2011中考数学试题解析7 实数概念、运算(含答案).
- 格式:doc
- 大小:1.39 MB
- 文档页数:11
2011年四川省南充市中考数学试卷—解析版一、选择题:(本大题共10个小题,每小题3分,共30分)1、(2011•南充)计算a+(﹣a)的结果是()A、2aB、0C、﹣a2D、﹣2a考点:整式的加减。
分析:本题需先把括号去掉,再合并同类项,即可得出正确答案.解答:解:a+(﹣a),=a﹣a,=0.故选B.点评:本题主要考查了整式的加减,在解题时要注意去括号,再合并同类项是解题的关键.2、(2011•南充)学校商店在一段时间内销售了四种饮料共100瓶,各种饮料的销售量如下表:品牌甲乙丙丁销售量(瓶)12 32 13 43建议学校商店进货数量最多的品牌是()A、甲品牌B、乙品牌C、丙品牌D、丁品牌考点:众数。
专题:常规题型。
分析:根据众数的意义和定义,众数是一组数据中出现次数最多的数据,则进货要进销售量最多的品牌.解答:解:在四个品牌的销售量中,丁的销售量最多.故选D.点评:本题属于基础题,考查了确定一组数据的众数的能力.一些学生往往对这个概念掌握不清楚,而误选其它选项.3、(2011•南充)如图,直线DE经过点A,DE∥BC,∠B=60°,下列结论成立的是()A、∠C=60°B、∠DAB=60°C、∠EAC=60°D、∠BAC=60°考点:平行线的性质。
专题:几何图形问题。
分析:根据平行线的性质,根据内错角相等,逐个排除选项即可得出结果.解答:解:A、无法判断,故本选项错误,B、∠B=60°,∴∠DAB=60°,故本选项正确,C、无法判断,故本选项错误,D、无法判断,故本选项错误,故选B.点评:本题考查了两直线平行,内错角相等的性质,难度适中.4、(2011•南充)某学校为了了解九年级体能情况,随机选取20名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为()A、0.1B、0.17C、0.33D、0.4考点:频数(率)分布直方图。
山西省2011年中考数学试题第Ⅰ卷 选择题 (共24分)一、选择题 (本大题共l2个小题,每小题2分,共24分)1. 6-的相反数是(D) A .6- B .16- C .16D . 6 考点:七年级上册 第一章 有理数 相反数.分析:相反数就是只有符号不同的两个数.解答:解:根据概念,与-6只有符号不同的数是6.即-6的相反数是6.故选D .例题:-2+5的相反数是( )A .3B .-3C .-7D .72.点(一2.1)所在的象限是(B )A .第一象限B .第二象限C .第三象限D .第四象限考点:七年级下册 第六章 平面直角坐标系 点的坐标.分析:根据点在第二象限内的坐标特点解答即可.解答:解:∵A (-2,1)的横坐标小于0,纵坐标大于0,∴点在第二象限,故选B .例题:如图,在平面直角坐标系中,点P 的坐标是( )A .(1,2)B .(2,1)C .(-1,2)D .(2,-1)3.下列运算正确的是( A )A .236(2)8a a -=- B .3362a a a += C .632a a a ÷= D .3332a a a ⋅= 考点:七年级上册 第一章 有理数 同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解. 解答:解:A 项幂的乘方和积的乘方,本选项正确,B 项为合并同类项,系数相加字母和字母的指数不变,故本选项错误,C 项为同底数幂的除法,底数不变指数相减,故本选型错误,D 项为同底数幂的乘法,底数不变指数相加,故本选项错误.故选择A .例题: 下列合并同类项正确的有( )A .2x+4x=8x 2B .3x+2y=5xyC .7x 2-3x 2=4D .9a 2b-9ba 2=04.2011年第一季度.我省固定资产投资完成475.6亿元.这个数据用科学记数法可表示为( C )A .947.5610⨯元B .110.475610⨯元C .104.75610⨯元 D. 94.75610⨯元考点:七年级上册 第一章 有理数 科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解答:解:将475.6亿元用科学记数法表示为4.756×1010.故选C .例题:2011年4月28日,国家统计局公布了第六次全国人口普查结果,总人口为1 339 000 000人,将1 339 000 000用科学记数法表示为( )A .1.339×108B .13.39×108C .1.339×109D .1.339×10105.如图所示,∠AOB 的两边.OA 、OB 均为平面反光镜,∠AOB=35°,在OB 上有一点E ,从E 点射出一束光线经OA 上的点D 反射后,反射光线DC 恰好与OB 平行,则∠DEB 的度数是(B )A .35°B .70°C .110°D .120°考点:七年级下册第五章相交线与平行线平行线的性质.分析:过点D作DF⊥AO交OB于点F.根据题意知,DF是∠CDE的角平分线,∴∠1=∠3;然后又由两直线CD∥OB推知内错角∠1=∠2;最后由三角形的内角和定理求得∠DEB的度数是70°.解答:解:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=35°,∴∠2=55°;∴在△DEF中,∠DEB=180°-2∠2=70°.故选B.例题:把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为()A.115°B.120°C.145°D.135°6.将一个矩形纸片依次按图(1)、图(2)的方式对折,然后沿图(3)中的虚线裁剪,最后将图(4)的纸再展开铺平,所得到的图案是(A )考点:八年级上册 第十二章 轴对称 剪纸问题.分析:按照题意要求,动手操作一下,可得到正确的答案.解答:解:严格按照图中的顺序先向上再向右对折,从左下方角剪去一个直角三角形,展开得到结论. 故选A .例题: 在如图所示的四个剪纸图案中,形如轴对称图形的图案是( )A .B .C .D . 7.一个正多边形,它的每一个外角都等于45°,则该正多边形是( C ) A .正六边形 B .正七边形 C .正八边形 D .正九边形考点:七年级下册 第七章 三角形 多边形内角与外角.分析:多边形的外角和是360度,因为是正多边形,所以每一个外角都是45°,即可得到外角的个数,从而确定多边形的边数.解答:解:360÷45=8,所以这个正多边形是正八边形.故选C .例题:一个多边形的内角和是720°,这个多边形的边数是( )A .4B .5C .6D .78.如图是一个工件的三视图,图中标有尺寸,则这个工件的体积是( B lA .13π2cmB .17π2cmC .66π2cmD .68π2cm考点:九年级下册 第二十九章 投影与视图 圆柱的计算;由三视图判断几何体.分析:根据三视图可知该几何体是两个圆柱体叠加在一起,体积是两个圆柱体的体积的和.解答:解:根据三视图可知该几何体是两个圆柱体叠加在一起,底面直径分别是2cm 和4cm ,高分别是4cm 和1cm ,∴体积为:4π×22+π=17πcm3.故选B .例题: 一个几何体的三视图如图所示,该几何体的内接圆柱侧面积的最大值为.9.分式方程1223x x =+的解为( B } A .1x =- B .1x = C .2x = D . 3x =考点:八年级下册 第十六章 分式 解分式方程.分析:观察可得最简公分母是2x (x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答:解:方程的两边同乘2x (x+3),得x+3=4x ,解得x=1.检验:把x=1代入2x (x+3)=8≠0.∴原方程的解为:x=1. 故选B . 例题:A .-1B .0C .1D .10.“五一”节期间,某电器按成本价提高30%后标价,-再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( A )A .(130%)80%2080x +⨯=B .30%80%2080x ⋅⋅=C .208030%80%x ⨯⨯=D .30%208080%x ⋅=⨯考点:七年级上册 第三章 一元一次方程 由实际问题抽象出一元一次方程.分析:设该电器的成本价为x 元,根据按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元可列出方程.解答:解:设该电器的成本价为x 元,x (1+30%)×80%=2080.故选A .例题:小芬买15份礼物,共花了900元,已知每份礼物内都有1包饼干及每支售价20元的棒棒糖2支,若每包饼干的售价为x 元,则依题意可列出下列哪一个一元一次方程式( )A .15(2x+20)=900B .15x+20×2=900C .15(x+20×2)=900D .15×x ×2+20=90011.如图,△ABC 中,AB=AC ,点D 、E 分别是边AB 、AC 的中点,点G 、F 在BC 边上,四边形DEFG 是正方形.若DE=2cm ,则AC 的长为 (D)A .33cmB .4cmC .23cmD .25cm考点:七年级下册 第七章 三角形 三角形中位线定理;八年级上册 第十二章 轴对称 等腰三角形的性质;八年级下册 第十八章 勾股定理 勾股定理;八年级下册 第十九章 四边形 正方形的性质.分析:根据三角形的中位线定理可得出BC=4,由AB=AC ,可证明BG=CF=1,由勾股定理求出CE ,即可得出AC 的长.解答:解:∵点D 、E 分别是边AB 、AC 的中点,∴DE=BC ,∵DE=2cm ,∴BC=4cm ,∵AB=AC ,四边形DEFG 是正方形.∴△BDG ≌△CEF ,∴BG=CF=1,∴EC=,∴AC=2cm .故选D .例题:、如图,在正方形网格上,与△ABC 相似的三角形是( )A .△NBDB .△MBDC .△EBD D .△FBD12.已知二次函数2y ax bx c =++的图象如图所尔,对称轴为直线x=1,则下列结论正确的是( B )A ,0ac >B .方程20ax bx c ++=的两根是1213x x =-=,C .20a b -=D .当x>0时,y 随x 的增大而减小.考点:九年级下册 第二十六章 二次函数 二次函数图象与系数的关系;抛物线与x 轴的交点.分析:根据抛物线的开口方向,对称轴,与x 轴、y 轴的交点,逐一判断.解答:解:A 、∵抛物线开口向下,与y 轴交于正半轴,∴a <0,c >0,ac <0,故本选项错误;B 、∵抛物线对称轴是x=1,与x 轴交于(3,0),∴抛物线与x 轴另一交点为(-1,0),即方程ax2+bx+c=0的两根是x1=-1,x2=3,故本选项正确;C 、∵抛物线对称轴为x=-=1,∴b=-2a ,∴2a+b=0,故本选项错误;D 、∵抛物线对称轴为x=1,开口向下,∴当x >1时,y 随x 的增大而减小,故本选项错误.故选B .例题:下列二次函数中,( )的图象与x 轴没有交点.A .y=3x2B .y=2x2-4C .y=3x2-3x+5D .y=8x2+5x-3第Ⅱ卷 非选择题 (共96分)二、填空题(本大题共6个小题,每小题3分,共l8分.)13. 计算:101826sin 45-+-=_________(12) 考点:七年级上册 第一章 有理数 负整数指数幂;八年级上册 第十三章 实数 实数的运算; 九年级下册 第二十八章 锐角三角函数 特殊角的三角函数值.分析:根据负指数幂、二次根式化简、特殊角的三角函数3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3+0.5-6×=,故答案为.例题:14.如图,四边形ABCD是平行四边形,添加一个条件__________________,可使它成为矩形.(∠ABC=90°或AC=BD)考点:八年级下册第十九章四边形矩形的判定;平行四边形的性质.分析:根据矩形的判定定理:①对角线相等的平行四边形是矩形,②有一个角是直角的平行四边形是矩形,直接添加条件即可.解答:解:根据矩形的判定定理:对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形故添加条件:∠ABC=90°或AC=BD.故答案为:∠ABC=90°或AC=BD.例题:能判定平行四边形是矩形的条件是()A.对角线互相平分B.对角线互相垂直C.对角线互相垂直平分D.对角线相等15.“十二五”时期,山西将建成中西部旅游强省,以旅游业为龙头的服务业将成为推动山西经济发展的丰要动力.2010年全省全年旅游总收入大约l000亿元,如果到2012年全省每年旅游总收入要达到1440亿元,那么年平均增长率应为___________。
第 1 页 共 7 页2011年天津市初中毕业生学业考试试卷数 学 第Ⅰ卷注意事项。
1.每题选出答案后.用2B 铅笔把“答题卡“上对应题目的答案标号的信息点涂黑。
如需改动,用橡皮擦干净后.再选涂其他答案标号的信息点。
2.本卷共l0题.共30分.一、选择题耳(本大题共l0小题.每小题3分,共30分.在每小题给出的四个选顶中. 只有一项是符合题目要求的) (1)sin45°的值等于 (A)12(B)2(C)2(D) 1(2)下列汽车标志中,可以看作是中心对称图形的是(3)根据第六次全国人口普查的统计,截止到2010年11月1日零时,我国总人口约为 1 370 000 000人,将1 370 000 000用科学记数法表示应为(A) 100.13710⨯ (B) 91.3710⨯ (C) 813.710⨯ (D) 713710⨯(4)(A) 1到2之间 (B) 2到3之间 (C) 3到4之间 (D) 4到5之间(5) 如图.将正方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF ,则∠EBF 的大小为(A) 15° (B) 30° (C) 45° (D) 60°(6) 已知⊙1O 与⊙2O 的半径分别为3 cm 和4 cm ,若12O O =7 cm ,则⊙1O 与⊙2O 的位置关系是(A) 相交 (B) 相离 (C) 内切 (D) 外切(7) 右图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度.则它的三视图是(8)下图是甲、乙两人l0次射击成绩(环数)的条形统计图.则下列说法正确的是(A) 甲比乙的成绩稔定 (B) 乙比甲的成绩稳定(C) 甲、乙两人的成绩一样稳定 (D) 无法确定谁的成绩更稳定 (9)一家电信公司给顾客提供两种上网收费方式:方式A 以每分0.1元的价格按上网所用时间计算;方式B 除收月基费20元外.再以每分0.05元的价格按上网所用时间计费。
专题01实数及其运算(31题)一、单选题1(2024·广东深圳·中考真题)如图,实数a ,b ,c ,d 在数轴上表示如下,则最小的实数为()A.aB.bC.cD.d【答案】A【分析】本题考查了根据数轴比较实数的大小.根据数轴上右边的数总比左边的大即可判断.【详解】解:由数轴知,a <b <0<c <d ,则最小的实数为a ,故选:A .2(2024·甘肃临夏·中考真题)下列各数中,是无理数的是()A.π2B.13C.327D.0.13133【答案】A【分析】本题考查无理数的定义,根据无理数是无限不循环小数结合立方根的定义,进行判断即可.【详解】解:A 、π2是无理数,符合题意;B 、13是有理数,不符合题意;C 、327=3是有理数,不符合题意;D 、0.13133是有理数,不符合题意;故选A .3(2024·福建·中考真题)下列实数中,无理数是()A.-3B.0C.23 D.5【答案】D【分析】无理数就是无限不循环小数,理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数,由此即可判定选择项.本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001....,等数.【详解】根据无理数的定义可得:无理数是5故选:D .4(2024·四川内江·中考真题)16的平方根是()A.-4 B.4C.2D.±4【答案】D【分析】题考查了平方根,熟记定义是解题的关键.根据平方根的定义计算即可.【详解】解:16的平方根是±4,故选:D .5(2024·四川泸州·中考真题)下列各数中,无理数是()A.-13B.3.14C.0D.π【答案】D【分析】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有三类:①π类,如2π,π3等;②开方开不尽的数,如2,35等;③虽有规律但却是无限不循环的小数,如0.1010010001⋯(两个1之间依次增加1个0),0.2121121112⋯(两个2之间依次增加1个1)等.【详解】解:根据无理数的定义可知,四个数中,只有D 选项中的数π是无理数,故选:D .6(2024·山东·中考真题)下列实数中,平方最大的数是()A.3B.12C.-1D.-2【答案】A【分析】本题考查的是实数的大小比较,乘方运算,先分别计算各数的乘方,再比较大小即可.【详解】解:∵32=9,122=14,-1 2=1,-2 2=4,而14<1<4<9,∴平方最大的数是3;故选A7(2024·山东烟台·中考真题)下列实数中的无理数是()A.23B.3.14C.15D.364【答案】C【分析】本题考查无理数,根据无理数的定义:无限不循环小数,叫做无理数,进行判断即可.【详解】解:A 、23是有理数,不符合题意;B 、3.14是有理数,不符合题意;C 、15是无理数,符合题意;D 、364=4是有理数,不符合题意;故选C .8(2024·四川眉山·中考真题)下列四个数中,无理数是()A.-3.14B.-2C.12D.2【答案】D【分析】本题考查的是无理数的概念,无理数即无限不循环小数,它的表现形式为:开方开不尽的数,与π有关的数,无限不循环小数.根据无理数的定义,即可得出符合题意的选项.【详解】解:-3.14,-2,12是有理数,2是无理数,故选:D .9(2024·广东·中考真题)完全相同的4个正方形面积之和是100,则正方形的边长是()A.2B.5C.10D.20【答案】B【分析】本题主要考查了算术平方根的应用,先求出一个正方形的面积,再根据正方形的面积计算公式求出对应的边长即可.【详解】解:∵完全相同的4个正方形面积之和是100,∴一个正方形的面积为100÷4=25,∴正方形的边长为25=5,故选:B .10(2024·天津·中考真题)估算10的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【答案】C【分析】本题考查无理数的估算,根据题意得9<10<16,即可求解.【详解】解:∵9<10<16∴3<10<4,∴10的值在3和4之间,故选:C .11(2024·四川自贡·中考真题)在0,-2,-3,π四个数中,最大的数是()A.-2B.0C.πD.-3【答案】C【分析】此题主要考查了实数大小比较的方法,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.【详解】解:根据实数比较大小的方法,可得:-2<-3<0<π,∴在0,-2,-3,π四个数中,最大的数是π,故选:C .12(2024·四川南充·中考真题)如图,数轴上表示2的点是()A.点AB.点BC.点CD.点D【答案】C【分析】本题考查了实数与数轴,无理数的估算.先估算出2的范围,再找出符合条件的数轴上的点即可.【详解】解:∵1<2<2,∴数轴上表示2的点是点C ,故选:C .13(2024·北京·中考真题)实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b >-1B.b >2C.a +b >0D.ab >0【答案】C【分析】本题考查了是实数与数轴,绝对值的意义,实数的运算,熟练掌握知识点是解题的关键.由数轴可得-2<b <-1,2<a <3,根据绝对值的意义,实数的加法和乘法法则分别对选项进行判断即可.【详解】解:A 、由数轴可知-2<b <-1,故本选项不符合题意;B 、由数轴可知-2<b <-1,由绝对值的意义知1<b <2,故本选项不符合题意;C 、由数轴可知2<a <3,而-2<b <-1,则a >b ,故a +b >0,故本选项符合题意;D 、由数轴可知2<a <3,而-2<b <-1,因此ab <0,故本选项不符合题意.故选:C .14(2024·黑龙江绥化·中考真题)下列计算中,结果正确的是()A.-3 -2=19B.a +b 2=a 2+b 2C.9=±3D.-x 2y 3=x 6y 3【答案】A【分析】本题考查了负整数指数幂,完全平方公式,算术平方根,积的乘方,据此逐项分析计算,即可求解.【详解】解:A . -3 -2=19,故该选项正确,符合题意;B. a+b2=a2+2ab+b2,故该选项不正确,不符合题意;C. 9=3,故该选项不正确,不符合题意;D. -x2y3=-x6y3,故该选项不正确,不符合题意;故选:A.15(2024·内蒙古包头·中考真题)若2m-1,m,4-m这三个实数在数轴上所对应的点从左到右依次排列,则m的取值范围是()A.m<2B.m<1C.1<m<2D.1<m<53【答案】B【分析】本题考查实数与数轴,求不等式组的解集,根据数轴上的数右边的比左边的大,列出不等式组,进行求解即可.【详解】解:由题意,得:2m-1<m<4-m,解得:m<1;故选B.二、填空题16(2024·内蒙古赤峰·中考真题)请写出一个比5小的整数【答案】1(或2)【详解】试题分析:先估算出5在哪两个整数之间,即可得到结果.∵2=4<5<9=3,满足条件的数为小于或等于2的整数均可.考点:本题考查的是无理数的估算点评:解答本题的关键是熟知用“夹逼法”估算无理数是常用的估算无理数的方法.17(2024·四川广安·中考真题)3-9=.【答案】0【分析】本题考查的是实数的混合运算,先计算算术平方根,再计算减法运算即可.【详解】解:3-9=3-3=0,故答案为:018(2024·广西·中考真题)写一个比3大的整数是.【答案】2(答案不唯一)【分析】本题考查实数大小比较,估算无理数的大小是解题的关键.先估算出3的大小,再找出符合条件的整数即可.【详解】解:∵1<3<4,∴1<3<2,∴符合条件的数可以是:2(答案不唯一).故答案为:2.19(2024·内蒙古包头·中考真题)计算:38+-1 2024=.【答案】3【分析】本题考查实数的混合混算,先进行开方和乘方运算,再进行加法运算即可.【详解】解:原式=2+1=3;故答案为:3.20(2024·四川成都·中考真题)若m ,n 为实数,且m +4 2+n -5=0,则m +n 2的值为.【答案】1【分析】本题考查非负数的性质,根据平方式和算术平方数的非负数求得m 、n 值,进而代值求解即可.【详解】解:∵m +4 2+n -5=0,∴m +4=0,n -5=0,解得m =-4,n =5,∴m +n 2=-4+5 2=1,故答案为:1.21(2024·安徽·中考真题)我国古代数学家张衡将圆周率取值为10,祖冲之给出圆周率的一种分数形式的近似值为227.比较大小:10227(填“>”或“<”).【答案】>【分析】本题考查的是实数的大小比较,先比较两个正数的平方,从而可得答案.【详解】解:∵227 2=48449,10 2=10=49049,而48449<49049,∴2272<10 2,∴10>227;故答案为:>22(2024·黑龙江绥化·中考真题)如图,已知A 11,-3 ,A 23,-3 ,A 34,0 ,A 46,0 ,A 57,3 ,A 69,3 ,A 710,0 ,A 811,-3 ⋯,依此规律,则点A 2024的坐标为.【答案】2891,-3【分析】本题考查了点坐标的规律探究.解题的关键在于根据题意推导出一般性规律.根据题意可知7个点坐标的纵坐标为一个循环,A 7n 的坐标为10n ,0 ,据此可求得A 2024的坐标.【详解】解:∵A 11,-3 ,A 23,-3 ,A 34,0 ,A 46,0 ,A 57,3 ,A 69,3 ,A 710,0 ,A 811,-3 ⋯,,∴可知7个点坐标的纵坐标为一个循环,A 7n 的坐标为10n ,0 ,A 7n +110n +1,-3 ∵2024÷7=289⋅⋅⋅1,∴A 2023的坐标为2890,0 .∴A 2024的坐标为2891,-3 故答案为:2891,-3 .三、解答题23(2024·广东·中考真题)计算:20×-13+4-3-1.【答案】2【分析】本题主要考查了实数的运算,零指数幂,负整数指数幂,先计算零指数幂,负整数指数幂和算术平方根,再计算乘法,最后计算加减法即可.【详解】解:20×-13+4-3-1=1×13+2-13=13+2-13=2.24(2024·甘肃临夏·中考真题)计算:-4 -13-1+20250.【答案】0【分析】本题考查实数的混合运算,先进行开方,去绝对值,零指数幂和负整数指数幂的运算,再进行加减运算即可.【详解】解:原式=2-3+1=0.25(2024·福建·中考真题)计算:(-1)0+-5 -4.【答案】4【分析】本题考查零指数幂、绝对值、算术平方根等基础知识,熟练掌握运算法则是解题的关键.根据零指数幂、绝对值、算术平方根分别计算即可;【详解】解:原式=1+5-2=4.26(2024·江苏连云港·中考真题)计算|-2|+(π-1)0-16.【答案】-1【分析】本题考查实数的混合运算,零指数幂,先进行去绝对值,零指数幂和开方运算,再进行加减运算即可.【详解】解:原式=2+1-4=-127(2024·江苏苏州·中考真题)计算:-4+-20-9.【答案】2【分析】本题考查了实数的运算,利用绝对值的意义,零指数幂的意义,算术平方根的定义化简计算即可.【详解】解:原式=4+1-3=2.28(2024·陕西·中考真题)计算:25--70+-2×3.【答案】-2【分析】本题考查了实数的运算.根据算术平方根、零次幂、有理数的乘法运算法则计算即可求解.【详解】解:25--70+-2×3=5-1-6=-2.29(2024·四川乐山·中考真题)计算:-3+π-20240-9.【答案】1【分析】本题考查了绝对值,零指数幂,算术平方根.熟练掌握绝对值,零指数幂,算术平方根是解题的关键.先分别计算绝对值,零指数幂,算术平方根,然后进行加减运算即可.【详解】解:-3+π-20240-9=3+1-3=1.30(2024·浙江·中考真题)计算:1 4-1-38+-5【答案】7【分析】此题考查了负整数指数幂,立方根和绝对值,解题的关键是掌握以上运算法则.首先计算负整数指数幂,立方根和绝对值,然后计算加减.【详解】1 4-1-38+-5=4-2+5=7.31(2024·湖北·中考真题)计算:-1×3+9+22-20240【答案】3【分析】本题主要考查了实数混合运算,根据零指数幂运算法则,算术平方根定义,进行计算即可.【详解】解:-1×3+9+22-20240水不撩不知深浅=-3+3+4-1=3.。
姓 名准考证号绝密★启用前株洲市2011年初中毕业学业考试数 学 试 题 卷时量:120分钟 满分:100分注意事项:1.答题前,请按要求在答题卡上填写好自己的姓名和准考证号。
2.答题时,切记答案要填在答题卡上,答在试题卷上的答案无效。
3.考试结束后,请将试题卷和答题卡都交给监考老师。
一、选择题(每小题有且只有一个正确答案,本题共8小题,每小题3分,共24分) 1.8的立方根是A .2B .2-C .3D . 42.计算234x x ⋅的结果是A .34xB .44xC .54xD . 64x3.孔明同学在庆祝建党90周年的演讲比赛中,6位评委给他的打分如下表:评委代号 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ 评 分859080959090则孔明得分的众数为A .95B .90C .85D .804.株洲市关心下一代工作委员会为了了解全市初三学生的视力状况,从全市30000名初三学生中随机抽取了500人进行视力测试,发现其中视力不良的学生有100人,则可估计全市30000名初三学生中视力不良的约有 A .100人B .500人C .6000人D .15000 人5.某商品的商标可以抽象为如图所示的三条线段,其中AB ∥CD ,45EAB ∠=︒,则FDC ∠的度数是A .30︒B .45︒C .60︒D .75︒6.右图是一个由7个同样的立方体叠成的几何体.请问下列选项中,既是中心对称图形,又是这个几何体的三视图之一的是 EFA BCD7.根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可以判断,下列说法错误的是: A .男生在13岁时身高增长速度最快B .女生在10岁以后身高增长速度放慢C .11岁时男女生身高增长速度基本相同D .女生身高增长的速度总比男生慢8.某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线24y x x =-+(单位:米)的一部分,则水喷出的最大高度是 A .4米 B .3米 C .2米 D .1米二、填空题(本题共8小题,每小题3分,共24分) 9.不等式10x ->的解集是 .10.当10x =,9y =时,代数式22x y -的值是 .11.如图,孔明同学背着一桶水,从山脚A 出发,沿与地面成30︒角的山坡向上走,送水到山上因今年春季受旱缺水的王奶奶家(B 处),80AB =米,则孔明从A 到B 上升的高度BC 是 米.12.为建设绿色株洲,某校初三0801、0802、0803、0804四个班同学参加了植树造林,每班植树株数如下表,则这四个班平均每班植树 株.班次 植树株数 0801 22 0802 25 080335第7题图年龄/岁7 8 910 11 12 13 14 15 16 17 188 7 6 5 4 3 2 1增长速度(厘米/年)男女女男 第8题图x (米)y (米)OAB- 1 1xyO第14题图13.孔明同学在解一元二次方程230x x c -+=时,正确解得11x =,22x =,则c 的值为 .14.如图,直线l 过A 、B 两点,A (0,1-),B (1,0),则直线l 的解析式为 . 15.按下面摆好的方式,并使用同一种图形,只通过平移方式就能进行平面镶嵌(即平面密铺)的有 (写出所有正确答案的序号).16.如图,第(1)个图有1个黑球;第(2)个图为3个同样大小球叠成的图形,最下一层的2个球为黑色,其余为白色;第(3)个图为6个同样大小球叠成的图形,最下一层的3个球为黑色,其余为白色; ;则从第(n )个图中随机取出一个球,是黑球的概率是 .三、解答题(本大题共8小题,共52分)17.(本题满分4分)计算:02011|2|(3)(1)--+-18.(本题满分4分)当2x =-时,求22111x x x x ++++的值. 0804 18(1) (2) (3)(4)· · ·第11题图第12题表30︒BAC正三角形①正方形 ②矩形③正五边形 ④AB19.(本题满分6分)食品安全是老百姓关注的话题,在食品中添加过 量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A B 、两种饮料均需加入同种 添加剂,A 饮料每瓶需加该添加剂2克,B 饮料每瓶需加该添加 剂3克,已知270克该添加剂恰好生产了A B 、两种饮料共100瓶, 问A B 、两种饮料各生产了多少瓶?20.(本题满分6分)如图, ABC ∆中,AB AC =,36A ∠=︒,AC 的垂直平分线交AB 于E ,D 为垂足,连结EC . (1)求ECD ∠的度数; (2)若5CE =,求BC 长.EDCBA21.(本题满分6分)我国网球名将李娜在今年法国网球公开赛上的出色表现,大大激发了国人对网球的热情.在一项“你最喜欢的球类运动”的调查中,共有50名同学参与调查,每人必选且只选一项,将调查结果绘制成频数分布直方图如下,根据图中信息回答: (1)被调查的同学中选择喜欢网球的有____________________人;(2)孔明同学在被调查中选择的是羽毛球,现要在参与调查选择喜欢羽毛球的同学中随机抽取2人参加一项比赛,求孔明被选中的概率.22.(本题满分8分)如图,AB 为O 的直径,BC 为O 的切线,AC 交O 于点E ,D 为AC 上一点,AOD C ∠=∠.(1)求证:OD AC ⊥;(2)若8AE =,3tan 4A =,求OD 的长.23.(本题满分8分)如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点,PO 的延长线交BC 于Q .(1)求证:OP OQ =;(2)若8AD =厘米,6AB =厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与D 重合). 设点P 运动时间为t 秒,请用t 表示PD 的长; 并求t 为何值时,四边形PBQD 是菱形.24.(本题满分10分)孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线2(0)y ax a =<的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O ,两直角边与该抛物线交于A 、B 两点,请解答以下问题:(1)若测得22OA OB ==(如图1),求a 的值; Q P ODCBA羽毛球 排球 网球 足球 篮球项目人数(人)58 10 12 OE D CBA(2)对同一条抛物线,孔明将三角板绕点O 旋转到如图2所示位置时,过B 作BF x⊥轴于点F ,测得1OF =,写出此时点B 的坐标,并求点A 的横坐标...; (3)对该抛物线,孔明将三角板绕点O 旋转任意角度时惊奇地发现,交点A 、B 的连线段总经过一个固定的点,试说明理由并求出该点的坐标.再次提醒:所有的答案都填(涂)到答题卡上,答在本卷上的答案无效。
2011湖南省娄底市中考数学试题答案及解析一、精心选一选,旗开得胜(本大题共10道小题,每小题3分,满分30分)1、(2011•娄底)﹣2011的相反数是()A、2011B、﹣2011C、错误!未找到引用源。
D、﹣错误!未找到引用源。
考点:相反数。
专题:计算题。
分析:根据相反数的意义,只有符号不同的数互为相反数.解答:解:﹣2011的相反数是2011,故选A.点评:本题考查了相反数的概念.只有符号不同的数互为相反数,0的相反数为0.2、(2011•娄底)2011年4月28日,国家统计局发布2010年第六次全国人口普查主要数据公报,数据显示,大陆31个省、自治区、直辖市和现役军人的人口共1339724852人,大陆总人口这个数据用科学记数法表示(保留3个有效数字)为()A、1.33×109人B、1.34×109人C、13.4×108人D、1.34×1010人考点:科学记数法与有效数字。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:1339724852=1.339724852≈1.34×109.故选B.点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.3、(2011•娄底)若|x﹣3|=x﹣3,则下列不等式成立的是()A、x﹣3>0B、x﹣3<0C、x﹣3≥0D、x﹣3≤0考点:绝对值。
专题:常规题型。
分析:根据绝对值的意义,任何数的绝对值都是非负数,从结果入手直接得出答案.解答:解:∵|x﹣3|=x﹣3,∴x﹣3≥0.故选:C.点评:此题主要考查了绝对值的意义,从去绝对值后的结果入手分析是解决问题的关键.4、(2011•娄底)已知点A(x1,y1),B(x2,y2)是反比例函数y=错误!未找到引用源。
某某2011年中考数学试题分类解析汇编专题1:实数一、选择题1.(某某某某3分)有理数-3的相反数是A.3.B.-3.C.31D.31-. 【答案】A 。
【考点】相反数。
【分析】根据相反数的意义,只有符号不同的数为相反数,得-3的相反数是3。
故选A 。
2.(某某某某3分)A.675×104. B.67.5×105. C.6.75×106. D.0.675×107. 【答案】C 。
【考点】科学计数法。
【分析】根据科学记数法的定义,科学记数法的表示形式为1010n a a <⨯≤,其中1,n 为整数,表示时关键要正确确定a 的值以及n 的值。
在确定n 的值时,看该数是大于或等于1还是小于1。
当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。
6750000一共7位,从而6750000=6.75×106。
故选C 。
3.(某某某某3的值为A.2B. -2C.2±D. 不存在【答案】A 。
【考点】算术平方根。
【分析】直接根据算术平方根的定义求解:因为4的算术平方根是2,所以=2。
故选A 。
4.(某某某某3分)某某市2011年6月份某日一天的温差为11℃,最高气温为t℃,则最低气温可表示 为A. (11+t)℃B. (11-t)℃C. (t -11)℃D. (-t -11)℃【答案】C 。
【考点】列代数式。
【分析】由已知可知,最高气温-最低气温=温差,从而最低气温=最高气温-温差= t -11。
故选C 。
5.(某某某某3分)下列实数中是无理数的是A .2B .4C .13【答案】A 。
【考点】无理数。
【分析】根据无理数的概念对各选项进行逐一分析即可:解:A 、 2是开方开不尽的数,故是无理数,故本选项正确;B 、 4=2,2是有理数,故本选项错误;C 、 13是分数,分数是有理数,故本选项错误;D 、3.14是小数,小数是有理数,故本选项错误。
广东省2011年中考数学试卷一、选择题(本大题5小题,每小题3分,共15分)1、(2011•广东)﹣2的倒数是()A、﹣B、C、2D、﹣2考点:倒数。
分析:根据倒数的定义,即可得出答案解答:解:根据倒数的定义,∵﹣2×(﹣)=1,∴﹣2的倒数是﹣点评:本题主要考查了倒数的定义,比较简单2、(2011•广东)据中新社北京2010年12月8日电,2010年中国粮食总产量达到546400000吨,用科学记数法表示为()A、5.464×107吨B、5.464×108吨C、5.464×109吨D、5.464×1010吨考点:科学记数法—表示较大的数。
专题:常规题型。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将546400000用科学记数法表示为5.464×108.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、(2011•广东)将下图中的箭头缩小到原来的,得到的图形是()A、B、C、D、考点:相似图形。
专题:应用题。
分析:根据相似图形的定义,结合图形,对选项一一分析,排除错误答案.解答:解:∵图中的箭头要缩小到原来的,∴箭头的长、宽都要缩小到原来的;选项B箭头大小不变;选项C箭头扩大;选项D的长缩小、而宽没变.故选A.点评:本题主要考查了相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.4、(2011•广东)在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A、B、C、D、考点:概率公式。
【分析】(1)本题涉及零指数幂、乘方、二次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(1)
【点评】本题考查实数的综合运算能力,整式的混合运算及零指数幂,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握乘方、零指数幂、二次根式等考点的运算. 61. (2011 浙江舟山,17,6 分)计算:.考点:实数的运算;零指数幂。
专题:计算题。
分析:本题涉及零指数幂、乘方、二次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=4-3+1+2 =4.故答案为 4.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算. 62. (2011 广东深圳,17,5 分)计算:
20110 .考点:特殊角的三角函数值;绝对值;零指数幂;负整数指数幂.专题:计算题.分析:分别根据负整数指数幂、特殊角的三角函数值、绝对值的性质及 0 指数幂计算出各数,再根据实数混合运算的法则进行解答即可.解答:解:原式故答案为:6.. 2 2 点评:本题考查的是实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值第 36 页
等考点的运算. 63. (2011 广东湛江,21,7 分)计算:
.考点:实数的运算;零指数幂.分析: 9 开根号为 3,π-2011 的 0 次幂为1,-2 的绝对值为 2.解答:解:原式=3-1+2=4.点评:本题考查了实数的运算,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算. 64. (2011 广东肇庆,16,
分)计算:.考点:实数的运算;负整数指数幂;特殊角的三角函数值。
分析:此题涉及到了负整数指数幂,开方,特殊角的三角函数值,首先根据各知识点进行计算,然后再算乘法,后算加减即可.解答:解:原式= 1 1 1 5 +3﹣2× = +3﹣1= . 2 2 2 2 点评:此题主要考查了实数的计算,注意计算顺序,熟记特殊角的三角函数值是解题的关键. 65.(2011 年广西桂林,19,6
分)计算:考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:本题需先根据实数运算的步骤和法则分别进行计算,再把所得结果合并即可.答案:原式
2 (求出一个值给 1 分)点评:本题主要考查了实数的运算,在解题时要注意运算顺序和公式的综合应用以及结果的符号是本题的关键. 66.(2011 广西来宾,19,6 分)计算:I-3I-考点:实数的运算;零指数幂。
专题:计算题。
分析:根据零指数幂、二次根式化简、绝对值、乘方 4 个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3﹣3﹣1+9 =8.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌零指数幂、二次根式、绝对值、乘方等考点的运算 67.(2011 湖北黄石,17,7 分)计算
. 2 第 37 页
考点:特殊角的三角函数值;零指数幂;负整数指数幂。
分析:本题涉及零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:
. 2 2 点评:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算. 68. (2011 湖北潜江、天门、仙桃、江汉油田,16,6 分)计算:考点:实数的运算.分析:本题涉及绝对值、正整数指数幂、二次根式化简 3 个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.答案:解:原式=-1-5+4=-2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握正整数指数幂、二次根式、绝对值等考点的运算.第 38 页。