一元二次方程的解法
- 格式:doc
- 大小:312.16 KB
- 文档页数:7
解一元二次方程五种方法解一元二次方程五种方法解一元二次方程是初中数学中的基础知识,也是高中数学中的重要内容,掌握多种解法对于提高数学能力和解题能力有着重要作用。
下面介绍五种解一元二次方程的方法。
方法一:配方法(也称为配方根公式)配方法是一种常见的解一元二次方程的方法,它的步骤如下:1. 根据二次项系数、一次项系数和常数项分离出完全平方项;2. 将方程化为完全平方形式,即形如(x + a) = b;3. 对方程两边取平方根,得到x的两个解:x = -a ± b。
方法二:公式法公式法是解一元二次方程的常用方法之一,它的公式为:x = (-b ±√(b-4ac)) / 2a其中a、b、c分别为一次项系数、二次项系数和常数项。
方法三:图像法图像法是一种直观的解题方法,它的步骤如下:1. 将方程化为标准形式:ax+bx+c=0;2. 将方程左侧变形为y=ax+bx+c的二次函数的图像;3. 通过观察二次函数的图像,得到x的解。
方法四:因式分解法如果一元二次方程的左侧可以因式分解,那么可以使用因式分解法解题。
例如:x+5x+6=0,可以因式分解为(x+2)(x+3)=0。
因此,x的解为x=-2或x=-3。
方法五:完全平方公式完全平方公式是解一元二次方程的一种简便方法,它的步骤如下:1. 根据二次项系数、一次项系数和常数项计算出Δ=b-4ac;2. 如果Δ是完全平方数,那么方程的解为x=(-b±√Δ)/2a。
以上是解一元二次方程的五种方法,希望对大家有所帮助。
掌握多种解题方法可以提高数学思维和解题能力,也可以在考试中提高解题速度和准确性。
一元二次方程式解法公式一元二次方程是指形式为ax^2 + bx + c = 0的方程,其中a、b、c为已知数,且a≠0。
解一元二次方程的一种常用方法是使用解法公式,也称为求根公式。
解法公式可以直接计算出方程的解,进而求解方程。
一元二次方程的解法公式可以分为两种情况讨论:当方程有实数根时,以及当方程有复数根时。
1. 当方程有实数根时:一元二次方程的解法公式为:x = (-b ± √(b^2 - 4ac)) / (2a)公式中的±表示两个解,一个为加号前面的解,另一个为减号前面的解。
在解法公式中,根号下的部分被称为判别式,用Δ表示,即Δ = b^2 - 4ac。
判别式Δ的值决定了方程的根的性质:- 当Δ > 0时,方程有两个不相等的实数根;- 当Δ = 0时,方程有两个相等的实数根,即重根;- 当Δ < 0时,方程没有实数根,但有两个复数根。
2. 当方程有复数根时:一元二次方程的解法公式为:x = (-b ± i√(4ac - b^2)) / (2a)公式中的±表示两个解,一个为加号前面的解,另一个为减号前面的解。
在解法公式中,复数根的虚部用i表示,即i = √(-1)。
与实数根的情况相比,复数根的判别式为4ac - b^2。
当判别式4ac - b^2 > 0时,方程有两个共轭复数根;当判别式4ac - b^2 = 0时,方程有两个相等的复数根,即重根;当判别式4ac - b^2 < 0时,方程没有实数根,但有两个复数根。
通过解法公式,可以直接计算出一元二次方程的解。
根据公式中的系数a、b、c的不同取值,可以得到方程的不同解的情况。
需要注意的是,解法公式只适用于一元二次方程,对于其他类型的方程不适用。
此外,解法公式的使用还需要注意以下几点:1. 在计算解时,需要先计算出判别式的值,然后根据判别式的值来确定方程的根的性质。
2. 当判别式的值为0时,仍然需要进行计算,并且在计算过程中需要注意虚部的表示方式。
一元二次方程的解法一元二次方程的解法一、知识要点:一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基础,应引起同学们的重视。
一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2的整式方程。
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
二、方法、例题精讲:1、直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=m± .例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。
(1)解:(3x+1)2=7×∴(3x+1)2=5∴3x+1=±(注意不要丢解)∴x=∴原方程的解为x1=,x2=(2)解:9x2-24x+16=11∴(3x-4)2=11∴3x-4=±∴x=∴原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2方程左边成为一个完全平方式:(x+ )2=当b2-4ac≥0时,x+ =±∴x=(这就是求根公式)例2.用配方法解方程3x2-4x-2=0解:将常数项移到方程右边3x2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2配方:(x-)2=直接开平方得:x-=±∴x=∴原方程的解为x1=,x2= .3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
一元二次方程的解法详细解析只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程。
标准形式:ax²+bx+c=0(a≠0)一元二次方程有4种解法,即直接开平方法、配方法、公式法、因式分解法。
下面小编和你具体讲解一元二次方程的四种解法例析。
一元二次方程的解法例析【一元二次方程要点综述】:【要点综述】:一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是学生今后学习数学的基础。
在没讲一元二次方程的解法之前,先说明一下它与一元一次方程区别。
根据定义可知,只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程,一般式为:。
一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程。
因此判断一个方程是否为一元二次方程,要先看它是否为整式方程,若是,再对它进行整理,如能整理为的形式,那么这个方程就是一元二次方程。
下面再讲一元二次方程的解法。
解一元二次方程的基本思想方法是通过“降次”,将它化为两个一元一次方程。
一元二次方程的基本解法有四种:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
如下表:方法适合方程类型注意事项直接开平方法≥0时有解,<0时无解。
配方法二次项系数若不为1,必须先把系数化为1,再进行配方。
公式法≥0时,方程有解;<0时,方程无解。
先化为一般形式再用公式。
因式分解法方程的一边为0,另一边分解成两个一次因式的积。
方程的一边必须是0,另一边可用任何方法分解因式。
【举例解析】例1:已知,解关于的方程。
分析:注意满足的的值将使原方程成为哪一类方程。
解:由得:或,当时,原方程为,即,解得. 当时,原方程为,即,解得,. 说明:由本题可见,只有项系数不为0,且为最高次项时,方程才是一元二次方程,才能使用一元二次方程的解法,题中对一元二次方程的描述是不完整的,应该说明最高次项系数不为0。
通常用一般形式描述的一元二次方程更为简明,即形如的方程叫作关于的一元二次方程。
判别式法解一元二次方程详细过程7x2−4x−3=0a=7;b=−4;c=−3确定各项系数∆=b2−4ac=(−4)2−4×7×(−3)=16+84=100x1=−b+√∆2a x2=−b−√∆2a必背公式代入数值:x1=4+√1002×7=4+1014=1414=1x2=4−√1002×7=4−1014=−614=−37若∆<0,则方程无解。
此方法为解一元二次方程的万能方法。
配方法解一元二次方程详细过程7x2−4x−3=0x2−47x−37=0 除以7,二次项系数化1x2−2×27×x−37=0x2−2×27×x+(27)2−(27)2−37=0x2−2×27×x+(27)2−(27)2−37=0绿色部分为完全平方公式(x−27)2−(27)2−37=0(x−27)2=2549①x−27=±57x1=57+27=1 x2=−57+27=−37此方法为解一元二次方程的万能方法若上面①式中等号右边为负数,方程无解。
十字相乘法解一元二次方程详细过程7x2−4x−3=0二次项系数:7一次项系数:-4常数项:-3对二次项系数和常数项进行拆分7= 7 × 1−3=3 × −1交叉相乘之和等于中间一次项系数7×(−1)+3×1=−7+3=−4则该方程可写为:(7x+3)(x−1)=0则方程的解为:7x+3=0 或 x−1=0x1=−37x2=1此方程为解一元二次方程最快速的方法但仅适用于有解且解为整数或分数的方程当解为根式时不能用。
上面讲的都是普通一元二次方程的解法对于一些特殊的一元二次方程,则还有一些特殊的解法,下面为同学们一一列举1.无常数项型ax2+bx=0例如:5x2+3x=0把一个x提到“( )”外面得到:x(5x+3)=0x=0 或5x+3=0x1=0 x2=−3 52.无一次项型ax2+c=0例如:5x2−7=05x2=7x2=75x=±√7 53.完全平方型(ax+b)2=c例如:(5x+3)2=95x+3=±35x=3 或 5x=−3x1=35 x2=−35。
一元二次方程4种解法
一元二次方程的4种解法是:一般式、工具方法、因式分解法和
求根公式法。
一、一般式:
一般式又称“把头挑出来法”或“十字相乘法”。
在这种方法中,首先把一元二次方程化为化简的一般式,如ax^2+bx+c=0,然后分别根
据a, b, c 的意义,将系数和常数参数代入系数表中,仿照公式的形
式完成无穷多种可能的解答,最后通过对称性和排除法的方法排除不
符合要求的解,从而得出结论。
二、工具方法:
工具方法就是联立矩阵等数学工具,来快速解决一元二次方程,
尤其是在涉及数量较大的情况下,使用矩阵来解决更加有利。
只要建
立好系数矩阵,就可以根据其特点,按照一定步骤,使用乘法、加法、分解等技巧,求得矩阵解,从而获得满足一元二次方程的解。
三、因式分解法:
因式分解法是把原方程转换成两个一元一次方程的形式,然后分
别求解,最后将解代入原方程,检验是否仍然满足原方程。
首先,将
原方程化成两个一元一次方程的形式,例如:ax^2+bx+c=0,我们把它
化为 (ax+m)(ax+n)=0,其中m和n分别是ax+m=0及ax+n=0的解。
然后,我们可以把m和n代入到原方程中,检验是否是原方程的解,即
看是否能使原方程成立。
四、求根公式法:
求根公式法是根据一元二次方程的特征,用公式求解一元二次方
程解。
一元二次方程有两个解,因此也有对应的两个求根公式,即复
根公式:x_1=(-b+sqrt(b^2-4ac))/(2a)和x_2=(-b-sqrt(b^2-
4ac))/(2a)。
通过将常数值代入到公式,就可以求出一元二次方程的解。
一元二次方程的6种解法
一元二次方程的6种解法如下:
1、因式分解法:将一元二次方程化成 ax^2+bx+c=0 的形式,先将两边同乘以a后,即a(x^2+ b/ax + c/a),然后将此形式拆解为(x+())(x+(/))的形式,得到两个一元一次方程,求出x的值,即可求出原方程的解。
2、公式法:用公式法求解一元二次方程,即通过求解公式:x=(-
b±√(b^2-4ac))/2a来求解,此公式中,b和c为方程的系数,a为系数前的系数。
3、图像法:使用图像法求解一元二次方程,即作出ax^2+bx+c=0方程图象,然后根据图象上的交点判断出方程的解。
4、判别式法:此法根据一元二次方程的判别式来求解,即当判别式b^2-4ac>0时,方程有两个不等实根;当判别式b^2-4ac=0时,方程有一个实根;当判别式b^2-4ac<0时,方程没有实根。
5、求根公式法:此法可以用来求解一元二次方程的实根,即用求根公式x1=(-b+ √(b2- 4ac))÷2a和x2=(-b-√(b2- 4ac))÷2a,其中,b 为系数前的系数,a和c分别为方程的系数。
6、特殊值法:此法适用于一元二次方程中特殊的系数或解。
如当
a=0,系数b和c任意时,可将该方程化为一元一次方程,求解即可;当a=b=0时,可直接算出方程的解。
一元二次方程的解法一、定义及一般形式1.1 一元二次方程:含有一个未知数,未知数的最高次数为2的方程。
1.2 一般形式:ax^2 + bx + c = 0(a、b、c为常数,且a≠0)二、解一元二次方程的常用方法2.1 因式分解法2.1.1 提取公因式法2.1.2 十字相乘法2.1.3 公式法(完全平方公式、平方差公式)2.2 公式法2.2.1 求根公式:x = (-b ± √(b^2 - 4ac)) / (2a)2.2.2 判别式:Δ = b^2 - 4ac2.2.3 根与系数的关系:•两根之和:x1 + x2 = -b/a•两根之积:x1 * x2 = c/a2.3 图像法2.3.1 抛物线的开口方向与a的符号有关:a > 0,开口向上;a < 0,开口向下。
2.3.2 抛物线与x轴的交点即为方程的解。
三、特殊类型的一元二次方程3.1 含绝对值的一元二次方程3.2 含平方根的一元二次方程3.3 含分式的一元二次方程四、一元二次方程的应用4.1 实际问题与一元二次方程4.2 几何问题与一元二次方程4.3 函数问题与一元二次方程五、练习与提高5.1 巩固题型:基本的一元二次方程求解。
5.2 提高题型:复杂的一元二次方程求解,如含绝对值、平方根、分式的方程。
5.3 综合题型:结合实际问题、几何问题、函数问题等,运用一元二次方程解决实际问题。
习题及方法:1.习题:解方程 x^2 - 5x + 6 = 0。
答案:x1 = 2,x2 = 3。
解题思路:利用因式分解法,将方程左边进行因式分解,得到 (x -2)(x - 3) = 0,从而得到两个一元一次方程 x - 2 = 0 和 x - 3 = 0,解得 x1 = 2,x2 = 3。
2.习题:解方程 2x^2 - 9x + 12 = 0。
答案:x1 = 2/3,x2 = 6。
解题思路:利用因式分解法,将方程左边进行因式分解,得到 (2x -3)(x - 4) = 0,从而得到两个一元一次方程 2x - 3 = 0 和 x - 4 = 0,解得 x1 = 2/3,x2 = 6。
一元二次方程的解法一元二次方程是初中数学中的重要内容,它在数学中有着广泛的应用。
掌握一元二次方程的解法对于学生来说是十分重要的,因为它不仅能够帮助学生解决实际问题,还能够培养学生的逻辑思维和解决问题的能力。
本文将介绍一元二次方程的解法,并通过实例进行说明。
一、解法一:因式分解法对于形如ax^2 + bx + c = 0的一元二次方程,我们可以尝试使用因式分解法来解决。
例如,对于方程x^2 + 5x + 6 = 0,我们可以将其因式分解为(x + 2)(x + 3) = 0。
根据乘法逆元的性质,我们知道只有当(x + 2) = 0或者(x + 3) = 0时,方程才能成立。
因此,方程的解为x = -2或者x = -3。
二、解法二:配方法如果一元二次方程无法通过因式分解法解决,我们可以尝试使用配方法。
例如,对于方程x^2 + 6x + 8 = 0,我们可以通过配方法将其转化为(x + 2)(x + 4) = 0。
然后,我们可以得到(x + 2) = 0或者(x + 4) = 0,进而求得方程的解为x = -2或者x = -4。
三、解法三:求根公式如果一元二次方程无法通过因式分解法或者配方法解决,我们可以尝试使用求根公式。
一元二次方程的求根公式为x = (-b ± √(b^2 - 4ac)) / (2a)。
其中,a、b、c分别为方程ax^2 + bx + c = 0中的系数。
例如,对于方程2x^2 + 5x + 3 = 0,我们可以通过求根公式得到x = (-5 ± √(5^2 - 4*2*3)) / (2*2)。
进一步计算可得x = -1或者x = -1.5。
因此,方程的解为x = -1或者x = -1.5。
四、解法四:图像法除了上述的解法,我们还可以通过绘制一元二次方程的图像来求解方程。
例如,对于方程x^2 - 4x + 3 = 0,我们可以绘制出它的图像。
通过观察图像,我们可以发现方程的解为x = 1或者x = 3。
【学习目标】1.理解配方法的意义,会用直接开平方法、因式分解法、公式法、配方法解简单的数字系数的一元二次方程. 2.理解一元二次方程解法的基本思想及其与一元一次方程的联系,体会两者之间相互比较和转化的思想方法. 3.会根据具体问题中的数量关系列出一元二次方程并求解,能根据问题的实际意义,检验所得的结果是否合理. 【基础知识精讲】 1.一元二次方程的解法(1)直接开平方法:根据平方根的意义,用此法可解出形如a x 2=(a ≥0),b )a x (2=-(b ≥0)类的一元二次方程.a x 2=,则a x ±=;b )a x (2=-,b a x ±=-,b a x +=.对有些一元二次方程,本身不是上述两种形式,但可以化为a x 2=或b )a x (2=-的形式,也可以用此法解.(2)因式分解法:当一元二次方程的一边为零,而另一边易分解成两个一次因式的积时,就可用此法来解.要清楚使乘积ab =0的条件是a =0或b =0,使方程x(x -3)=0的条件是x =0或x -3=0.x 的两个值都可以使方程成立,所以方程x(x -3)=0有两个根,而不是一个根.(3)配方法:任何一个形如bx x 2+的二次式,都可以通过加一次项系数一半的平方的方法配成一个二项式的完全平方,把方程归结为能用直接开平方法来解的方程.如解07x 6x 2=++时,可把方程化为7x 6x 2-=+,22226726x 6x⎪⎭⎫⎝⎛+-=⎪⎭⎫⎝⎛++,即2)3x (2=+,从而得解.注意(1)“方程两边各加上一次项系数一半平方”的前提是方程的二次项系数是1.(2)解一元二次方程时,一般不用此法,掌握这种配方法是重点.(3)公式法:一元二次方程0c bx ax 2=++(a ≠0)的根是由方程的系数a 、b 、c 确定的.在0ac 4b 2≥-的前提下,a 2ac4bb x 2-±-=.用公式法解一元二次方程的一般步骤:①先把方程化为一般形式,即0c bx ax 2=++(a ≠0)的形式;②正确地确定方程各项的系数a 、b 、c 的值(要注意它们的符号);③计算0ac 4b 2<-时,方程没有实数根,就不必解了(因负数开平方无意义); ④将a 、b 、c 的值代入求根公式,求出方程的两个根.说明:象直接开平方法、因式分解法只是适宜于特殊形式的方程,而公式法则是最普遍,最适用的方法.解题时要根据方程的特征灵活选用方法.2.一元二次方程根的判别式一元二次方程的根有三种情况:①有两个不相等的实数根;②有两个相等的实数根;③没有实数根.而根的情况,由ac 4b 2-的值来确定.因此ac 4b 2-=∆叫做一元二次方程0c bx ax 2=++的根的判别式.△>0⇔方程有两个不相等的实数根.△=0⇔方程有两个相等的实数根.△<0⇔方程没有实数根. 判别式的应用(1)不解方程判定方程根的情况;(2)根据参数系数的性质确定根的范围;(3)解与根有关的证明题. 3.韦达定理及其应用定理:如果方程0c bx ax 2=++(a ≠0)的两个根是21x x ,,那么a c x x ab x x 2121=⋅-=+,.应用:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知系数; (3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程; (4)已知两数和与积求两数.4.一元二次方程的应用(1)面积问题;(2)数字问题;(3)平均增长率问题.步骤:①分析题意,找到题中未知数和题给条件的相等关系(包括隐含的);②设未知数,并用所设的未知数的代数式表示其余的未知数;③找出相等关系,并用它列出方程;④解方程求出题中未知数的值;⑤检验所求是否符合题意,并做答. 注意:列一元二次方程应用题是一元一次方程解应用题的拓展,解题的方法是相同的,但因一元二次方程有两解,要检验方程的解是否符合题意及实际问题的意义. 【经典例题精讲】例1 解方程025x 2=-.解:025x 2=-, 25x 2=,25x ±=,x =±5.∴5x 5x 21-==,. 例2 解方程2)3x (2=+.分析:如果把x +3看作一个整体。
解:2)3x (2=+, 23x ±=+,23x 23x -=+=+,或,∴23x 23x 21--=+-=,.例3 解方程081)2x (42=--.解:081)2x (42=--整理,81)2x (42=-,481)2x (2=-, 292x ±=-,∴25x 213x 21-==,. 注意:对可用直接开平方法来解的一元二次方程,一定注意方程有两个解;若a x 2=,则a x ±=;若b )a x (2=-,则a b x +±=.例4 解方程02x 3x 2=+-. 解法一:02x 3x 2=+-,(x -2)(x -1)=0,x -2=0,x -1=0, ∴2x 1x 21==,.解法二:∵a =1,b =-3,c =2,∴01214)3(ac 4b22>=⨯⨯--=-, ∴213x ±=. ∴1x 2x 21==,.注意:用公式法解方程时,要正确地确定方程各项的系数a 、b 、c 的值,先计算“△”的值,若△<0,则方程无解,就不必解了. 例5 解关于x 的方程n)n m 2x 3(m x22=-+--.解:把原方程左边展开,整理,得)n mn m2(mx 3x222=--+-.∵a =1,b =-3m ,22n m n m 2c --=,∴)n mn m 2(14)m 3(ac 4b2222--⨯⨯--=-22n 4m n 4m++=0)n 2m (2≥+=.∴2)n 2m (m 3x 2++=2)n 2m (m 3+±=.∴n m x n m 2x 21-=+=,.注意:解字母系数的一元二次方程与解数字系数的一元二次方程一样,都要先把方程化为一般形式,确定a 、b 、c 和ac 4b 2-的值,然后求解.但解字母系数方程时要注意:(1)哪个字母代表未知数,也就是关于哪个未知数的方程;(2)不要把一元二次方程一般形式中的a 、b 、c 与方程中字母系数的a 、b 、c 相混淆;(3)在ac 4b 2-开平方时,可能会出现两种情况,但根号前有正负号,已包括了这两种可能,因此,)n 2m ()n 2m (2+±=+±.例6 用配方法解方程x 73x 22=+.解:x 73x22=+,23x 27x2=+-,0234747x 27x22=+⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+-2,162547x 2=⎪⎭⎫ ⎝⎛-, ∴4547x ±=-.∴21x 3x 21==,.注意:用配方法解一元二次方程,要把二次项系数化为1,方程左边只有二次项,一次项,右边为常数项,然后方程两边都加上一次项系数一半的平方,左边就配成了一个二项式的完全平方. 例7 不解方程,判别下列方程的根的情况: (1)04x 3x 22=-+;(2)y249y162=+;(3)x 7)1x(52=-+.分析:要判定上述方程的根的情况,只要看根的判别式ac 4b 2-=∆的值的符号就可以了. 解:(1)∵a =2,b =3,c =-4,∴41)4(243ac 4b22>=-⨯⨯-=-.∴方程有两个不相等的实数根.(2)∵a =16,b =-24,c =9,∴09164)24(ac 4b 22=⨯⨯--=-.∴方程有两个相等的实数解.(3)将方程化为一般形式0x 75x 52=-+,05x 7x52=+-.∵a =4,b =-7,c =5, ∴554)7(ac 4b 22⨯⨯--=- =49-100=-51<0.∴方程无实数解.注意:对有些方程要先将其整理成一般形式,再正确确定a 、b 、c 的符号.例8 已知方程06kx x 52=-+的一个根是2,求另一根及k 的值.分析:根据韦达定理a cx x a bx x 2121=⋅-=+,易得另一根和k 的值.再是根据方程解的意义可知x =2时方程成立,即把x =2代入原方程,先求出k 值,再求出方程的另一根.但方法不如第一种.解:设另一根为2x ,则56x 25k x 222-=⋅-=+,,∴53x 2-=,k =-7.即方程的另一根为53-,k 的值为-7.注意:一元二次方程的两根之和为a b-,两根之积为a c.例9 利用根与系数的关系,求一元二次方程01x 3x22=-+两根的(1)平方和;(2)倒数和. 分析:已知21x x 23x x 2121-=⋅-=+,.要求(1)2221x x +,(2)21x 1x 1+,关键是把2221x x +、21x 1x 1+转化为含有2121x x x x ⋅+、的式子.因为两数和的平方,等于两数的平方和加上这两数积的2倍,即ab2ba)b a (222++=+,所以ab2)b a (ba222-+=+,由此可求出(1).同样,可用两数和与积表示两数的倒数和. 解:(1)∵21x x 23x x 2121-=⋅-=+,,∴212212221x x 2)x x (x x -+=+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=212232149+=413=;(2)211221x x x x x 1x 1+=+2123--==3.注意:利用两根的和与积可求两根的平方和、倒数和,其关键是把平方和、倒数和变成两根的和与积,其变形的方法主要运用乘法公式.例10 已知方程0m x 4x 22=++的两根平方和是34,求m 的值.分析:已知34x x 2m x x 2x x 22212121=+=⋅-=+,,,求m 就要在上面三个式子中设法用222121x x x x ++和来表示21x x ,m 便可求出.解:设方程的两根为21x x 、,则2m x x 2x x 2121=⋅-=+,.∵212212221x x 2)x x (x x -+=+,∴)x x ()x x (x x 2222122121+-+=34)2(2--==-30.∵2mx x 21=, ∴m =-30.注意:解此题的关键是把式子2221x x +变成含2121x x x x 、+的式子,从而求得m 的值.例11 求一个一元二次方程,使它的两个根是2、10.分析:因为任何一元二次方程都可化为0q px x2=++的形式.如设其根为21x x 、,根据根与系数的关系,得q x x p x x 2121=⋅-=+,.将p 、q的值代入方程0q px x 2=++中,即得所求方程x x x )x x (x21212=⋅++-.解:设所求的方程为q px x2=++.∵2+10=-p ,2×10=q , ∴p =-12,q =20.∴所求的方程为020x 12x 2=+-.注意:以21x x 、为根的一元二次方程不止一个,但一般只写出比较简单的一个.例12 已知两个数的和等于8,积等于9,求这两个数.分析:把这两个数看作某个二次项系数为1的一元二次方程的两个根,则这个方程的一次项系数就应该是-8,常数项应该是9,有了这个方程,再求出它的根,即是这两个数.解:设这两个数为21x x 、,以这两个数为根的一元二次方程为0q px x2=++.∵q x x p 8x x 2121=⋅-==+,,∴方程为09x 8x 2=+-.解这个方程得74x 74x 21-=+=,,∴这两个数为7474-+和.例13 如图22-2-1,在长为32m ,宽为20m 的长方形地面上,修筑两条同样宽而且互相垂直的道路,余下的部分作为绿化用草地,要使草地的面积为2m 540,那么道路的宽度应是多少?分析:设道路的宽度为x m ,则两条道路的面积和为2x x 20x 32-+.题中的等量关系为:草地面积+道路面积=长方形面积.解:设道路的宽度为x m ,则2032x x 20x 325402⨯=-++.0100x 52x2=+-,(x -2)(x -50)=0, x -2=0,x -50=0,∴50x 2x 21==,.∵x =50不合题意, ∴取x =2.答:道路的宽度为2m .注意:两条道路重合了一部分,重合的面积为2x .因此计算两条道路的面积和时应减去重合面积2x .例14 某钢铁厂去年1月份钢的产量为5000吨,3月份上升到7200吨,求这两个月平均每月增长的百分率是多少?分析:设平均每月增长的百分率为x ,则增长一次后的产量为5000(1+x),增长两次后的产量是2)x 1(5000+,….增长n 次后的产量b 是n)x 1(5000b +=.这就是重要的增长率公式.解:设平均每月增长的百分率为x .则7200)x 1(50002=+,2536)x 1(2=+,56x 1±=+,∴22x 20x 21.,.-==(不合题意,舍去). 答:平均每月增长的百分率是20%. 注意:解方程时,由1+x 的值求x ,并舍去负值. 【中考考点】一元二次方程是初中代数的重要内容,因此,它是历年来各地中考的必考内容.可单独命题,也常与函数、四边形、圆等知识点综合在一起考查.例15 已知方程组⎩⎨⎧=+=++-②① 01y -x 022a y x 的两个解为⎩⎨⎧==⎩⎨⎧==2211y y x x y y x x 和,且21x x 、是两个不相等的实数,若11a 6a 8x x 3x x 2212221--=-+,(1)求a 的值;(2)不解方程组判断方程组的两个解能否都为正数,为什么?分析:21x x 、是方程组中x 的两个解,故应首先消去y ,得到关于x 的方程.再根据根的判别式及根与系数的关系可得解.解:(1)由②得y =x +1,代入①整理, 得01a x x 2=++-.∵方程有两个不相等的实数根, ∴0)1a (4)1(2>+--=∆,43a -<.又∵1a x x 1x x 2121+=⋅=+,, 代入11a 6a 8x x 3x x 2212221--=-+, 得11a 6a8x x 5)x x (221221--=-+.整理,得07a a 82=--.解得87a 1a 21-==,.而43a -<, ∴87a -=.(2)∵811a x x 01x x 2121>=+=⋅>=+,,∴0x 0x 21>>,.且01x y 01x y 2211>+=>+=,, ∴存在方程组的两个解都是正数.注意:数学的转化思想,本题就是将方程组的问题转化为一元二次方程的问题.例16已知一元二次方程06x 3x 22=--有两个实数根21x x 、,直线l 经过点A(21x x +,0),B(0,21x x ),则直线l 的解析式为( )A .y =2x -3B .y =2x +3C .y =-2x +3D .y =-2x -3分析:本题重点考查一元二次方程根与系数的关系以及用待定系数法求直线的解析式,先求21x x +与21x x ⋅的值,再求直线解析式.解:∵3x x 23x x 2121-=⋅=+,,∴⎪⎭⎫ ⎝⎛0 23A ,,B(0,-3). 将A 、B 代入y =kx +b 中,得⎪⎩⎪⎨⎧+=-+=b 03bk 230, ∴⎩⎨⎧-==3b 2k .∴直线l 的解析式为y =2x -3. 【常见错误分析】例17 已知关于x 的方程0m x )1m 2(mx 2=++-有两个实数根,则m 的取值范围是__________.错解:要使方程有两个实数根△≥0,∴0m m 4)]1m 2([2≥⋅-+-,4m +1≥0,41m -≥.∴m 的取值范围是41m -≥.误区分析:要保证方程为一元二次方程,即要考虑二次项系数m ≠0,而上述解法只考虑△≥0,而忽视了m ≠0.正解:要使方程有两个实数根,需满足⎩⎨⎧≥∆≠00m , ∴0m m 4)]1m 2([2≥⋅-+-=∆,4m +1≥0,41m -≥. ∴m 的取值范围是41m -≥,且m ≠0.例18 如果方程0q px x 2=+-的两个根和2和-3,求p ,q .错解:根据根与系数的关系2+(-3)=-p ,2×(-3)=q ,故p =1,q =-6.误区分析:若方程0c bx x 2=++的两根为21x x ,,根据根与系数的关系b x x 21-=+,而题中2+(-3)应为-(-p),因题中的b 为-p ,-b 就为-(-p).错解原因是将两根之和等于b 了.正解:根据根与系数的关系2+(-3)=-(-p),2×(-3)=q , ∴p =-1,q =-6.【学习方法指导】本节知识是初中数学的重要内容,也是以后进一步学习和研究函数及四边形、圆的基础,要熟练掌握好.要重视一元二次方程四种解法的探索过程.其中的配方法虽然在解方程中很少直接用,但配方、比较、转化等思想方法,及其所渗透的思维多向性都有助于我们思维能力的培养,不能因为解方程很少用而忽视它.一、填空题1.方程3)5x (2=+的解是_____________.2.已知方程02x 7ax 2=-+的一个根是-2,那么a 的值是_____________,方程的另一根是_____________.3.如果5x 2x 41x 222--+与互为相反数,则x 的值为_____________.4.已知5和2分别是方程0n m x x 2=++的两个根,则mn 的值是_____________.5.方程02x 3x 42=+-的根的判别式△=_____________,它的根的情况是_____________. 6.已知方程01m x x 22=++的判别式的值是16,则m =_____________.7.方程1k x )6k (x92=+++-有两个相等的实数根,则k =_____________.8.如果关于x 的方程0c x 5x 2=++没有实数根,则c 的取值范围是_____________.9.长方形的长比宽多2cm ,面积为2cm 48,则它的周长是_____________.10.某小商店今年一月营业额为5000元,三月份上升到7200元,平均每月增长的百分率为_____________. 二、选择题11.方程0x x 2=+的解是( )A .x =±B .x =0C .1x 0x 21-==,D .x =112.关于x 的一元二次方程01x 6kx2=+-有两个不相等的实数根,则k 的取值范围是( )A .k>9B .k<9C .k ≤9,且k ≠0D .k<9,且k ≠013.把方程084x 8x 2=--化成n )m x (2=+的形式得( ) A .100)4x (2=- B .100)16x (2=- C .84)4x (2=-D .84)16x (2=-14.用下列哪种方法解方程4x 2)2x (32-=-比较简便( )A .直接开平方法B .配方法C .公式法D .因式分解法 15.已知方程(x +y)(1-x -y)+6=0,那么x +y 的值是( ) A .2 B .3 C .-2或3 D .-3或2 16.下列关于x 的方程中,没有实数根的是( )A .02x 4x 32=-+B .x 65x 22=+C .02x 62x 32=+-D .01m x x 22=-+ 17.已知方程0q px x 22=++的两根之和为4,两根之积为-3,则p 和q 的值为( )A .p =8,q =-6B .p =-4,q =-3C .p =-3,q =4D .p =-8,q =-618.若53+-是方程04kx x 2=++的一个根,则另一根和k 的值为( )A .53x --=,k =-6B .53x --=,k =6C .53x +=,k =-6D .53x -=,k =619.两根均为负数的一元二次方程是( )A .05x 12x 72=+-B .05x 13x 62=-- C .05x 21x 42=++ D .08x 15x 22=-+20.以3和-2为根的一元二次方程是( )A .06x x 2=-+B .06x x 2=++C .06x x 2=--D . 06x x 2=+-三、解答题21.用适当的方法解关于x 的方程(1)12)1x 2(4)1x 2(2=---;(2)6)1x ()3x 2(22=--+;(3)x 4)3x )(3x (=+-;(4)027)1x 4(2=--.22.已知7x y 3x 2x y 221+=--=,,当x 为何值时,0y y 221=+?23.已知方程0b ax x 2=++的一个解是2,余下的解是正数,而且也是方程52x 3)4x (2+=+的解,求a 和b 的值.24.试说明不论k 为任何实数,关于x 的方程3k )3x )(1x (2-=+-一定有两个不相等实数根.25.若方程01x )3m 2(x m 22=+--的两个实数根的倒数和是S ,求S 的取值范围.26.已知Rt △ABC 中,∠C =90°,斜边长为5,两直角边的长分别是关于x 的方程0)1m (4x )1m 2(x 2=-+--的两个根,求m 的值.27.某商场今年一月份销售额100万元,二月份销售额下降10%,进入3月份该商场采取措施,改革营销策略,使日销售额大幅上升,四月份的销售额达到129.6万元,求三、四月份平均每月销售额增长的百分率.28.若关于x 的方程0m 3x )5m (x 22=---的两个根21x x 、满足43xx 21=,求m 的值.参考答案一、1.35x 35x 21--=+-=, 2.4,413.1或32- 4.-70 5.-23,无实数根6.62m ±= 7.0或24 8.425c >9.28cm 10.20%二、11.C 12.D 13.A 14.D 15.C 16.B17.D 18.B 19.C 20.C 三、21. (1)用因式分解法21x 27x 21-==,;(2)先整理后用公式法3437x 3437x 21--=+-=,;(3)先整理后用公式法72x 72x 21-=+=,;(4)用直接开平方法4133x 4133x 21+-=+=,.22.x =1或21. 23.a =-6,b =8.24解:3k )3x )(1x (2-=+-,整理得0kx 2x22=-+.∵0k44k42222>+=+=∆,∴不论k 为任何实数,方程一定有两个不相等实数根.25.23S -≤,且S ≠-3. 26.m =4. 27.解:设增长的百分率为x ,则6129)x 1%)(101(1002.=+-⨯.22x 20x 21.,.-==(不合题意舍去).∴增长的百分率为20%.28.解:提示:解⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=⋅-=+43x x m 3x x 5m x x 2122121,解得m =10,或310m =.。