由来自正态总体(,1)N μ容量为100的简单随机样本,算得样本均值为10,则未知参数μ的置信度为0.95的置信区间是_(9.804,10.196)_.(0.975 1.96u =)9.由来自正态总体(,1)N μ容量为100的简单随机样本,得样本均值为6,则未知参数μ的置信度为0.95的置信区间是_(5.804,6.196) . (0.975 1.96u =)10.设总体2~(,)N ξμσ,其中2σ未知,现由来自总体ξ的一个样本(129,,,ξξξ )算得样本均值20ξ=,修正样本标准差S =3,并查得0.95(8) 1.86t =,则μ的置信度为0.9的置信区间是 (18.14,21.86) .11.设1234(,,,)ξξξξ为来自总体(0,1)N ξ 的样本,则统计量2212ξξ+ .12.设(1234,,,ξξξξ)为来自总体(0,1)N ξ 的样本,则统计量~22ξ .13.设(1234,,,ξξξξ)为来自总体(0,1)N ξ 的样本,则统计量22221234ξξξξ+++ . 14.设(123,,ξξξ)为来自总体(0,1)N ξ 的样本,则统计量222123ξξξ++ .15.已知一元线性回归方程为ˆˆ3ya x =+,且x =3,y =6,则ˆa = -3 . 16.已知一元线性回归方程为ˆˆ3ya x =+,且x =1,y =6,则ˆa = 3 . 17.已知一元线性回归方程为ˆˆ2ya x =+,且x =2,y =8,则ˆa = 4 . 18.设总体ξ的数学期望()E ξ存在,(123,,ξξξ)为总体ξ的样本,1231136Y k ξξξ=++,则当k =_______________时,Y 是()E ξ的无偏估计量.19.设总体ξ的数学期望()E ξ存在,(123,,ξξξ)为总体ξ的样本,1231155k ηξξξ=++,则当k =_______________时,η是()E ξ的无偏估计.20.设总体ξ的数学期望()E ξ存在,(123,,ξξξ)为总体ξ的样本,1231132k ηξξξ=++,则当k =_______________时,η是()E ξ的无偏估计量.21.12(,,,)n ξξξ 是总体)4,1(~2N ξ的样本,则__________)(1=ξD 1622.设(10)t ξ ,0.95(10)t 表示t 分布的下侧分位数,则{}0.95(10)P t ξ≤= 0.95 . 23.设(15)t ξ ,0.99(15)t 表示t 分布的下侧分位数,则{}0.99(15)P t ξ≤= 0.99 . 24.设2(8)ξχ ,20.95(8)χ表示χ分布的下侧分位数,则{}20.95(8)P ξχ≤= 0.95 .25.设(0,1)N ξ ,0.99μ表示正态分布的下侧分位数,则{}0.99P ξμ≤= 0.99 26.设(nξξξ,,,21 )为总体ξ的一个样本,记11()nr r i i B n ξξ==-∑,则r B 叫做样本(n ξξξ,,,21 )的r 阶 中心矩 . 设(12,,,n ξξξ )为总体ξ的一个样本,记r A =11n ri i n ξ=∑,则r A 叫做样本(12,,,n ξξξ )的r 阶 原点 .二、单项选择题1.设2(,)N ξμσ ,12(,,,)n ξξξ 为总体ξ的一个样本,记ξ=11ni i n ξ=∑,则下列选项中正确的是A .2(,)N ξμσB .(0,1)N ξ C.(N ξμ D . 2(,)N nσξμ2.设(12100,,,ξξξ )为来自总体2(0,5)N ξ 的一个样本,ξ表示样本均值,则ξ~A .(0,5)NB .(0,25)NC .(0,0.05)ND . (0,0.25)N3.设(1,1)N ξ ,(n ξξξ,,,21 )为总体ξ的一个样本,记ξ=11ni i n ξ=∑,则下列选项中正确的是A .(0,1)N ξB .(1,1)N ξC .1(1,)N n ξ D.N ξ 4.在假设检验问题中,犯第二类错误是指A .在0H 不成立的条件下,经检验0H 被拒绝B .在0H 不成立的条件下,经检验0H 被接受C .在0H 成立的条件下,经检验0H 被拒绝D .在0H 成立的条件下,经检验0H 被接受5.设总体2(,)N ξμσ ,12(,,,)n ξξξ 为总体ξ的一个样本,记2211()1nii Sn ξξ==--∑ , 则下列选项中正确的是A .22(1)~(1)n Sn χ-- B .222(1)~()n Sn χσ-C .222(1)~(1)n Sn χσ--D .222~(1)Sn χσ-6. 设总体ξ2(,)N μσ ,(12,,,n ξξξ )为总体ξ的一个样本,记2211()1nii S n ξξ==--∑ ,则在下列各式中,正确的是A. 222(1)(1)n Sn χσ-- B.22(1)(1)n Sn χσ--C. 222(1)()n Sn χσ- D.22(1)()n Sn χσ-7.设总体ξ2(,)N μσ ,(12,,,n ξξξ )为总体ξ的一个样本, 记2211()nii S nξξ==-∑,则下列选项中正确的是A .22~(1)nS n χ- B .222~(1)nS n χσ-C .222(1)~(1)n S n χσ--D .22(1)~(1)n S n χσ--8.设总体ξ2(,)N μσ ,(n ξξξ,,,21 )为总体ξ的一个样本, 记2211()nii S nξξ==-∑,则下列选项中正确的是A .22~()nS t n σ B .22~(1)nS t n σ-C .222~()nS n χσD .222~(1)nS n χσ-9.(,)F m n α表示F 分布的下侧α分位数,则0.95(3,7)F =A .0.95(7,3)FB . 0.951(3,7)FC .0.051(7,3)FD .0.051(3,7)F10. (,)F m n α表示F 分布的下侧α分位数,则正确的是A. 11(,)(,)F n m F n m αα-=B. 111(,)(,)F n m F m n αα--=C. 1(,)(,)F n m F m n αα=D. ),(1),(1n m F m n F αα-=11.(,)F m n α表示F 分布的下侧α分位数,则0.975(10,7)F =A .0.975(7,10)FB .0.9751(10,7)FC .0.0251(7,10)FD .0.0251(10,7)F12.(,)F m n α表示F 分布的下侧α分位数,则0.91(1,2)F =A .0.9(2,1)FB .0.9(1,2)FC .0.1(2,1)FD .0.1(1,2)F13.设总体ξ2(,)N μσ ,2σ为已知,12(,,,)n ξξξ 为总体ξ的一个样本,ξ=11ni i n ξ=∑,2211()1nii Sn ξξ==--∑ ,欲检验假设0010:,:H H μμμμ=≠,则检验用的统计量是Aξ BξC .22101()nii ξμσ=-∑D .220(1)n Sσ-14.设总体ξ(0,1)N ,(126,,,ξξξ)为总体ξ(2)t ,则c =A .1B .2CD .1215.设总体ξ(0,1)N ,(1234,,,ξξξξ)为总体ξ的一个样本,(3)t ,则k =A .2B .3CD16.设总体ξ(0,1)N ,(126,,,ξξξ)为总体ξ(5)t ,则k =A .2B .6CD17.设总体2(,)N ξμσ ,其中μ已知,2σ未知,123(,,)ξξξ是总体ξ的一个样本,则下列各式中不是统计量的是A .3ξB .122ξξ+C .1233ξξξμ++-D . 2221232ξξξσ++18.设(1234,,,ξξξξ)是总体ξ2(,)N μσ 的一个样本,其中μ未知,2σ已知,11ηξμ=-,1222ξξη+=,22212332ξξξησ++=,123444ξξξξμησ+++-=,则1234,,,ηηηη中统计量的个数是A.1B. 2C.3D. 419.设总体ξ2(,)N μσ ,其中μ和2σ均未知,(123,,ξξξ)是总体ξ的一个样本,则下列各式中是统计量的是A .2221232ξξξσ++ B .3ξC .1233ξξξμ++-D .1ξμ-20.设总体ξ2(,)N μσ ,其中μ已知,2σ未知,(n ξξξ,,,21 )是总体ξ的一个样本,则下列各式中不是统计量的是A .1ξB .21ni i ξ=∑C .22122ξξσ+ D . {}12min ,,,n ξξξ21.设总体2(,)N ξμσ ,其中μ未知,1234(,,,)ξξξξ为来自总体ξ的一个样本,则以下关于μ的四个估计112341ˆ()4μξξξξ=+++,2123123ˆ555μξξξ=++,31211ˆ63μξξ=+,411ˆ7μξ=中,μ的无偏估计是A .1ˆμB .2ˆμC .3ˆμD .4ˆμ22.设(123,,ξξξ)是来自总体ξ的一个容量为3的样本,则下列关于()E ξ的无偏估计量中,最有效的估计量是A .123212555ξξξ++B .1231()3ξξξ++ C .123111442ξξξ++D .123124777ξξξ++23.设总体ξ2(,)N μσ ,其中μ未知,(12345,,,,ξξξξξ)为来自总体ξ的一个样本,11234511ˆ(),45μξξξξξ=++++22323ˆ,55μξξ=+31211ˆ,63μξξ=+41234512111ˆ77777μξξξξξ=++++,μ的无偏估计是A .1ˆμB .2ˆμC .3ˆμD .4ˆμ24.设随机变量~(0,1),~(0,1)N N ξη,且ξ与η相互独立,则22ξη服从的分布是A .)2,0(NB .)2(tC .)2(2χD .)1,1(F25.设ξ服从参数为λ的泊松分布()P λ,(12,,,n ξξξ )为总体ξ的一个样本,ξ为样本均值,则λ的矩估计ˆλ= A .ξ B .2ξ C .2ξ D .1ξ26.设(1234,,,ξξξξ)是来自正态总体(0,1)N 的样本,则统计量22122234ξξξξ++服从A .正态分布B .F 分布C .t 分布D .2χ分布27.设总体ξ2(,)N μσ ,μ未知,(n ξξξ,,,21 )为总体ξ的一个样本,ξ=11ni i n ξ=∑,2211()1nii Sn ξξ==--∑ ,欲检验假设22220010:,:H H σσσσ=≠,则检验用的统计量是 Aξ B .220(1)n S σ-C .22101()nii ξμσ=-∑ Dξ三、 计算题1. 若从自动车床加工的一批零件中随机抽取10件, 测得其尺寸与规定尺寸的偏差(单位: um)分别为: 2, 1, -2, 3, 2, 4, -2, 5, 3, 4, 零件尺寸的偏差设为ξ, 假 定2(,)N a ξσ ,试求置信度为0.9的a 的置信区间. (0.95(9) 1.8331t =)2.设总体ξ服从泊松分布()P λ, 即{},1,2,!k P k e k k λλξ-=== ,(1, 1, 1, 0)是总体ξ的一组样本观测值. 求λ的极大似然估计值.3.已知某班的应用数理统计的考试成绩服从正态分布2(,7)N a , 现从该班中抽取了9名同学, 测得成绩为: 75, 78, 80,81, 84, 86, 88, 90, 93. 求置信度为0.95的总体平均值a 的置信区间. )96.1(975.0=μ4.某台机床加工的产品的直径ξ服从正态分布2(,)N a σ, 今从该台机床加工的产品中随机抽取5件, 测得其直径(单位: 毫米)为: 20.1, 20.2, 20.3, 20.8, 21, 试在置信度0.95下, 求2σ的置信区间. )484.0)4(,143.11)4((025.02975.02==χχ5. 设罐头番茄汁中维生素C 含量服从正态分布. 按照规定, 维生素C 的平均含量约为21mg. 现从一批罐头中随机抽取16罐, 计算得23ξ= mg ,标准差 3.9S = mg. 问这批罐头的维生素C 含量是否合格?0.975(0.05,(15) 2.1315)t α==设各个工人的日产量都服从正态分布且方差相同, 试问在显著水平0.05=下, 操作工人之间的差异是否显著? )14.5)6,2((95.0=F(2)检验y 与x 的线性是否显著?0.95(0.05,(1,3)10.01)F α==。
应用统计学习题及答案简答题1.简述普查和抽样调查的特点。
答:普查是指为某一特定目的而专门组织的全面调查,它具有以下几个特点:(1)普查通常具有周期性。
(2)普查一般需要规定统一的标准调查时间,以避免调查数据的重复或遗漏,保证普查结果的准确性。
(3)普查的数据一般比较准确,规划程度也较高。
(4)普查的使用范围比较窄。
抽样调查指从调查对象的总体中随机抽取一部分单位作为样本进行调查,并根据样本调查结果来推断总体数量特征的一种数据收集方法。
它具有以下几个特点:(1)经济性。
这是抽样调查最显著的一个特点。
(2)时效性强。
抽样调查可以迅速、及时地获得所需要的信息。
(3)适应面广。
它适用于对各个领域、各种问题的调查。
(4)准确性高。
2.为什么要计算离散系数?答:离散系数是指一组数据的标准差与其相应得均值之比,也称为变异系数。
对于平均水平不同或计量单位不同的不同组别的变量值,是不能用方差和标准差比较离散程度的。
为消除变量值水平高低和计量单位不同对离散程度测度值的影响,需要计算离散系数。
离散系数的作用主要是用于比较不同总体或样本数据的离散程度。
离散系数大的说明数据的离散程度也就大,离散系数小的说明数据的离散程度也就小。
3、加权算术平均数受哪几个因素的影响?若报告期与基期相比各组平均数没变,则总平均数的变动情况可能会怎样?请说明原因。
答:加权算术平均数受各组平均数喝次数结构(权数)两因素的影响。
若报告期与基期相比各组平均数没变,则总平均数的变动受次数结构(权数)变动的影响,可能不变、上升、下降。
如果各组次数结构不变,则总平均数;如果组平均数高的组次数比例上升,组平均数低的组次数比例下降,则总平均数上升;如果组平均数低的组次数比例上升,组平均数高的组次数比例下降,则总平均数下降。
4.解释相关关系的含义,说明相关关系的特点。
答:变量之间存在的不确定的数量关系为相关关系。
相关关系的特点:一个变量的取值不能由另一个变量唯一确定,当变量x取某个值时,变量y的取值可能有几个;变量之间的相关关系不能用函数关系进行描述,但也不是无任何规律可循。
《应用系统》一、单项选择题1、从一幅52张的扑克牌(去掉大小王)中,任意取5张,其中没有K 字牌的概率为( B ) A 、5248 B 、552548C CC 、52548CD 、555248 2、事件A 与B 互不相容,,3.0)(0.4,)(==B P A P 则=)(B A P ( A ) A 、0.3B 、0.12C 、0.42D 、0.73、设B A 、为两个随机事件,则B A -不等于( A ) A 、B AB 、B AC 、AB A -D 、B B A -⋃)(4、设B A 、为两个随机事件,则B A AB ⋃等于( C ) A 、ΦB 、ΩC 、AD 、B A ⋃5、已知事件A 与事件B 互不相容,则下列结论中正确的是( A ) A 、)()()(B P A P B A P +=+ B 、)()()(B P A P AB P ⋅= C 、A 与B ,A 与B 相互独立D 、)(1)(B P A P -=6、已知事件A 与B 相互独立,则下列等式中不正确的是( D ) A 、P(B|A)=P(B)B 、P(A|B)=P(A)C 、P(AB)=P(A)P(B)D 、P(A)=1-P(B)7、设电灯泡使用寿命在2000小时以上的概率为0.15,欲求12个灯泡在使用2000小时以后只有一个不坏的概率,则只需用什么公式即可算出( D ) A 、全概率公式 B 、古典概型计算公式 C 、贝叶斯公式D 、贝努利概型计算公式8、随意地投掷一均匀骰子两次,则两次出现的点数之和为8的概率为( C ) A 、363 B 、364 C 、365 D 、362 9、盒中有10个木质球,6个玻璃球,玻璃球中有2个红色4个蓝色,木质球中有3个红色7个蓝色,现从盒中任取一球,用A 表示“取到蓝色球”,用B 表示“取到玻璃球”,则P(B|A)=( D ) A 、106B 、166 C 、74 D 、114 10、6本中文书和4本外文书,任意在书架上摆放,则4本外文书放在一起的概率是( C ) A 、!10)!6!4( B 、107 C 、!10)!7!4( D 、104 11、设随机变量X 的分布列为)(x F 为其分布函数,则=)2(F ( C )A 、0.2B 、0.4C 、0.8D 、112、在相同条件下,相互独立地进行5次射击,每次射中的概率为0.6,则击中目标的次数X 的概率分布为( A )A 、二项分布B(5,0.6)B 、泊松分布P(2)C 、均匀分布U(0.6,3)D 、正态分布)5,3(2N)(),(),,(y F x F y x F Y X 分别是二维连续型随机变量),(Y X 的分布函数和边缘分布函数,),,(y x f ),(x f X )(y f Y 分别是),(Y X 的联合密度和边缘密度,则一定有( C )A 、)()(),(y F x F y x F Y X =B 、)()(),(y f x f y x f Y X =C 、X 与Y 独立时,)()(),(y F x F y x F Y X =D 、对任意实数y x 、,有)()(),(y f x f y x f Y X =14、设随机变量X 对任意参数满足2)]([)(X E X D =,则X 服从什么分布( B ) A 、正态B 、指数C 、二项D 、泊松15、X 服从参数为1的泊松分布,则有( C ) A 、)0(11}|1{|2>-≥≥-εεεX P B 、)0(11}|1{|2>-≤≥-εεεX PC 、)0(11}|1{|2>-≥<-εεεX PD 、)0(1}|1{|2>≤<-εεεX P16、设二维随机变量),(Y X 的分布列为则==}0{XY P ( D ) A 、121 B 、61 C 、31 D 、32 17、若)(),(,)(),(21X E X E Y E X E 都存在,则下面命题中错误的是( D ) A 、))]())(([(),(Y E Y X E X E Y X Cov --= B 、)()()(),(Y E X E XY E Y X Cov -= C 、),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+D 、),()-,(Y X Cov Y X Cov =18、若D(X),D(Y)都存在,则下面命题中不一定成立的是( C ) A 、X 与Y 独立时,D(X+Y)=D(X)+D(Y) B 、X 与Y 独立时,D(X-Y)=D(X)+D(Y) C 、X 与Y 独立时,D(XY)=D(X)D(Y)D 、D(6X)=36D(X)19、设)()(x X P x F ≤=是连续型随机变量X 的分布函数,则下列结论中不正确的是( A )A 、F(x)是不增函数B 、0≤F(x)≤1C 、F(x)是右连续的D 、F(-∞)=0,F(+∞)=120、每张奖券中尾奖的概率为101,某人购买了20张奖券,则中尾奖的张数X 服从什么分布( A ) A 、二项B 、泊松C 、指数D 、正态21、设θˆ是未知参数θ的一个估计量,若θθ≠)ˆ(E ,则θˆ是θ的( D ) A 、极大似然估计 B 、矩估计C 、有效估计D 、有偏估计22、设总体22),,(~σσu N X未知,通过样本n x x x ,,,21 检验00:u u H =时,需要用统计量( C )A 、nu x u /-0σ=B 、1-/-0n u x uσ=C 、ns u x t /-0=D 、su x t 0-=23、设4321,,,x x x x 是来自总体),(2σu N 的样本,其中u 已知,2σ未知,则下面的随机变量中,不是统计量的是( D ) A 、41-x xB 、u x x -221+C 、4323-x x x +D 、)(14212x x x ++σ设总体X 服从参数为λ的指数分布,其中0>λ为未知参数,n x x x ,,,21 为其样本,∑==ni i x n x 11,下面说法中正确的是( A ) A 、x 是)(x E 的无偏估计 B 、x 是)(x D 的无偏估计 C 、x 是λ的矩估计D 、x 是2λ的无偏估计25、作假设检验时,在哪种情况下,采用t 检验法( B ) A 、对单个正态总体,已知总体方差,检验假设00u u H =: B 、对单个正态总体,未知总体方差,检验假设00u u H =:C 、对单个正态总体,未知总体均值,检验假设2020σσ=:HD 、对两个正态总体,检验假设22210σσ=:H26、设随机变量 ,,,,21n X X X 相互独立,且),,,2,1( n i X i =都服从参数为1的泊松分布,则当n 充分大时,随机变量∑==ni i X n X 11的概率分布近似于正态分布( C )A 、)1,1(NB 、),1(n NC 、)1,1(nN D 、)1,1(2n N 27、设n x x x ,,,21 是来自总体X 的样本,)1,0(~N X ,则∑=ni ix12服从( B )A 、)1-(2n χB 、)(2n χC 、)1,0(ND 、),0(n N28、设总体X 服从),(2σu N ,n x x x ,,,21 为其样本,x 为其样本均值,则212)-(1x x ni i∑=σ服从( A )A 、)1-(2n χB 、)(2n χC 、)1-(n tD 、)(n t29、设总体X 服从),(2σu N ,n x x x ,,,21 为其样本,212)-(1-1x x n s n i i ∑==,则22)1-(σs n 服从( A ) A 、)1-(2n χB 、)(2n χC 、)1-(n tD 、)(n t答案:A30、10021,,,x x x 是来自总体)(22,1~N X 的样本,若)1,0(~,10011001N b x a y x x i i +==∑=,则有( A ) A 、5-,5==b a B 、5,5==b aC 、51-,51==b a D 、51,51==b a 31、对任意事件A,B ,下面结论正确的是( D ) A 、0)(=AB P ,则=A Ø或=B Ø B 、1)(=⋃B A P ,则Ω=A 或Ω=B C 、)()()(B P A P B A P -=-D 、)()()(AB P A P B A P -=32、已知事件A 与B 相互独立,6.0)(,5.0)(==B P A P ,则)(B A P ⋃等于( B ) A 、0.9B 、0.7C 、0.1D 、0.233、盒中有8个木质球,6个玻璃球,玻璃球中有2个红色4个蓝色,木质球中有4个红色4个蓝色,现从盒中任取一球,用A 表示“取到蓝色球”,用B 表示“取到玻璃球”,则=)|(A B P ( D )A 、53B 、83 C 、74 D 、31 34、设321,,A A A 为任意的三事件,以下结论中正确的是( A ) A 、若321,,A A A 相互独立,则321,,A A A 两两独立 B 、若321,,A A A 两两独立,则321,,A A A 相互独立C 、若)()()()(321321A P A P A P A A A P =,则321,,A A A 相互独立D 、若1A 与2A 独立,2A 与3A 独立,则31,A A 独立35、若)](1)][(1[)(B P A P B A P --=⋃,则A 与B 应满足的条件是( D ) A 、A 与B 互不相容 B 、B A ⊃C 、A 与B 互不相容D 、A 与B 相互独立36、设B A ,为随机事件,且B A ⊂,则AB 等于( C )A 、B A B 、BC 、AD 、A37、设C B A ,,为随机事件,则事件“C B A ,,都不发生”可表示为( A ) A 、C B AB 、BC AC 、C B AD 、C AB38、甲、乙、丙三人独立地破译一密码,他们每人译出的概率都是41,则密码被译出的概率为( C ) A 、41 B 、641 C 、6437 D 、6463掷一颗骰子,观察出现的点数,则“出现偶数”的事件是( D ) A 、基本事件 B 、必然事件 C 、不可能事件 D 、随机事件 若A,B 之积为不可能事件,则称A 与B( B )A 、相互独立B 、互不相容C 、对立D 、A=Ø或B=Ø41、下列函数中可以作为某个二维随机变量的分布函数的是( D ) A 、⎩⎨⎧<+≥+=0,10,0),(1y x y x y x FB 、⎩⎨⎧<+≥+=0,20,1),(2y x y x y x FC 、⎩⎨⎧>>=其他,5.00,0,1),(3y x y x FD 、⎩⎨⎧>>--=--其他,00,0),1)(1(),(4y x e e y x F y x42、设(X,Y)的联合分布列为则下面错误的是( C ) A 、152,101==q p B 、51,301==q p C 、51,151==q p D 、61,151==q p 43、下列函数中,可以作为某个二维连续型随机变量的密度函数的是( B ) A 、21),(,sin ),(R y x x y x f ∈=B 、⎩⎨⎧>>=+-其他,00,0,),()(2y x e y x f y xC 、⎩⎨⎧->>=+-其他,10,0,),()(3y x e y x f y xD 、⎪⎩⎪⎨⎧≤≤≤≤=其他,010,10,21),(4y x y x f44、设(X,Y)的联合分布列为则关于X 的边缘分布列为( A )A 、B 、C 、45、若随机变量X 服从[0,2]上的均匀分布,则=2)]([)(X E X D ( B )A、21 B 、31 C 、121 D 、41 46、某人打靶的命中率为0.8,现独立地射击5次,那么5次中有2次命中的概率为( D ) A 、2.0)8.0(2⨯B 、2)8.0(C 、3225)8.0()2.0(CD 、3225)2.0()8.0(C47、设c b a ,,为常数,b X E a X E ==)(,)(2,则=)(cX D ( C ) A 、)(2b ac -B 、)(2a b c -C 、)(22a b c-D 、)(22b a c -48、设),(~2σu N X i 且i X 相互独立,n i ,,2,1 =,对任意∑==>ni i X n X 11,0ε所满足的切比雪夫不等式为( B )A 、22}|{|εσεn nu X P ≥<-B 、221}|{|εσεn u X P -≥<-C 、221}|{|εσεn u X P -≤≥-D 、22}|{|εσεn u X P ≥<-49、若随机变量X 的方差存在,由切比雪夫不等式可得≤≥-}1|)({|X E X P ( A ) A 、)(X DB 、)(1X DC 、)(XD εD 、)(1X D ε若随机变量X 服从二项分布B(n,p),且E(X)=6,D(X)=3.6,则有( A )A 、p=0.4,n=15B 、p=0.6,n=15C 、p=0.4,n=10D 、p=0.6,n=10 51、设总体X 服从泊松分布, 2,1,0,!}{===-k e k k XP kλλ,其中0>λ为未知参数,n x x x ,,,21 为X 的一个样本,∑==ni i x n x 11,下面说法中错误的是( D )A 、x 是)(x E 的无偏估计B 、x 是)(x D 的无偏估计C 、x 是λ的矩估计D 、x 是2λ的无偏估计52、总体X 服从正态分布)1,(u N ,其中u 为未知参数,321,,x x x 为样本,下面四个关于u 的无偏估计中,有效性最好的是( D ) A 、213132x x + B 、321412141x x x ++ C 、316561x x + D 、321313131x x x ++ 53、样本n x x x ,,,21 取自总体X ,且2)(,)(σ==X D u X E ,则总体方差2σ的无偏估计是( B )A 、21)(1x x n n i i -∑=B 、21)(11x x n ni i --∑= C 、211)(11x x n n i i --∑-= D 、211)(1x x n n i i -∑-=54、对总体),(~2σu N X的均值u 作区间估计,得到置信度为0.95的置信区间,意义是指这个区间( C )A 、平均含总体95%的值B 、平均含样本95%的值C 、有95%的机会含u 的值D 、有95%的机会含样本的值设3621,,,x x x 为来自总体X 的一个样本,)36,(~u N X ,则u 的置信度为0.9的置信区间长度为( A )(645.105.0=u )A 、3.29B 、1.645C 、u 2D 、4.93556、设总体22),,(~σσu N X未知,通过样本n x x x ,,,21 检验00:u u H =时,需要用统计量( C )A 、nu x u /0σ-=B 、1/0--=n u x uσC 、ns u x t /0-=D 、su x t 0-=57、对假设检验问题0100:,:u u H u u H ≠=,若给定显著水平0.10,则该检验犯第一类错误的概率为( B ) A 、0.05B 、0.10C 、0.90D 、0.09558、从一批零件中随机抽出100个测量其直径,测得的平均直径为5.2cm ,标准方差为1.6cm ,若想知这批零件的直径是否符合标准直径5cm ,因此采用了t 检验法,那么,在显著性水平α下,接受域为( A ) A 、)99(||2αt t ≤B 、)100(||2αt t <C 、)99(||2αt t ≥D 、)100(||2αt t ≥59、总体服从正态分布),(2σu ,其中2σ已知,随机抽取20个样本得到的样本方差为100,若要对其均值u 进行检验,则用( A )A 、u 检验法B 、2χ检验法 C 、t 检验法 D 、F 检验法 60、下列说法中正确的是( D )A 、如果备择假设是正确的,但作出拒绝备择假设结论,则犯了拒真错误B 、如果备择假设是错误的,但作出接受备择假设结论,则犯了取伪错误C 、如果原假设是错误的,但作出接受备择假设结论,则犯了取伪错误D 、如果原假设是正确的,但作出接受备择假设结论,则犯了拒真错误二、判断题(本大题共60小题,每小题2分,共120分)1、若事件B A 、互不相容,则A B A P =⋃)(。
应用数理统计复习题一、填空题1.设总体212~(,),,,...,n X N X X X μσ为样本,样本均值及样本方差分别为,221111,()n n i i i i X X S X X n n ====-∑∑,设112,,...n n X X X X +与独立同分布,则统计量~Y =。
2.设21~(),~T t n T 则。
3.设总体X 的均值为μ,12,,...,n X X X 为样本,当a = 时,E 21()nii Xa =-∑达到最小值。
4. 设总体212~(,),,,...,n X N X X X μσ为样本,1||,()nii D XE D μ==-=∑则5.设总体X 的均值和方差分别为a , b , 样本均值及样本方差分别为221111,()n n i i i i X X S X X n n ====-∑∑,则 E (S 2 )= 。
6.在总体~(5,16)X N 中随机地抽取一个容量为36的样本,则均值 X 落在4与6之间的概率 =6. 设总体X 服从参数为λ的泊松分布,1.9,2,2,2.1, 2.5为样本,则λ的矩估计值为ˆλ= 。
7. 设总体212~(,),,,...,n X N X X X μσ为样本,12211ˆ()n i i i c XX σ-+==-∑,若2ˆσ为2σ的无偏估计,则 c = 。
8. 设总体12~(,1),,,...,n X U X X X θθ+为样本,则θ的矩估计量为 ,极大似然估计量为 。
9. 设总体212~(,),,,...,n X N X X X μσ为样本,μ未知,σ2已知,为使μ的置信度为1-α的置信区间长度不超过L ,则需抽取的样本的容量n 至少为 。
10. 设总体212~(,),,,...,n X N X X X μσ为样本,μ、σ2未知,则σ2的置信度为1-α的置信区间为 。
11设X 服从二维正态),(2∑μN 分布,其中⎪⎪⎭⎫⎝⎛=∑⎪⎪⎭⎫ ⎝⎛=8221,10μ令Y =X Y Y ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛202121,则Y 的分布为 (要求写出分布的参数) 12. 设总体X 在区间]1,[+θθ上服从均匀分布,则θ的矩估计=θˆ ;=)ˆ(θD 。
13. 设n X X ,,1 是来自正态总体),(2σμN 的样本,2,σμ均未知,05.0=α. 则μ的置信度为α-1的置信区间为 ;若μ为已知常数,则检验假设,::20212020σσσσ<↔≥H H (20σ已知),的拒绝域为 。
14.设X 服从p 维正态),(∑μp N 分布,是来自n X X X ,,,21 X 的样本,则∑的最小方差无偏估计量=∑ˆ ;μ-X 服从 分布。
15设(X 1,…,X n )为来自正态总体),(~∑μp N X 的一个样本,∑已知。
对给定的检验水平为α,检验假设0100::μμμμ≠↔=H H ,(0μ已知)的统计量为 拒绝域为 。
16.某试验的极差分析结果如下表(设指标越大越好):表1 因素水平表表2 极差分析数据表则(1)较好工艺条件应为。
(2)方差分析中总离差平方和的自由度为。
(3)上表中的第三列表示。
17.为了估计山上积雪溶化后对河流下游灌溉的影响,在山上建立观测站,测得连续10年的观测数据如下表(见表3)。
表3 最大积雪深度与灌溉面积的10年观测数据则y关于x的线性回归模型为二、简述题1.检验的显著性水平及检验的p值。
2.参数的点估计的类型、方法、评价方法。
3.假设检验的思想、推理依据及参数假设检验的步骤。
4.方差分析的目的及思想(结合单因素)。
5.简述正交实验设计中的数据分析方法 6主成分分析。
7.典型相关分析。
8.贝叶斯判别法。
9.聚类,分类。
10.线性回归分析的主要内容及应用中注意的问题。
11.系统聚类法的算法思想及步骤。
12.如何看待多元统计方法在实际数据处理中的作用与地位。
三、计算及证明题1.设总体X 的概率密度为1,0(,)00x x e x f x x αλαλλ--⎧>=⎨≤⎩,其中λ>0是未知参数,α>0是已知常数,12,,...,n X X X 为样本,求λ的矩估计和极大似然估计。
2. 设总体X 的概率密度为22(),0(,)0x x f x θθθθ-⎧<<⎪=⎨⎪⎩其它,其中θ>0是未知参数,12,,...,n X X X 为样本,求1)θ极大似然估计,2)总体均值μ的极大似然估计。
3. 设总体X 的概率密度为233,0(,)0x x f x θθθ⎧<<⎪=⎨⎪⎩其它,其中θ>0是未知参数, 12,X X 为样本。
1)证明:11221227(),(,)36T X X T max X X =+=都是θ的无偏估计。
2)比较12,T T 的有效性。
4. 设总体X 服从参数为λ的泊松分布,对于假设01:0.5,:2H H λλ==,0H 的拒绝域为12{3}D X X =+≥,试求此检验问题犯第一类错误(弃真)及犯第二类错误(取伪)的概率。
5.考虑一元线性回归模型: 01,1,2,..i i i Y X i n ββε=++=,其中i ε相互独立且服从2(0,)N σ分布,求参数01,ββ的极大似然估计,并证明它们是无偏估计。
6. 考虑一元线性回归模型:01,1,2,..i i i Y X i n ββε=++=,其中i ε相互独立且服从2(0,)N σ分布,记11122121ˆˆ{...,,...,}/n nnA c Y c Y c Y c c c E βββ==+++=为常数,且,求A 中使得1ˆ()D β最小的1ˆβ 7. 某种产品在生产时产生的有害物质的重量(单位:克)Y 与它的燃料消耗量(单位:千① 求经验线性回归方程;② 试进行线性回归的显著性检验(01.0=α); ③ 试求x 0=340时Y 0的预测区间(05.0=α). ④若要求有害物质的重量在250~280um 之间,问燃料消耗量应如何控制?(05.0=α) 8在某锌矿的南北两支矿脉中,各抽取样本容量分别为10与9的样本分析后, 算得其样本含锌(%)平均值及方差如下: 南支:1x =0.252,21S =0.140,1n =10 北支:2x =0.281,22S =0.182,2n =9若南北两支锌含量均服从正态分布,且两样本相互独立,在α=0.05的条件下, 问南北两支矿脉含锌量的平均值是否有显著差异?已知:2439.0)8,9(975.0=F ,3572.4)8,9(025.0=F ,1098.2)17(025.0=t9设由一组观测数据(,)1,2,,i i x y i n =,,计算得到150,200x y ==,25,75xx xy l l ==,求y 对x 的线性回归方程。
10设有三台机器A 、B 、C 制造同一种产品。
对每台机器观察5天的日产量。
记录如下(单位:件) A : 41,48, 41, 57, 49 B : 65,57, 54 ,72, 64 C : 45,51, 48, 56, 48 试问:在日产量上各台机器之间是否有显著差异?(05.0=α), 已知:79.3)12,2(05.0=F11设),(i i x Y 满足线性模型 i i i x x Y εββ+-+=)(10, ),0(~2σεN i ,n i ,2,1=,∑==ni i X n x 11,诸i ε相互独立。
试求(1)参数T ),(10βββ=的最小二乘估计T )ˆ,ˆ(ˆ10βββ=; (2)10ˆ,ˆββ的方差;(3)2σ的无偏估计。
12单因素方差分析的数学模型为i j i j i i j i n j r i N X ,...,2,1;,...,2,1),,0(~,2==+=σεεμ,n n i ni =∑=1。
诸j i ε相互独立。
(1)试导出检验假设r r H H μμμμμμ,...,,::211210↔=== 中至少由两个不相等的统计量。
(2)求2σ的一个无偏估计量。
(3)设μμμμ====r 21,∑==in j ji i i Xn X 11,求常数C 使统计量∑=-=ri i X C 1||ˆμσ为σ的无偏估计.13车间里有5名工人,3台不同型号的机器生产同一种产品,现在让每个工人轮流在3台机试问这5位工人技术之间和不同型号机器之间对产量有无显著影响?)84.3)8,4(,46.4)8,2(,05.0(05.005.0===F F α14设有线性模型77665544332211332εεεεεεε+-=++=+-=++=+-=+-=++=b a Y b a Y b a Y b a Y b a Y b a Y b a Y其中7654321,,,,,,εεεεεεε相互独立且同服从正态),0(2σN 分布,(1)试求的最小二b a ,乘估计量b aˆ,ˆ; (2)试求b a Yˆ5ˆˆ+=的概率分布。
15某数理统计教师随机地选取18名学生把他们分为3组,每一组各采用一种特殊的教学方假设学生成绩服从正态分布,试问:在显著水平05.0=α下这三种教学方法的教学效果有无显著差异?哪种教学效果最好?注:70.2)15,2(05.0=F(注:可编辑下载,若有不当之处,请指正,谢谢!)。