2016高考数学文二轮复习训练:压轴题专练
- 格式:doc
- 大小:379.92 KB
- 文档页数:18
2016新课标II高考压轴卷文科数学本试卷分第I卷和第II卷两部分.第I卷1至3页,第II卷4至6页,满分150.考生注意:1.答题前,考生务必将自己的准考号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第II卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷和答题卡一并交回.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M={﹣1,0,1},N={﹣1,0},则M∩N=()A.{﹣1,0,1} B.{﹣1,0} C.{﹣1,1} D.{1,0}2.在复平面内,复数z与的对应点关于虚轴对称,则z=()A.2﹣i B.﹣2﹣i C.2+i D.﹣2+i3.已知f(x)=3sinx﹣πx,命题p:∀x∈(0,),f(x)<0,则()A.p是假命题,¬p:∀x∈(0,),f(x)≥0B.p是假命题,¬p:∃x0∈(0,),f(x0)≥0C.p是真命题,¬p:∀x∈(0,),f(x)>0D.p是真命题,¬p:∃x0∈(0,),f(x0)≥04.一个几何体的三视图及其尺寸如下图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,则这个几何体的表面积为( )(A )2(1π++(B )2(1π+(C )4(1π+(D )2(2π+ 5.设实数x ,y 满足约束条件,则z=的取值范围是( )A .[,1]B .[,]C .[,]D .[,] 6.将函数cos(2)y x ϕ=+的图像沿x 轴向右平移6π个单位后,得到的图像关于原点对称,则ϕ的一个可能取值为( ▲ )A.3π-B.6π C.3π D.56π 7.已知O 、A 、B 三地在同一水平面内,A 地在O 地正东方向2km 处,B 地在O 地正北方向2km 处,某测绘队员在A 、B 之间的直线公路上任选一点C 作为测绘点,用测绘仪进行测绘,O 地为一磁场,距离其不超过km 的范围内会测绘仪等电子仪器形成干扰,使测量结果不准确,则该测绘队员能够得到准确数据的概率是( ) A .1﹣B .C .1﹣D .8.一个口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两个球,则摸出的两个都是白球的概率是( )A .B .C .D .9.设向量=(1,﹣2),=(﹣3,2),若表示向量3,2﹣,的有向线段首尾相接能构成三角形,则⋅=( )A .﹣4B .4C .﹣8D .810.已知抛物线y 2=2px (p >0)与双曲线=1(a >0,b >0)有相同的焦点F ,点A 是两曲线的一个交点,且AF⊥x轴,则双曲线的离心率为( )A.+2 B.+1 C.+1 D.+111.某学校餐厅每天供应500名学生用餐,每星期一有A,B两种菜可供选择.调查资料表明,凡是在星期一选A种菜的学生,下星期一会有20%改选B种菜;而选B种菜的学生,下星期一会有30%改选A种菜.用a n,b n分别表示在第n个星期的星期一选A种菜和选B种菜的学生人数,若a1=300,则a n+1与a n的关系可以表示为()A.a n+1=+150 B.a n+1=+200C.a n+1=+300 D.a n+1=+18012.对任意的实数x都有f(x+2)﹣f(x)=2f(1),若y=f(x﹣1)的图象关于x=1对称,且f(0)=2,则f(2015)+f(2016)=()A.0 B.2 C.3 D.4二.填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知x与y之间的一组数据:则y与x的线性回归方程为必过点.14.若存在b∈[1,2],使得2b(b+a)≥4,则实数a的取值范围是.15.圆心在直线2x﹣y﹣7=0上的圆C与y轴交于两点A(0,﹣4)、B(0,﹣2),则圆C的方程为.16.已知函数y=f(x)是定义在R上的偶函数,对于x∈R,都有f(x+4)=f(x)+f(2)成立,当x1,x2∈[0,2]且x1≠x2时,都有<0,给出下列四个命题:①f(﹣2)=0;②直线x=﹣4是函数y=f(x)的图象的一条对称轴;③函数y=f(x)在[4,6]上为增函数;④函数y=f(x)在(﹣8,6]上有四个零点.其中所有正确命题的序号为.三,解答题(解答应写出文字说明,证明过程或演算步骤)17.已知函数(1)求函数f(x)的单调递增区间;(2)△ABC内角A,B,C的对边分别为a,b,c,若,b=1,,且a>b,试求角B和角C.18.袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球(Ⅰ)试问:一共有多少种不同的结果?请列出所有可能的结果;(Ⅱ)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率.19.如图1,正方形ABCD的边长为,E、F分别是DC和BC的中点,H是正方形的对角线AC与EF的交点,N是正方形两对角线的交点,现沿EF将△CEF折起到△PEF的位置,使得PH⊥AH,连结PA,PB,PD(如图2).(Ⅰ)求证:BD⊥AP;(Ⅱ)求三棱锥A﹣BDP的高.20.已知椭圆C: +=1(a>b>0)离心率为,长轴长为4.(1)求椭圆标准方程;(2)若直线l:y=kx+m与椭圆C交于A、B两点,S△AOB=,O为原点,k OA•k OB是否为定值,若为定值,求出该定值,若不是,说明理由.21.已知函数f(x)=sinx﹣ax,g(x)=bxcosx(a∈R,b∈R).(1)讨论函数f(x)在区间(0,π)上的单调性;(2)若a=2b且a≥,当x>0时,证明f(x)<g(x).请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22. (本小题满分10分)选修4-1:几何证明选讲如图,在△ABC中,CD是∠ACB的平分线,△ACD的外接圆交BC于点E,AB=2AC.(Ⅰ)求证:BE=2AD;(Ⅱ)当AC=1,EC=2时,求AD的长.23. (本小题满分10分)选修4-4:坐标系钰参数方程在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.24.(本题满分10分)选修4-5:不等式选讲设函数f(x)=|x- 2|-|2x+l|.(I)求不等式f(x)≤x的解集;(II )若不等式f(x)≥t2一t在x∈[-2,-1]时恒成立,求实数t的取值范围.试卷答案1.B【考点】交集及其运算.【专题】集合.【分析】由M与N,求出两集合的交集即可.【解答】解:∵M={﹣1,0,1},N={﹣1,0},∴M∩N={﹣1,0},故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.A考点:复数的代数表示法及其几何意义.专题:数系的扩充和复数.分析:化简复数为a+bi的形式,然后利用对称性求解即可.解答:解:==﹣2﹣i.在复平面内,复数z与的对应点关于虚轴对称,则z=2﹣i.故选:A.点评:本题考查复数的基本概念,复数的乘除运算,考查计算能力.3.D【考点】复合命题的真假;命题的否定.【专题】应用题.【分析】由三角函数线的性质可知,当x∈(0,)时,sinx<x可判断p的真假,根据全称命题的否定为特称命题可知¬p.【解答】解:由三角函数线的性质可知,当x∈(0,)时,sinx<x∴3sinx<3x<πx∴f(x)=3sinx﹣πx<0即命题p:∀x∈(0,),f(x)<0为真命题根据全称命题的否定为特称命题可知¬p:∃x0∈(0,),f(x0)≥0故选D【点评】本题看出命题真假的判断,本题解题的关键是先判断出条件中所给的命题的真假,本题是一个基础题.4.B还原为立体图形是半个圆锥,侧面展开图为扇形的一部分,计算易得.5.D考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义以及斜率公式的计算,即可求z的取值范围.解答:解:作出不等式组对应的平面区域如图:(阴影部分).z=的几何意义是区域内的点(x,y)到定点D(﹣1,0)的斜率,由图象知BD的斜率最大,CD的斜率最小,由,解得,即B(,),即BD的斜率k==,由,解得,即C(,),即CD的斜率k==,即≤z≤,故选:D.点评:本题主要考查线性规划以及直线斜率的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.6.D7.A考点:解三角形的实际应用.专题:应用题;概率与统计.分析:作出图形,以长度为测度,即可求出概率.解答:解:由题意,△AOB是直角三角形,OA=OB=2,所以AB=2,O地为一磁场,距离其不超过km的范围为个圆,与AB相交于C,D两点,作OE⊥AB,则OE=,所以CD=2,所以该测绘队员能够得到准确数据的概率是1﹣=1﹣.故选:A.点评:本题考查利用数学知识解决实际问题,考查概率的计算,正确确定CD是关键.8.B【考点】古典概型及其概率计算公式.【专题】计算题;转化思想;综合法;概率与统计.【分析】从中一次摸出两个球,先求出基本事件总数,再求出摸出的两个都是白球,包含的基本事件个数,由此能求出摸出的两个都是白球的概率.【解答】解:一个口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两个球,基本事件总数=10,摸出的两个都是白球,包含的基本事件个数m==3,∴摸出的两个都是白球的概率是p==.故选:B.【点评】本题考查摸出的两个球都是白球的概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.9.B【考点】向量的加法及其几何意义.【专题】数形结合;转化思想;平面向量及应用.【分析】由于表示向量3,2﹣,的有向线段首尾相接能构成三角形,可得=3+2﹣,再利用数量积运算性质即可得出.【解答】解:向量=(1,﹣2),=(﹣3,2),则3=(3,﹣6),2﹣=(﹣7,6),∵表示向量3,2﹣,的有向线段首尾相接能构成三角形,∴=3+2﹣=(﹣4,0),∴=(4,0),∴⋅=4.故选:B.【点评】本题考查了向量的三角形法则、数量积运算性质,考查了推理能力与计算能力,属于中档题.10.D【考点】抛物线的简单性质;双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】求出抛物线与双曲线的焦点坐标,将其代入双曲线方程求出A的坐标,将A代入抛物线方程求出双曲线的三参数a,b,c的关系,则双曲线的渐近线的斜率可求.【解答】解:抛物线的焦点坐标为(,0);双曲线的焦点坐标为(c,0),∴p=2c,∵点A 是两曲线的一个交点,且AF⊥x轴,将x=c代入双曲线方程得到A(c,),将A的坐标代入抛物线方程得到=2pc,即4a4+4a2b2﹣b4=0.解得,∴,解得:.故选:D.【点评】本题考查由圆锥曲线的方程求焦点坐标、考查双曲线中三参数的关系及由双曲线方程求双曲线的离心率,是中档题.11.A【考点】数列递推式.【专题】等差数列与等比数列.【分析】由题意可得数列递推式,结合a n+b n=500,两式联立消去b n得数列{a n}的递推公式.【解答】解:依题意得,消去b n得:a n+1=a n+150.故选:A.【点评】本题考查数列在实际问题中的应用,考查学生对数学知识的应用能力,关键是对题意的理解,是中档题12.B【考点】抽象函数及其应用.【专题】函数的性质及应用.【分析】根据条件判断函数f(x)是偶函数,结合条件关系求出函数的周期,进行转化计算即可.【解答】解:y=f(x﹣1)的图象关于x=1对称,则函数y=f(x)的图象关于x=0对称,即函数f(x)是偶函数,令x=﹣1,则f(﹣1+2)﹣f(﹣1)=2f(1),即f(1)﹣f(1)=2f(1)=0,即f(1)=0,则f(x+2)﹣f(x)=2f(1)=0,即f(x+2)=f(x),则函数的周期是2,又f(0)=2,则f(2015)+f(2016)=f(1)+f(0)=0+2=2,故选:B.【点评】本题主要考查函数值的计算,根据抽象函数关系判断函数的周期性和奇偶性是解决本题的关键.13.(2.5,2)【考点】线性回归方程.【专题】计算题;规律型;概率与统计.【分析】求出样本中心即可得到结果.【解答】解:由题意可知:==2.5.=2.y与x的线性回归方程为必过点(2.5,2).故答案为:(2.5,2).【点评】本题考查回归直线方程的应用,样本中心的求法,考查计算能力.14.[﹣1,+∞)【考点】指数函数的定义、解析式、定义域和值域.【专题】函数的性质及应用.【分析】由b∈[1,2],知2b∈[2,4],,由2b(b+a)≥4,能求出实数a的取值范围.【解答】解:∵b∈[1,2],∴2b∈[2,4],∴,∵2b(b+a)≥4,∴a≥≥﹣1.∴实数a的取值范围是[﹣1,+∞).故答案为:[﹣1,+∞).【点评】本题考查实数a的取值范围的求法,解题时要认真审题,注意指数的性质的灵活运用.15.(x﹣2)2+(y+3)2=5【考点】圆的标准方程.【专题】计算题.【分析】由垂径定理确定圆心所在的直线,再由条件求出圆心的坐标,根据圆的定义求出半径即可.【解答】解:∵圆C与y轴交于A(0,﹣4),B(0,﹣2),∴由垂径定理得圆心在y=﹣3这条直线上.又∵已知圆心在直线2x﹣y﹣7=0上,∴联立,解得x=2,∴圆心C为(2,﹣3),∴半径r=|AC|==.∴所求圆C的方程为(x﹣2)2+(y+3)2=5.故答案为(x﹣2)2+(y+3)2=5.【点评】本题考查了如何求圆的方程,主要用了几何法来求,关键确定圆心的位置;还可用待定系数法.16.①②④【考点】命题的真假判断与应用.【专题】数形结合;转化法;简易逻辑.【分析】①令x=﹣2,可得f(﹣2)=0,从而可判断①;②由(1)知f(x+4)=f (x),所以f(x)的周期为4,再利用f(x)是R上的偶函数,根据函数对称性从而可判断②;③依题意知,函数y=f(x)在[0,2]上为减函数结合函数的周期性,从而可判断③;④由题意可知,y作出函数在(﹣8,6]上有的图象,从而可判断④.【解答】解:①:对于任意x∈R,都有f(x+4)=f (x)+f (2)成立,令x=﹣2,则f(﹣2+4)=f(﹣2)+f (2)=f(2),即f(﹣2)=0,即①正确;②:由(1)知f(x+4)=f (x),则f(x)的周期为4,又∵f(x)是R上的偶函数,∴f(x+4)=f(﹣x),而f(x)的周期为4,则f(x+4)=f(﹣4+x),f(﹣x)=f(﹣x﹣4),∴f(﹣4﹣x)=f(﹣4+x),则直线x=﹣4是函数y=f(x)的图象的一条对称轴,即②正确;③:当x1,x2∈[0,2],且x1≠x2时,都有<0,∴函数y=f(x)在[0,2]上为减函数,而f(x)的周期为4,∴函数y=f(x)在[4,6]上为减函数,故③错误;④:∵f(2)=0,f(x)的周期为4,函数y=f(x)在[0,2]上为增函数,在[﹣2,0]上为减函数,∴作出函数在(﹣8,6]上的图象如图:则函数y=f(x)在(﹣8,6]上有4个零点,故④正确.故答案为.①②④【点评】本题考查命题的真假判断与应用,着重考查函数的奇偶性、周期性、对称性及零点的确定的综合应用,属于难题.17.【考点】正弦定理的应用;两角和与差的正弦函数.【专题】解三角形.【分析】(1)将f(x)解析式第一项利用两角和与差的余弦函数公式及特殊角的三角函数值化简,整理后利用两角和与差的正弦函数公式化为一个角的正弦函数,由正弦函数的递增区间为[2kπ﹣,2kπ+],x∈Z列出关于x的不等式,求出不等式的解集即可得到f(x)的递增区间;(2)由(1)确定的f(x)解析式,及f()=﹣,求出sin(B﹣)的值,由B为三角形的内角,利用特殊角的三角函数值求出B的度数,再由b与c的值,利用正弦定理求出sinC的值,由C为三角形的内角,利用特殊角的三角函数值求出C的度数,由a大于b得到A大于B,检验后即可得到满足题意B和C的度数.【解答】解:(1)f(x)=cos(2x﹣)﹣cos2x=sin2x﹣cos2x=sin(2x﹣),令2kπ﹣≤2x﹣≤2kπ+,x∈Z,解得:kπ﹣≤x≤kπ+,x∈Z,则函数f(x)的递增区间为[kπ﹣,kπ+],x∈Z;(2)∵f(B)=sin(B﹣)=﹣,∴sin(B﹣)=﹣,∵0<B<π,∴﹣<B﹣<,∴B﹣=﹣,即B=,又b=1,c=,∴由正弦定理=得:sinC==,∵C为三角形的内角,∴C=或,当C=时,A=;当C=时,A=(不合题意,舍去),则B=,C=.【点评】此题考查了两角和与差的正弦、余弦函数公式,正弦定理,正弦函数的单调性,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.18.【考点】等可能事件的概率;随机事件.【专题】计算题.【分析】(1)由分步计数原理知这个过程一共有8个结果,按照一定的顺序列举出所有的事件,顺序可以是按照红球的个数由多变少变化,这样可以做到不重不漏.(2)本题是一个等可能事件的概率,由前面可知试验发生的所有事件数,而满足条件的事件包含的基本事件为:(红、红、黑)、(红、黑、红)、(黑、红、红),根据古典概型公式得到结果.【解答】解:(I)一共有8种不同的结果,列举如下:(红、红、红、)、(红、红、黑)、(红、黑、红)、(红、黑、黑)、(黑、红、红)、(黑、红、黑)、(黑、黑、红)、(黑、黑、黑)(Ⅱ)本题是一个等可能事件的概率记“3次摸球所得总分为5”为事件A事件A包含的基本事件为:(红、红、黑)、(红、黑、红)、(黑、红、红)事件A包含的基本事件数为3由(I)可知,基本事件总数为8,∴事件A的概率为【点评】用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候注意作到不重不漏.解决了求古典概型中基本事件总数这一难点.19.【考点】棱柱、棱锥、棱台的体积;空间中直线与直线之间的位置关系.【专题】证明题;数形结合;数形结合法;立体几何.【分析】(1)由PH⊥AH,PH⊥EF可得PH⊥平面ABCD,故PH⊥BD,又AC⊥BD,得出BD⊥平面PAH,得出BD;(2)分别把△ABD和△BDP当做底面求出棱锥的体积,列出方程解出.【解答】(Ⅰ)证明:∵E、F分别是CD和BC的中点,∴EF∥BD.又∵AC⊥BD,∴AC⊥EF,故折起后有PH⊥EF.又∵PH⊥AH,∴PH⊥平面ABFED.又∵BD⊂平面ABFED,∴PH⊥BD,∵AH∩PH=H,AH,PH⊂平面APH,∴BD⊥平面APH,又∵AP⊂平面APH,∴BD⊥AP(Ⅱ)解:∵正方形ABCD的边长为,∴AC=BD=4,AN=2,NH=PH=1,PE=PF∴△PBD是等腰三角形,连结PN,则PN⊥BD,∴△PBD的面积设三棱锥A﹣BDP的高为h,则三棱锥A﹣BDP的体积为由(Ⅰ)可知PH是三棱锥P﹣ABD的高,∴三棱锥P﹣ABD的体积:∵V A﹣BDP=V P﹣ABD,即,解得,即三棱锥A﹣BDP的高为.【点评】本题考查了线面垂直的判定与性质,棱锥的体积计算,选择恰当的底面和高是计算体积的关键.20.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【专题】直线与圆;圆锥曲线的定义、性质与方程.【分析】(1)由椭圆的离心率为,长轴长为4及c2=a2﹣b2联立方程组求解a2,b2,则椭圆的方程可求;(2)把直线l的方程和椭圆方程联立,利用根与系数的关系求出直线和椭圆两个交点的横坐标的和与积,代入直线方程求出两交点的纵坐标的积,求得k OA•k OB,借助于弦长公式求出|AB|的长度,由点到直线的距离公式求出O到直线y=kx+m的距离,写出三角形AOB的面积后得到k与m的关系,整理后得到结果为定值.【解答】解:(1)由已知,椭圆C: +=1(a>b>0)离心率为,长轴长为4,∴a=2, =,a2﹣b2=c2,∴c=1,b=,∴椭圆C的方程为+=1;(2)设A(x1,y1),B(x2,y2),由直线l:y=kx+m与椭圆C联立可得(3+4k2)x2+8mkx+4m2﹣12=0,△=64m2k2﹣4(3+4k2)(4m2﹣12)>0,化为3+4k2﹣m2>0.∴x1+x2=﹣,x1x2=.y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=k2•﹣+m2=,∴k OA•k OB==,|AB|=|x1﹣x2|=•=•,原点到直线的距离d=,∵S△AOB=,∴|AB|d=••=.解得m2=+2k2,则k OA•k OB===﹣.故k OA•k OB为定值﹣.【点评】本题考查了椭圆的标准方程,考查了直线与圆锥曲线的关系,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等属于中档题.21.【考点】导数在最大值、最小值问题中的应用;三角函数的最值.【专题】导数的综合应用.【分析】(1)求出函数的导数f'(x)=cosx﹣a通过余弦函数的值域,讨论a与[﹣1,1]的范围,判断导数的符号,然后得到函数的单调性.(2)用分析法证明f(x)<g(x),转化为证明,构造函数M(x)=,通过求解函数的导数,求出函数的最值,然后证明即可.【解答】(本小题13分)解:(1)f(x)=sinx﹣ax,则f'(x)=cosx﹣a…当a≥1时,f'(x)<0,所以函数f(x)在区间(0,π)上单调递减…当a≤﹣1时,f'(x)>0,所以函数f(x)在区间(0,π)上单调递增…当﹣1<a<1时,存在ϕ∈(0,π),使得cosϕ=a,即f'(ϕ)=0,x∈(0,ϕ)时,f'(x)>0,所以函数f(x)在区间(0,ϕ)上单调递增,x∈(ϕ,π)时,f'(x)<0,所以函数f(x)在区间(ϕ,π)上单调递减…(2)要证明f(x)<g(x),只须证明f(x)﹣g(x)<0当a=2b时,…等价于…记M(x)=,则…M'(x)==…当,即时,M'(x)≤0,M(x)在区间上(0,+∞)单调递减,M(x)<M(0)=0所以,当x>0,f(x)<g(x)恒成立.…【点评】本题考查函数的对数的综合应用,函数的单调性以及最值的应用,分析法以及构造法是解题的关键,考查分析问题解决问题的能力.22.【考点】圆內接多边形的性质与判定.【专题】推理和证明.【分析】(Ⅰ)利用圆的内接四边形得到三角形相似,进一步得到线段成比例,最后求出结果.(Ⅱ)利用上步的结论和割线定理求出结果.【解答】证明:(Ⅰ)连接DE,由于四边形DECA是圆的内接四边形,所以:∠BDE=∠BCA∠B是公共角,则:△BDE∽△BCA.则:,又:AB=2AC所以:BE=2DE,CD是∠ACB的平分线,所以:AD=DE,则:BE=2AD.(Ⅱ)由于AC=1,所以:AB=2AC=2.利用割线定理得:BD•AB=BE•BC,由于:BE=2AD,设AD=t,则:2(2﹣t)=(2+2t)•2t解得:t=,即AD的长为.【点评】本题考查的知识要点:三角形相似的判定的应用,圆周角的性质的应用,割线定理得应用,主要考查学生的应用能力.23.【考点】点的极坐标和直角坐标的互化.【专题】坐标系和参数方程.【分析】(I)由⊙C的极坐标方程为ρ=2sinθ.化为ρ2=2,把代入即可得出;.(II)设P,又C.利用两点之间的距离公式可得|PC|=,再利用二次函数的性质即可得出.【解答】解:(I)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(II)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).【点评】本题考查了极坐标化为直角坐标方程、参数方程的应用、两点之间的距离公式、二次函数的性质,考查了推理能力与计算能力,属于中档题.24.- 21 -。
高考数学第二轮复习 压轴题高考坚持“有利于高校选拔人才,有利于中学实施素质教育,有利于高校扩大办学自主权”的命题原则,坚持“考查基础知识的同时,注重考查能力”,这决定了每套高考试卷都有一道或几道把关的题目,我们称之为压轴题.这类题目的分值稳定在14分左右,多以传统的综合题或常用题型,与高等数学有关知识或方法联系比较紧密.如结合函数、不等式、导数研究无理型、分式型、指对数型以及多项式函数等初等函数的图像与性质,或数列兼考查数学归纳法,或以解析几何为主的向量与解析几何交汇,或以上三类题互相交汇形成新的综合问题,这类题目综合性强,解法多,有利于高校选拔.第一讲 函数、不等式与导数型压轴题【调研1】设21()log 1x f x x +=-,1()()2F x f x x=+- (1)试判断函数()y F x =的单调性,并给出证明;(2)若()f x 的反函数为1()f x -,证明 对任意的自然数(3)n n ≥,都有1()1nf n n ->+; (3)若()F x 的反函数1()F x -,证明 方程1()0F x -=有惟一解.分析:第(1)问先具体化函数()y F x =后,再判断单调性,而判断单调性有定义法和导数法两条途径;第(2)问先具体化1()f n -,再逐步逆向分析,寻找不等式的等价条件,最后转化为不等式212nn >+的证明问题;第(3)问应分“存在有解”和“唯一性”两个方面证明. 解析:(1)∵21()log 1x f x x +=-,1()()2F x f x x =+- ∴211()log 12x F x x x+=+-- ∴函数()y F x =的定义域为(1,1)-.解法一:利用定义求解 设任意1x ,2x (1,1)∈-,且12x x <,则21()()F x F x -=212222111111(log )(log )2121x x x x x x +++-+---- =212221211111()(log log )2211x x x x x x ++-+-----=211221212(1)(1)log (2)(2)(1)(1)x x x x x x x x --++--+- ∵210x x ->,120x ->,220x -> ∴1212(1)(1)0(1)(1)x x x x -+>+-∴211221212(1)(1)log 0(2)(2)(1)(1)x x x x x x x x --++>--+- ∴函数()y F x =在(1,1)-上是增函数解法二:利用导数求解∵211()log 12x F x x x+=+--∴()F x '=22121(1)ln 2(1)(2)x x x x -⨯++--=2221ln 2(1)(2)x x +⨯--又∵11x -<< ∴()F x '=22210ln 2(1)(2)x x +>⨯--∴函数()y F x =在(1,1)-上是增函数 (2) 由21()log 1x f x x +=-得121y x x +=-,即2121y y x -=+ ∴121()21x x f x --=+(x R ∈)∴121()21n n f n --=+=2121n -+∵1111n n n =-++∴证明不等式1()1n f n n ->+(3n ≥),即证222122n n <++,也即证212nn >+(3n ≥) 以下有两条求证途径:解法一:利用数学归纳法求证①当3n =时,不等式显然成立. ②设n k =时成立,即212kk >+当1n k =+时,12222(12)k k k +=⨯>+=42222k k k +=++232(1)1k k >+=++ ∴当1n k =+时不等式也成立.由①②可知,对利用大于或等于3的自然数都有212nn >+成立.∴证明不等式1()1nf n n ->+(3n ≥) 解法二:利用放缩法求证∵2(11)112221n n n n n n =+=++++=+>+…∴等式1()1n f n n ->+(3n ≥) 故:1()1n f n n ->+ (3)∵ 211(0)log 122F =+= ∴11()02F -=,即12x =是1()0F x -=的一个根.假设1()0F x -=另外还有一个解0x (012x ≠),则10()0F x -=∴0(0)F x = (012x ≠),这与1(0)2F =相矛盾 故1()0F x -=有惟一解.【方法探究】证明不等式的方法很多,其中分析法和综合法是最基本的方法.分析法由果索因,优点是便于寻找解题思路,而综合法由因索果,优点是便于书写,所以我们在求解过程中,常常两种方法联合作战,从而衍生出“分析综合法”,在本例第(2)问以及下例第(2)问都中有所体现.【技巧点拨】对于压轴题,大多数同学都不能完全解答,如何更好发挥,争取更好的成绩?“分步解答”、“跳步解答”与“解准第一问”是很实用的夺分技巧,其中分析综合题的各小问之间的关系是非常关键.从各小问之间的相互关系来分,数学综合题有以下三类: (1)递进型 递进型解答题是指前问是后问的基础,只有前问正确解答,才能准确求解后问,若第(1)问出错,则可能“全军覆没”,这也是相当多同学不能很好发挥其数学水平的重要原因.对于这类题目,“解准第一问”是至关重要,不容丝毫的马虎.(2)并列式 并列型解答题是指前问与后问关联性不强,前问是否正确,不会影响后问作答,如本例的三个问题.但这类题目也容易丢分,同学们在作答时,常常因为前问不会答而放弃后问的分析与思考,这时“跳步解答”非常关键.(3)混合式 混合型解答题是指解答题有三个及其以上的小问,兼有以上两种类型的特点,答题时注意“分步解答”,如本例万一不会求解第(2)问,具体化1()f n -是没有问题的,争取得到一定的步骤分.【调研2】已知函数22()ln f x x a x x=++(0x >),()f x 的导函数是()f x '对任意两个不相等的正数1x 、2x 求证:(1)当0a ≤时,1212()()()22f x f x x xf ++>;(2)当4a ≤时,1212()()f x f x x x ''->-. 分析:本例以高等数学的函数凸凹性、一致连续性、中值定理等知识为内核,综合考查函数的基本性质、导数求函数极值和均值不等式等知识的应用,考查综合分析、推理论证以及运算能力.第(1)问先根据题设条件具体化12()()2f x f x +、12()2x x f +的表达式,再对二者进行比较,可以逐项比较,也可以作差比较;第(2)问先具体化12()()f x f x ''-,再逐步逆向分析,采用分析法寻找解题思路,至于书写可用分析法,也可以用综合法. 解析:(1)∵()22ln f x x a x x =++∴()()()()1222121212111ln ln 222f x f x a x x x x x x +⎛⎫=+++++ ⎪⎝⎭ ()2212121212x x x x a x x +=+++2121212124ln 222x x x x x x f a x x +++⎛⎫⎛⎫=++ ⎪ ⎪+⎝⎭⎝⎭ 以下有两条求解途径:解法一:逐项比较法122x x +<∴12ln 2x x +< ∵0a ≤∴12ln 2x x a a + ………………………………①∵()()22222212121212112242x x x x x x x x +⎛⎫⎡⎤+>++= ⎪⎣⎦⎝⎭……………………………………② 又∵()()2221212121224x x x x x xx x +=++> ∴1212124x x x x x x +>+ ………………③ 由①、②、③得()22212121212121422x x x x x x a a x x x x ++⎛⎫+++++ ⎪+⎝⎭∴ ()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭解法二:作差比较法()()121222f x f x x x f ++⎛⎫- ⎪⎝⎭=()22212121212121214[[()ln ]222x x x x x x x x a a x x x x ++++++-+++=22212121212121214[()()]()(ln )222x x x x x x x x a a x x x x ++++-+-++=221212121212()1()4()x x x x a x x x x --+++ ∵12x x ≠,且10x >,20x > ∴2121()04x x ->,2121212()0()x x x x x x ->+,1201<<∵0a ≤∴12ln0a ≥∴()()121222f x f x x x f ++⎛⎫-⎪⎝⎭=221212121212()1()04()x x x x a x x x x --++>+ 故()()121222f x f x x x f ++⎛⎫-⎪⎝⎭0>(2)证法一:分析综合法由()22ln f x x a x x =++,得()'222a f x x x x=-+ ∴()()12f x f x ''-=122211222222a a x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭=()121222121222x x ax x x x x x +-⋅+- 欲证()()''1212f x f x x x ->- ,只需证()12221212221x x ax x x x ++->即证()1212122x x a x x x x +<+成立 ∵()121212122x x x x x x x x ++>+设t =,()()240u t t t t =+>,则()242u t t t '=- 令()0u t '=得t =()4u t a ≥=>≥ ∴()1212122x x x x a x x ++> ∴对任意两个不相等的正数12,x x ,恒有()()''1212f x f x x x ->-证法二:综合法1 对于任意两个不相等的正数1x 、2x 有()1212122x x x x x x ++>12x x=12x x +3≥3 4.5a >> ∴ ()12221212221x x a x x x x ++->而()'222a f x x x x =-+ ∴()()12f x f x ''-=122211222222a a x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭=()121222121222x x a x x x x x x +-⋅+-12x x >- 故:()()''1212f x f x x x ->- 证法三:综合法2由()22ln f x x a x x =++,得()'222a f x x x x=-+ ∴()()''12f x f x -=122211222222a a x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭=()121222121222x x a x x x x x x +-⋅+- ∵12,x x 是两个不相等的正数∴()()123221212122422x x aax x x x x x ++->+-()312442x x ≥+-设t =,()()322440u t t t t =+->,则()()'432u t t t =-,列表: ∴38127u => 即 ()12221212221x x ax x x x ++-> ∴()()()12''12121222121222x x af x f x x x x x x x x x +-==-⋅+->- 【方法探究】本例以高等数学中的函数凸凹性与中值定理为知识载体,所以也可以采取高等数学方法求解: (1)当0a ≤时,求证1212()()()22f x f x x xf ++>,联系凹(下凸)函数性质知,只需证明当0a ≤时,只需证明22()ln f x x a x x=++(0x >)为凹函数或下凸函数. 即证明“函数)(x f 的二阶导数恒大于0”其具体证明如下:∵22()ln f x x a x x =++(0x >)∴22()2a f x x x x '=-+,324()2a f x x x''=+-∵0x >,0a < ∴324()20af x x x''=+->在(0,)x ∈+∞时恒成立.∴22()ln f x x a x x =++(0x >)为凹函数 故()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭(2)为证明|||)()(|2121x x x f x f ->'-',可以考虑对函数()f x 的导函数是()f x '在闭区间12[,]x x (或21[,]x x )上应用中值定理,具体证明过程如下:不妨设210x x >>,则由(1)问知22()2a f x x x x '=-+,324()2af x x x''=+-,在闭区间12[,]x x 上,由中值定理有,存在[]21,x x ∈ξ,使得: ))(()()(2121x x f x f x f -''='-'ξ.下证当4a ≤,0ξ>时,有()1f ξ''>成立∵324()2a f x x x ''=+-∴当0a ≤,0x >时,有324()22af x x x ''=+->恒成立 当04a <≤,0x >时,令324()2()a f xg x x x ''=+-=,则34212()a g x x x'=-再令34212()0a g x'=-=,得6x =列表如下:即当04a <≤,0x >时,有33324438()222110810827a a f x x x ''=+-≥->-=>∴1)(04>''>≤ξξf a 时,有,当,有212121)()()(x x x x f x f x f ->-⋅''='-'ξ故()()''1212f x f x x x ->-1.已知32()2f x x bx cx =+++(1)若()y f x =在1x =时有极值-1,求b ,c 的值.(2)当b 为非零实数时,证明()f x 的图像不存在与直线2()10b c x y -++=平行的切线;(3)记函数|()|f x '(11x -≤≤)的最大值为M ,求证32M ≥. 2.已知函数()ln(1)(1)x f x a e a x =+-+,2()(1)(ln )g x x a x f x =---且()g x 在1x =处取得极值. (1)求a 的值和()g x 的极小值; (2)判断()y f x =在其定义域上的单调性, 并予以证明;(3)已知△ ABC 的三个顶点A 、B 、C 都在函数()y f x =的图象上,且横坐标依次成等差数列,求证△ABC 是钝角三角形, 但不可能是等腰三角形.【参考答案】解析:(1)∵32()2f x x bx cx =+++ ∴2()32f x x bx c '=++ 由()f x 在1x =时有极值-1有(1)320(1)121f b c f b c '=++=⎧⎨=+++=-⎩,解之得15b c =⎧⎨=-⎩当1b =,5c =-时,2()325f x x x '=+-当1x >时,()0f x '>,当513x -<<时,()0f x '< 从而符合在1x =时,()y f x =有极值 ∴1b =,5c =-(2)假设()y f x =图象在x t =处的切线与直线2()10b c x y -++=平行,则 ∵2()32f t t bt c '=++,直线2()10b c x y -++=的斜率为2c b -∴2232t bt c c b ++=-,即22320t bt b ++=∵0b ≠ ∴△=2224(3)80b b b -=-<从而方程22320t bt b ++=无解,即不存在t ,使22()32f t t bt c c b '=++=-∴()y f x =的图象不存在与直线2()10b c x y -++=平行的切线.(3)证法一:分类讨论∵|()|f x '=22|3()()|33b b xc ++-∴①若||13b ->,则M 应是|(1)|f '-和|(1)|f '中最大的一个∴2|(1)||(1)|M f f ''≥-+=|32||32|b c b c -++++|4|b ≥12> ∴362M >≥②当30b -≤<时,2|(1)||()|3b M f f ''≥-+-=2|32|||3b b c c -++-2|23|3b b ≥-+=21|(3)|3b -3> ∴32M ≥ ③当03b <≤时,2|(1)||()|3b M f f ''≥+-=2|32|||3b bc c +++-2|23|3b b ≥++=21|(3)|3b +3> ∴32M ≥综上所述,32M ≥成立.证法二:利用二次函数最值求解2()32f t t bt c '=++的顶点坐标是(3b -,332b c -),①若||13b->,则M 应是|(1)|f '-和|(1)|f '中最大的一个 ∴2|(1)||(1)|M f f ''≥-+=|32||32|b c b c -++++|4|b ≥12> ∴362M >≥②若||13b -≤,则M 应是|(1)|f '-、|(1)|f '、|332b c -|中最大的一个(1)当32c ≥-时,2|(1)||(1)|M f f ''≥-+|(1)(1)|f f ''≥-+=|62|3x +≥ ∴32M ≥ (2)当32c <-时, 23||3c b M -≥=2332b c c -≥->综上所述,32M ≥成立. 证法三:利用绝对值不等式的性质∵函数|()|f x '(11x -≤≤)的最大值为M ∴|(1)|M f '≥-,|(1)|M f '≥,|(0)|M f '≥∴4|(1)||(1)|2|(0)|M f f f '''≥-++|(1)(1)2(0)|f f f '''≥-+-=6 ∴32M ≥ 2.解析:(1)∵2()(1)(ln )g x x a x f x =---∴1()2(1)1a a g x x a x x+'=---++(0x >) ∵()g x 在1x =处取得极值 ∴(1)2(1)102ag a a '=---++=,即8a =∴()8ln(1)9xf x e x =+- 2()78ln(1)9ln g x x x x x =--+-89(1)(3)(23)()271(1)x x x g x x x x x x --+'=--+=++(0x >) 令(1)(3)(23)()0(1)x x x g x x x --+'==+得1x =或3x =当13x <<时,()0g x '<,当01x <<时,()0g x '>当3x >时,()0g x '> ∴当3x =时,min ()9ln38ln 412g x =-- (2)∵()8ln(1)9x f x e x =+-∴89()9011xx xe f x e e--'=-=<++恒成立,即函数()f x 在(,)-∞+∞上是单调减函数. (3)设11(,())A x f x ,22(,())B x f x ,33(,())C x f x ,且123x x x <<,则123()()()f x f x f x >>,1322x x x +=∴1212(,()())BA x x f x f x =+-,3232(,()())BC x x f x f x =-- ∴12321232()()[()()][()()]BA BC x x x x f x f x f x f x ⋅=--+-⋅-∵120x x -<,320x x ->,12()()0f x f x ->,32()()0f x f x -< ∴0BA BC ⋅< 故B 为钝角,△ABC 为锐角三角形.另一方面,若ABC ∆为等腰三角形,则只能是BA BC = 即222212123232()[()()]()[()()]x x f x f x x x f x f x -+-=-+- ∵2132x x x x -=-,221232[()()][()()]f x f x f x f x -=- ∴1223()()()()f x f x f x f x -=-,即13)()()f x f x f x =+22(∵()8ln(1)9x f x e x =+- ∴21221316ln(1)188[ln(1)(1)]9()x x xe x e e x x +-=++-+ ∴132122ln(1)ln(1)x x x x xe e e e ++=+++,即22122222x x x x x e e e e e +=++∴3212x x x ee e =+,但与3122x x x e e e +≥==相矛盾,所以ABC ∆不能为等腰三角形.综上所述,△ABC 是钝角三角形, 但不可能是等腰三角形.第二讲 递推数列、数学归纳法型压轴题数列和数学归纳法是初等数学与高等数学的最重要衔接点之一,是中学数学的重要组成部分,涉及知识面广、综合性强、方法灵活、试题新颖、技巧性突出,蕴含函数与方程,等价转化、分类与整合等数学思想以及错位相减法、归纳-猜想-证明、叠加(乘)法、叠代法、裂项法等大量的数学方法,是代数计算与逻辑推理训练的重要题材,因而这类题目多以压轴题的形式出现,成为高考的重头戏之一.【调研1】已知函数)(x f 是定义在R 上的不恒为零的函数, 且对于任意的R b a ∈,, 都满足()()()f a b af b bf a ⋅=+.若1()12f =,(2)n n f a n-=(n N *∈),求①.数列{}n a 的通项公式;②.数列{}n a 的前n 项和为n S ,问是否存在正整数m ,使得对任意的*n N ∈都有43n m S -<成立?若存在,求出m 的最小值;若不存在,则说明理由.分析: 求解本题的关键在于准确求解第(1)小问,所以准确化简(2)n f -成为求解本例的焦点.大致有以下三条途径:①.由已知条件()()()f a b af b bf a ⋅=+探索)(n a f 的规律,最后用数学归纳法证明; ②.将所给函数关系式适当变形, 根据其形式特点构造另一个函数, 设法用此函数求出)(n a f ; ③.设法将(2)n f -转化为熟悉的数列. 解析:(1)解法一:“归纳-猜想-证明”法∵对于任意的R b a ∈,, 都满足()()()f a b af b bf a ⋅=+∴2()f a =()()a f a a f a ⋅+⋅=2()a f a ⋅3()f a =22()()a f a a f a ⋅+⋅=22()()a a f a a f a ⋅⋅+⋅=23()a f a 4()f a =33()()a f a a f a ⋅+⋅=233()()a a f a a f a ⋅⋅+⋅=34()a f a猜想1()()n n f a na f a -=⋅ (n N *∈)现在用数学归纳法证明: ①.显然1n =时,左边=()f a ,右边=111()a f a -⨯⋅=()f a ∴1n =时,命题1()()n n f a na f a -=⋅显然成立. ②.设n k =(*k N ∈)时有1()()kk f a kaf a -=⋅当1n k =+时 ∵()()()f a b af b bf a ⋅=+∴1()k f a +=()k f a a ⨯=()()k k a f a a f a ⋅+⋅=1()()k k a f a a ka f a -⋅+⋅⋅=()()k k a f a ka f a ⋅+⋅=(1)()k k a f a +⋅∴1n k =+时,命题1()()n n f a na f a -=⋅成立.由①②可知,对任意n N *∈都有1()()n n f a na f a -=⋅(n N *∈)成立.又∵1()12f =∴11111[()]()()(2)1222()2n n nn n f n f f a n n n ---⋅====故数列{}n a 的通项公式n a =11()2n -解法二:构造函数法 ∵当0≠⋅b a 时,有()()()f a b af b bf a ⋅=+ ∴bb f a a f ab ab f )()()(+= 令()()f x g x x =,则bb f a a f ab ab f )()()(+=即为: ()()()g ab g a g b =+∴()()ng a n g a =⋅ 即()()n nf a ng a a=⋅ ∴1()()()()nnnn f a f a a n g a a n na f a a-=⋅⋅=⋅⋅=⋅,即1()()n n f a na f a -=⋅余下的过程同解法一. 证法三: 转化为特殊数列求解∵对于任意的R b a ∈,, 都满足()()()f a b af b bf a ⋅=+,1()12f =∴1[()]2n f =111[()]22n f -⨯=111111[()]()()2222n n f f --⨯+⨯=11111[()]()222n n f --⨯+即1[()]2n f =11111[()]()222n n f --⨯+ ∴1111[()][()]222()()22n n n n f f --=+ ∴新数列1[()]21()2n n f ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是公差为2,首项为1()2212f =的等差数列,即1[()]221()2n n f n = ∴11()2(2)12()2n nn n n f a n n --⨯=== 故数列{}n a 的通项公式n a =11()2n -.(2)假设存在正整数m ,使得对任意的*n N ∈都有43n m S -<成立,则由(1)问可知111()2n n S -=-,所以1141()23n m ---<恒成立∴413m -≥,即7m ≥ 故存在正整数m ,使得对任意的*n N ∈都有43n m S -<成立,此时m 的最小值为7.【方法探究】本例是已知抽象函数关系, 利用函数迭代求数列通项问题.在所给的三种方法之中, 解法一利用“归纳-猜想-证明”求解,思路自然, 但较为繁琐;解法二利用构造函数法求解,比较简洁,但技巧性强;解法三转化为特殊数列求解,思维跨度大.这三种证法反应出求解数列与函数综合题的共同规律: 充分应用已知条件变形转化, 根据其形式特点构造新的数列, 然后利用数列的性质求解.【调研2】已知等差数列{}n a 的公差d 大于0,且2a 、5a 是方程027122=+-x x 的两根,数列{}n b 的前n 项和为n T ,且n n b T 211-=(*n N ∈)(1)求数列{}n a 、{}n b 的通项公式;(2)设数列{}n a 的前n 项和为n S ,试比较nb 1与1+n S 的大小. 分析:(1)由方程027122=+-x x 可求2a 、5a ,从而得到等差数列{}n a 的通项;由公式1112n n n S n a S S n -=⎧=⎨-≥⎩求解数列{}n b 的通项.(2)要比较n b 1与1+n S 的大小,应先由(1)问具体化nb 1、1+n S ,再求出前几项,探索大小规律, 最后用数学归纳法证明.解析:(1)∵2a 、5a 是方程027122=+-x x 的两根,公差d 大于0∴2a =3,5a =9,即5223a a d -==,11a = ∴21n a n =-(*n N ∈) ∵数列{}n b 的前n 项和为n T ,且n n b T 211-=(*n N ∈)∴当1n =时,111112T b b ==- ∴321=b当2≥n 时,∵n n b T 211-= ∴111122n n n n n b T T b b --=-=-∴113n n b b -=(2n ≥),即1212()333n n n b -==故21n a n =-,1212()333n n n b -==(2)解法一:归纳-猜想-证明由(1)可知2[1(21)]2n n n S n +-==,132n n b = ∴21(1)n S n +=+ 当1n =时,1132b =,24S = ∴211S b <当2n =时,2192b =,39S = ∴321S b <当3n =时,31272b =,416S = ∴431S b <当4n =时,41812b =,525S = ∴541S b >当5n =时,512432b =,636S = ∴651S b >猜想:4≥n 时,11+>n n S b以下用数学归纳法证明:(1)当4n =时,由上可知成立.(2)设n k =(*,4k N n ∈≥)时,11+>k kS b ,即2)1(23+>k K 当1n k =+时,11k b +=132k +=332k ⋅23(1)k >+2363k k =++=22(44)221k k k k ++++-2(1)1[(1)1]k k S ++>++=∴当1n k =+时,11+>n nS b 成立.由(1)(2)知n N *∈,4n ≥时,11+>n n S b .综上所述,当1n =,2,3时,11+<n n S b ,当4≥n 时,11+>n nS b .解法二:放缩法证明当1n =,2,3时,同以上解法 当n N *∈,4n ≥时1nb =32n =1223311(12)(1222)22n n n n C C C +>+⋅+⋅+⋅=1(1)(1)(2)[1248]226n n n n n n ---++⋅+⋅ ≥18[126(1)]23n n n n +++-=281636n n ++221n n >++1n S += 综上所述,当1n =,2,3时,11+<n n S b ,当4≥n 时,11+>n nS b . 【方法探究】通过对有限个特例进行考察,猜想一般的结论,然后运用数学归纳法证明,即“观察――猜想――证明”,这是中学数学中重要的解题方法,可有效解决探索性问题、存在性问题或某些与自然数有关的命题,在求解时注意“猜想大胆、求证小心”.【技巧点拨】放缩法是证明不等式的常用方法,过程简洁,但有一定难度,犹如花中的玫瑰,美丽但有刺. 成功运用放缩法求证的关键在于把握放缩尺度,在平时训练中注意多积累与整理.常见的放缩技巧有:(1)添项或减项的“添舍放缩”,如本例12233113(1222)22n n n n C C C ⨯>+⋅+⋅+⋅,只取(21)n +的二项展开式的前四项进行放缩;(2)拆项对比的“分项放缩”;(3)运用分数的性质放缩,如①分子增加正数项或分母减少正数项,分数值变大,反之变小;② a, b, m 都是正数并且a b <,有a a mb b m+<+(真分数的性质)等. (4)运用不等式串)1(11)1(12-<<+n n n n n 放缩,如在第3讲例2第(2)问中求证23π<n T 时,运用该技巧放缩后,再裂项相加求解.类似的不等式有2()4a b ab +≤≤ 222a b +,<<等. 1.已知函数()2x f x m t =⋅+的图象经过点A (1,1)、B (2,3)及C (n S n ,),n S 为数列{}n a 的前n 项和,*n N ∈. (1)求n S 及n a ;(2)若数列{}n b 满足22log 1n n b a =+,记11122334111111ni i i n n b b b b b b b b b b =++=++++∑(*n N ∈)求证:1111132n i i i bb =+≤<∑. 2.第七届国际数学教育大会的会徽的主体是由一连串直角三角形演变而成,其中OA =AB =BC =CD=DE =EF =FG =GH =HI =1.若将图2的直角三角形继续作下去,并记OA 、OB 、… 、OI 、…… 的长度所构成的数列为{}n a (1)求数列{}n a 的通项公式 (2)若函数22212111()nf n n a n a n a =+++++…+,求函数()f n 的最小值; (3)设11n n nb a a +=+,数列{n b }的前n 项和为n S .解不等式|2|4n S -≥3.已知一次函数)(x f 的反函数为)(x g ,且(1)0f =,若点1(,)n n na A n a +(n N *∈)在曲线)(x g y =上,11=a ,对于大于或等于2的任意自然数n 均有111=--+n nn n a a a a . (1)求)(x g y =的表达式;(2)求}{n a 的通项公式;O AB C DE F G H I图1图2(3)设)!2(!4!321++++=n a a a S n n ,求lim n n S →∞. 4.已知数列{}n a 与{}n b 满足下列关系:12a a =(0a >),211()2n n na a a a +=+,n n n a ab a a +=-(n N *∈)(1)求数列{}n b 的通项公式,并化简aa aa n n --+1;(2)设n S 是数列{}n a 的前n 项和,当2≥n 时,n S 与a n )34(+是否有确定的大小关系?若有,请并加以证明,若没有,请说明理由.【参考答案】1.解析:(1)∵函数()2x f x m t =⋅+的图象经过点A (1,1)、B (2,3) ∴2143m t m t +=⎧⎨+=⎩ 解之得11m t =⎧⎨=-⎩ ∴()21x f x =-∵函数()2x f x m t =⋅+的图象经过C (n S n ,) ∴21n n S =-(*n N ∈) ∴当1n =时,111S a ==当2≥n 时,111222n n n n n n a S S ---=-=-= ∵当1n =时,满足12n n a -= ∴数列{}n a 的通项为12n n a -= 故:12n n a -=,21n n S =-(*n N ∈)(2)由(1)可知121)1(21log 22-=+-=+=n n a b n n ,则∴11n n b b +=1(21)(21)n n -+=111()22121n n --+∴111ni i i b b -+∑=12233411111n n b b b b b b b b +++++=11111111(1)2335572121n n -+-+-++--+=11(1)221n -+(*n N ∈) ∵11(1)221n -+在*n N ∈上单调递增 ∴当1n =时min 11(1)221n -+=13 ∵1021n >+ ∴111(1)2212n -<+ 综上可得∑=+<≤n i i i b b 11211312.解析:(1)由题意有2211n n a a+=+∴ 21(1)1n a n =+-⨯=n 即n a (2)∵22212111()n f n n a n a n a =+++++…+∴1111()1232f n n n n n =++++++…+ 111111(1)23322122f n n n n n n n +=++++++++…+++ ∴111(1)()21221f n f n n n n +-=-++++=1102122n n >++- ∴(1)()f n f n +> 即函数()y f n =是递增数列∴()y f n =的最小值为11(1)112f ==+ (3)∵11n n n b a a +===+∴1)n S =++…1 ∴|2|4n S -≥即为2|4≥ 解之得48n ≥且n N ∈3.分析:由)(x g 为一次函数)(x f 的反函数得)(x g 也为一次函数,所以可设()g x kx b =+; 由(1)0f =得(0)1g =,从而有1b =;由“点1(,)n n na A n a +(n N *∈)在曲线)(x g y =上,且111=--+n nn n a a a a ”确定斜率k ,一旦直线)(x g y =的解析式确定,剩下的问题水到渠成. 解析:(1)∵)(x f 为一次函数,且)(x g 为其反函数 ∴设b kx x g +=)( 由(1)0f =得(0)1g =,即1)(+=kx x g ∵()1g n kn =+且1(,)n n n a A n a +(n N *∈)均在直线b kx x g +=)(上,且111=--+n n n n a aa a ∴1)1(112=-+-=+++nn a a a a k nn n n ∴1)(+=x x g (2)∵1(,)n n na A n a +(n N *∈)均在直线b kx x g +=)(上 ∴11+=+n a a nn ∴当*N n ∈时,12121(1)(2)n n n n a a an n n a a a ---⋅⋅⋅⋅⋅⋅⋅=⨯-⨯-⨯…21=n!(3)n S =123!4!(2)!n a a a n ++++=1!2!!3!4!(2)!n n ++++…=1112334(1)(2)n n +++⨯⨯++…=111111233412n n -+-++-++=1122n -+ ∴lim n n S →∞=11lim()22n n →∞-+=124.已知数列{}n a 与{}n b 满足下列关系:12a a =(0a >),211()2n n na a a a +=+,n n n a ab a a +=-(n N *∈)(1)求数列{}n b 的通项公式,并化简aa aa n n --+1;(2)设n S 是数列{}n a 的前n 项和,当2≥n 时,n S 与a n )34(+是否有确定的大小关系?若有,请并加以证明,若没有,请说明理由.4.解析:(1)∵n n n a a b a a +=-(n N *∈),211()2n n na a a a +=+∴1n b +=11n n a a a a +++-=331()21()2n n n na a aa a a a a +++-=22()()n n a a a a +-=2n b 0> ∴1lg 2lg n n b b += ∵1113a a b a a +==- ∴1lg (lg3)2n n b -=⋅,即123n n b -= ∴11223131n n n a a --+=-故1n n a a a a +--=2n n a a a-=1n b +=1231n -+(2)当2≥n 时,1n a a +-=1231n n a a --+≤1()10n a a -(当且仅当2n =时取“=”) ∴321()10a a a a -≤-,431()10a a a a -<-,……,)(1011a a a a n n -<-- ∴])2([101)2(1121a n a S a n a a S n n ---<----- ∵12a a =,254a a = ∴651010(2)2(2)2n n n S a n a S a a n a ---<---- ∴11226131[(2)]189(31)n n n S n a --+<-+--251()189n a <+-23()18n a =+4()3n a <+故4()3n S n a <+.第三讲 解析几何型压轴题解析几何综合题是高考命题的一个热点内容,这类试题往往以解析几何知识为载体,综合函数、不等式、向量、数列等知识,涉及知识点多,综合性强,题目多变,解法灵活多样,能较好体现高考的选拔功能,因此这类题目常常以压轴题的形式出现.求解这类题目,注意在掌握通性通法的同时,从宏观上把握,微观上突破,在审题和解题思路上下功夫,不断跨越求解征途中可能会遇到的一道道运算难关,最终达到求解目的.【调研1】若1F ,2F 为双曲线22221b y a b -=的左、右焦点,O 为坐标原点,P 在双曲线左支上,M 在右准线上,且满足1F O PM =,11OF OP OP OM OP OMOF OP⋅⋅=.(1)求此双曲线的离心率;(2)若此双曲线过点N ,求双曲线的方程;(3)设(2)中双曲线的虚轴端点为1B ,2B (1B 在y 轴的正半轴上),过2B 作直线AB 与双曲线交于A ,B两点,求11B A B B =时,直线的方程. 分析:弄清向量表达式11OF OP OP OM OP OMOF OP⋅⋅=是求解本题的关键!由向量的数量积定义可知cos ,OP OM <>=1cos ,OF OP <>,即OP 是1F OM ∠的角平分线,联系1F O PM =可判断四边形1OMPF 是菱形.解析:(1)由1F O PM =知四边形1PFOM 是平行四边形 又由11OF OP OP OM OP OMOF OP⋅⋅=知OP 平分1F OM ∠ ∴四边形1PFOM 是菱形 设焦半距为c ,则有11OF PF PM c === ∴2122PF PF a c a =+=+ 由双曲线第二定义可知21PF e PM =,即2c aec+= ∴2e =(1e =-舍去) (2)∵2ce a== ∴2c a = ∴双曲线方程为222213x y a a -=又∵双曲线过点N ∴224313a a -=,即23a = ∴所求双曲线的方程为22139x y -=(3)由题意知()10,3B ,()20,3B -,则设直线AB 的方程为3y kx =-,()11,A xy ,()22,B x y则由223139y kx x y=-⎧⎪⎨-=⎪⎩有()2236180k x kx -+-= ∵双曲线的渐近线为y = ∴当k =时,AB 与双曲线只有一个交点,即k ≠∵12263k x x k +=-,122183x x k -⋅=- ∴()121221863y y k x x k -+=+-=-,()212121299y y k x x k x x ⋅=-++= 又∵()1113B A x y =-,,()1223B B x y =-,∵11B A B B ⊥∴()121212390xx y y y y +⋅-++=即221818939033k k --+-⋅+=-- ∴k = ∴直线AB 的方程为3y =-【方法探究】平面向量是高中数学新增内容,兼有代数和几何特性,是高中数学应用最广泛的数学工具之一,解析几何是高中数学的传统重点内容,是高考中的重头戏,而平面向量与解析几何交汇命题是近三年来新高考的一个新亮点.这类综合问题大致可分三类:(1)平面向量与圆锥曲线符号层面上的整合问题:这类题目是平面向量和圆锥曲线的简单拼盘,在平面向量刚进入高考时,比较常见,近来比较少;(2)平面向量与圆锥曲线知识层面上的整合问题:用平面向量语言包装解析几何中元素的关系,试题情境新颖,结合点选取恰到好处,命题手法日趋成熟,如本例求解过程中,明确向量式“1F O PM =”与“11OF OP OP OM OP OMOF OP⋅⋅=”含义,还原几何元素“菱形1PFOM ”是求解关键;(3)平面向量与圆锥曲线应用层面的整合问题:以平面向量作为工具,综合处理有关长度、角度、垂直、射影等问题以及圆锥曲线中的轨迹、范围、最值、定值、对称等典型问题,这类问题往往更具有挑战性. 【调研2】在xoy 平面上有一系列点111(,)P x y ,222(,)P x y ,……,(,)n n n P x y ……,对每个自然数n ,点n P 位于函数)0(2≥=x x y 的图象上.以点n P 为圆心的⊙n P 与x 轴都相切,且⊙n P 与⊙1+n P 又彼此外切.若11=x ,且n n x x <+1 )(N n ∈.(1)求证数列}1{nx 是等差数列; (2)设⊙n P 的面积为n S ,n n S S S T +⋅⋅⋅++=21, 求证:23π<n T 分析:本题是数列与圆锥曲线的综合题,求解过程有两个关键点:①.由⊙n P 与⊙1+n P 彼此外切,从而构建关于n x 的递推关系式,突破的办法是具体化已知条件 “⊙n P 与⊙1+n P 彼此外切”为1n n P P +1n n r r ++=1n n y y ++; ②.经过一系列演算后得到222111]35(21)n T n =++++-,如何放缩?放缩度是把握问题的关键.解析:(1) ⊙n P 与⊙1+n P 彼此外切∴11n n n n P P r r ++=+1n n y y +=+ 两边平方并化简得1214)(++=-n n n n y y x x依题意有⊙n P 的半径2n n n x y r ==,22211()4n n n n x x x x ++-=⋅∵10n n x x +>> ∴112++=-n n n n x x x x ,即1112()n nn N x x +-=∈ ∴ 数列}1{n x 是以111x =为首项,以2为公差的等差数列. (2) 由(1)问有111(1)2n n x x =+-⋅,即121n x n =-∴2244(21)n n n n S r y x n ππππ====-, n n S S S T +⋅⋅⋅++=21])12(151311[222-++++=n π ≤])12()32(15313111[-⋅-++⋅+⋅+n n π =)]}121321()5131()311[(211{---++-+-+n n π =)]1211(211[--+n π< 【方法探究】在04年的湖南、上海、浙江卷, 05年的上海、浙江卷,06年的重庆、山东、湖北、浙江等卷都有数列与解析几何的综合问题.这类题综合性强,可以从数与形的两个角度考查理性思维能力以及函数与方程、数形结合、特殊化与一般化等数学思想.这类试题大多以点列的形式出现的,一个点的横,纵坐标分别是某两个不同数列的项,而这两个数列又由点所在的曲线建立联系,从而数列的代数特征与曲线的几何性质熔合.求解这类题目关键在于利用曲线性质建立数列的递推式,转化为代数问题求解.【技巧点拨】数列的判断与证明是数列的常考点,其求解过程常常从数列通项或递推式入手,通常有两种方法:①.定义法 证明数列每项与它的前项之差(比)是同一个常数,即证1n n a a +-=d ,d 为常数(1n na a +=q ,q 为不等于零的常数);②.中项法 证明每一项都是它的前一项和后一项的等差(比)中项,即证122n n n a a a ++=+(221++⋅=n n n a a a ).【调研3】在平面直角坐标系xOy中,有一个以(10,F和(2F的椭圆,设椭圆在第一象限的部分为曲线C ,动点P 在C 上,C 在点P 处的切线与x y 、轴的交点分别为A ,B ,且向量OM OA OB =+.求:(1)点M 的轨迹方程; (2)OM 的最小值.分析:求解本例可以根据以下步骤进行:①求立椭圆的方程,得到曲线C的方程; ②求过点P的切线方程,求出点A、B的坐标;③运用相关点法求点M 的轨迹方程; ④具体化OM ,转化为函数最值问题求解.解析:∵椭圆的焦点为(10,F、(2F,离心率为2∴椭圆方程可写为22221y x a b +=(0a b >>),其中223a b ⎧+==,解之得24a =,21b =∴曲线C的方程为y =,y '=设在曲线C上的动点00(,)P x y (0<x 0<1),则0y =∴过切点P的切线的斜率为0|x x k y ='==04x y -,过点P的切线的方程为 00004()x y x x y y =---+ ∵点,A B 是切线与x y 、轴的交点 ∴A01(,0)x ,B04(0,)y设点M为(,)x y ,则由OM →=OA → +OB →得01x x =,04y y =∵点00(,)P x y在曲线C:0y =∴点M 的轨迹方程为22141x y +=(1x >,2y >) (2)由(1)问可知2y =2411x -=2441x +- ∴2||OM =22x y +=22441x x ++-=224151x x -++-≥5=9 (当且仅当22411x x -=-,即1x =>时取等号)故当x =|OM →|的最小值为3. 【高考前沿】切线是曲线的一个重要几何性质,而导数是求曲线切线的最有力的工具,所以从切线角度与圆锥曲线综合考查,这是高考的一个新趋势,大大丰富了解析几何的研究内容,可能成为以后高考的一个新热点.导数也是求解最值问题的最常用工具,常与解析几何交汇,以最值问题的形式出现,是高考常考常新的热点.1.P 、Q 、M 、N 四点都在中心为坐标原点,离心率22=e ,左焦点)0,1(-F 的椭圆上,已知PF 与FQ 共线,MF 与FN 共线,0PF MF ⋅=,求四边形PMQN 的面积的最大值与最小值.2.设向量(1,0)i =,(0,1)j =,()a x m i y j =++,()b x m i y j =-+,且||||6a b +=,03m <<,0x >,y R ∈. (1)求动点(,)P x y 的轨迹方程;(2)已知点(1,0)A -,设直线1(2)3y x =-与点P 的轨迹交于B 、C 两点,问是否存在实数m ,使得13AB AC ⋅=?若存在,求出m 的值;若不存在,请说明理由. 3.已知曲线C :222(23)1k x k y k +-=+(k R ∈). (1)若曲线C 是双曲线,求k 的取值范围;(2)若曲线C 是焦点在x(3)对于满足条件(2)的双曲线,是否存在过点B (1,1)的直线l ,使直线l 与双曲线交于M ,N 两点且B 是线段MN 的中点?若存在,求出直线l 的方程;若不存在,请说明理由. 【参考答案】1.解析:∵椭圆的中心为坐标原点,离心率22=e ,左焦点)0,1(-F ∴椭圆方程为2212x y += ∵PF 与FQ 共线,MF 与FN 共线,0PF MF ⋅=∴直线PQ 和直线MN 都过椭圆的左焦点)0,1(-F不妨设PQ 的方程为1ky x =+,设11(,)P x y ,11(,)Q x y ,则12y y +22112ky x x y =+⎧⎪⎨+=⎪⎩ ∴22(2)210k y ky +--= ∴12222k y y k -+=-+,12212y y k -⋅=+∴12PQ y y =-=22)2k k +==+ (1)当0k ≠时,MN 的斜率为1k-,同理可得221)12k MN k +=+故四边形面积222214(2)12252k k S PQ MN k k ++==++=222212(5)2252k k k k ++-++=222252k k-++ ∵222529k k ++≥ ∴222202952k k-≤-<++,即1629S ≤<(2) 当0k =时,MN 为椭圆的长轴,MN =PQ =∴122S PQ MN ==综合(1) (2)知,四边形PQMN 面积的最大值为2,最小值为169.2.解析:(1)∵(1,0)i =,(0,1)j =,||||6a b +=6=,即为点(,)P x y 到点(,0)m -与到点(,0)m 距离之和为6记1(,0)F m -,2(,0)F m (03m <<),则12||26F F m =<∴1212||||6||PF PF F F +=> 又∵0x > ∴P 点的轨迹是以1F ,2F 为焦点的椭圆的右半部分.∵26a =,22c m =∴22229b a c m =-=-∴所求轨迹方程为222199x y m +=-(0,03x m ><<) (2)设11(,)B x y =,22(,)C x y = ∴11(1,)AB x y =+,22(1,)AC x y =+∴121212·()1AB AC x x x x y y =++++而12y y ⋅=1211(2)(2)33x x -⋅-=12121[2()4]9x x x x -++∴AB AC ⋅=121212121()1[-2()4]9x x x x x x x x ++++++=12121[107()13]9x x x x +++若存在实数m ,使得1·3AB AC =成立,则1212107()13=0x x x x +++………………………①高考数学第二轮复习 压轴题21 由⎪⎪⎩⎪⎪⎨⎧>=-+=0)(1992),-(31y 222x m y x x 得222(1)4(977)0m x x m --+-=…………………………② ∵0x > ∴22164(1)(977)0m m =--⋅->△,2124010x x m +=>-,21229-77010 m x x m =>- ∴2321940m =< 此时虽满足△>0,但21229-7728893080010 4040m x x m ==-<- ∴不存在符合题意的实数m ,使得1·3AB AC = 3.解析:(1)当1k =-、0k =或32k =时,曲线C 表示直线. 当1k ≠-且0k ≠且32k ≠时,曲线C 可化为22111223x y k k k k +=++-………………(1) 方程(1)表示椭圆的充要条件是110223k k k k ++⋅<- ∴解之得302k << (2)∵ 曲线C 是焦点在x∴212k a k +=,2123k b k +=--,从而有211223312k k k k e k k++--==+ ∴ 1k = 故曲线C 的方程为22112x y -= (3)假设存在直线l ,设11(,)M x y ,22(,)N x y ,则有⎪⎪⎩⎪⎪⎨⎧=-=-12112122222121y x y x ∴0)(2122212221=---y y x x ,即121212122()()()()x x x x y y y y -+=-+ ∵B 是线段MN 的中点 ∴221=+x x ,221=+y y∴ 直线l 的斜率22121=--=x x y y k ,即直线l :21y x =- 又直线l 与双曲线交于MN 两点,由⎪⎩⎪⎨⎧-==-1212122x y y x 得03422=+-x x , 此时0832416<-=⨯⨯-=∆,方程无实数根.即直线l 与双曲线12122=-y x 无交点. 故不存在满足条件的直线l .点评:本题易忽视直线m 与双曲线交于MN 两点的隐含条件0>∆,而得出存在直线l 为12-=x y 的错误结论.。
2016年高考冲刺卷(新课标Ⅱ卷)数学(文)-- 05第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.1.已知集合{| lg(1)0}A x x =-≤,={|13}B x x -≤≤,则A B = ( ) A .[1,3]- B .[1,2]-C .(1,3]D .(1,2]2.若i2i ia b -=+,其中,a b R ∈,i 是虚数单位,则b a +的值( )A .-3B .-1C .1D .33.某学校有男学生400名,女学生600名.为了解男女学生在学习兴趣与业余爱好方面是否存在显 著差异,拟从全体学生中抽取男学生40名,女学生60名进行调查,则这种抽样方法是( ) A .抽签法B .随机数法C .系统抽样法D .分层抽样法4.若平面向量a ,b 满足2=a ,2=b ,()-⊥a b a ,则a 与b 的夹角是( ) A .125πB .3πC .6πD .4π 5.在等比数列{}n a 中,1n n a a +<,286a a =,465a a +=,则46a a 等于( ) A .56B .65C .23D .326.已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为( )A .1B .2C .3D .47.经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是( ) A .10x y ++= B .10x y --=C .10x y +-=D .10x y -+=8.执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是( ) A .k >7B .k >6C .k >5D .k >49. 已知a b >,且1ab =,则22a b a b+-的最小值是( )A. 2B. 22C. 3D.3210.面积为332的正六边形的六个顶点都在球O 的球面上,球心O 到正六边形所在平面的距离为 22,记球O 的体积为V ,球O 的表面积为S ,则VS的值是( ) A.2B.1C.3D.211.如下图,现有一个计时沙漏,开始时盛满沙子,沙子从上部均匀下漏,经过5分钟漏完,H 是12. 已知函数()2()e x f x x ax b =++,当1b <时,函数()f x 在(),2-∞-,()1,+∞上均为增函数,则2a b a +-的取值范围是( ) A .22,3⎛⎤- ⎥⎝⎦B .1,23⎡⎫-⎪⎢⎣⎭C .2,3⎛⎤-∞ ⎥⎝⎦D .2,23⎡⎤-⎢⎥⎣⎦第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若函数26,2()3log ,2x x f x x x -+≤⎧=⎨+>⎩的值域为 .14.等差数列}{n a 中,38a =,720a =,若数列}1{1+n n a a 的前n 项和为254,则n 的值为_________. 15.已知抛物线x y 82=的准线过双曲线)0,0(12222>>=-b a by a x 的左焦点,且被双曲线截得的线段长为6,则双曲线的渐近线方程为_______.16.已知函数32()33f x x ax bx =++在2x =处有极值,其图象在1x =处的切线平行于直线 6250x y ++=,则()f x 的极大值与极小值之差为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,且8a b c ++=.(1)若52,2a b ==,求cos C 的值; (2)若22sin cossin cos 2sin 2B A B C +=,且ABC ∆的面积9sin 2S C =,求a 和b 的值.18.(本小题满分12分) 某校对高一年级学生寒假参加社区服务的次数进行了统计,随机抽取了M 名学生作为样本,得到这M 名学生参加社区服务的次数,根据此数据作出了频率分布统计表和频率分布直方图如下:(1)求表中n ,p 的值和频率分布直方图中a 的值,并根据频率分布直方图估计该校高一学生寒假参加社区服 务次数的中位数;(2)如果用分层抽样的方法从样本服务次数在[10,15)和[25,30)的人中共抽取6人,再从这6人中选2人, 求2人服务次数都在[10,15)的概率.19.(本小题满分12分)平面⊥PA D 平面A B C D ,ABCD 为正方形,PAD ∆是直角三角形,且2==AD PA ,G F E ,,分别是 线段CD PD PA ,,的中点.(1)求证:PB //平面EFG ;(2)在线段CD 上是否存在一点Q ,使得点A 到平面EFQ 的距离为54,若存在,求出DQ 的值;若不 存在,请说明理由.20.(本小题满分12分) 已知圆:M 22230x y x +-=的圆心是椭圆:C 22221x y a b+=(0a b >>)的右焦点,过椭圆的左焦点和上顶点的直线与圆M 相切. (1)求椭圆C 的方程;(2)椭圆C 上有两点()11,A x y 、()22,B x y ,OA 、OB 斜率之积为14-,求2212x x +的值.21. (本小题满分12分) 已知函数()e sin x f x x =,其中x R ∈,e 2.71828= 为自然对数的底数. (1)求函数()f x 的单调区间;(2)当π[0,]2x ∈时,()f x kx ≥,求实数k 的取值范围.请考生在第(22)、(23)、(24)三题中任选一题作答. (本题满分10分) 选修4-4:坐标系与参数方程23.在直角坐标系xOy 中,曲线C 的参数方程为:13cos 3sin x y ϕϕ⎧=+⎪⎨=⎪⎩.(ϕ是参数,0ϕπ≤≤).以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程; (2)直线1l 的极坐标方程是033)3sin(2=++πθρ,直线)(3:2R l ∈=ρπθ与曲线C 的交点为P ,与直线1l 的交点为Q ,求线段PQ 的长.24.(本题满分10分)选修4-5:不等式选讲 函数()12f x x x a =+++-.(1)若5a =,求函数()f x 的定义域A ;(2)设{}|12B x x =-<<,当实数,(())R a b B A ∈ ð时,证明:124a b ab +<+.。
高考数学压轴题系列训练一(含答案及解析详解)1.(12分)已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(Ⅰ)求这三条曲线的方程;(Ⅱ)已知动直线l 过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由.解:(Ⅰ)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p =24y x ∴= 抛物线方程为: ………………………………………………(1分)由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1…………………(2分) 对于椭圆,1222a MF MF =++(222222211321a ab ac ∴=∴=+=+∴=-=+∴= 椭圆方程为:………………………………(4分)对于双曲线,1222a MF MF '=-=2222221321a abc a '∴=-'∴=-'''∴=-=∴= 双曲线方程为:………………………………(6分)(Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE 中点为H令()11113,,,22x y A x y +⎛⎫∴ ⎪⎝⎭ C ………………………………………………(7分)()1112312322DC AP x CH a x a ∴==+=-=-+()()()2222221112121132344-23246222DH DC CH x y x a a x a aa DH DE DH l x ⎡⎤⎡⎤∴=-=-+--+⎣⎦⎣⎦=-+==-+=∴=='= 当时,为定值; 此时的方程为: …………(12分)2.(14分)已知正项数列{}n a 中,16a =,点(n n A a 在抛物线21y x =+上;数列{}n b 中,点(),n n B n b 在过点()0,1,以方向向量为()1,2的直线上.(Ⅰ)求数列{}{},n n a b 的通项公式;(Ⅱ)若()()()n n a f n b ⎧⎪=⎨⎪⎩, n 为奇数, n 为偶数,问是否存在k N ∈,使()()274f k f k +=成立,若存在,求出k 值;若不存在,说明理由; (Ⅲ)对任意正整数n ,不等式1120111111n n n ab b b +≤⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭成立,求正数a 的取值范围.解:(Ⅰ)将点(n n A a 代入21y x =+中得()11111115:21,21n n n n n n a a a a d a a n n l y x b n ++=+∴-==∴=+-⋅=+=+∴=+ 直线 …………………………………………(4分)(Ⅱ)()()()521n f n n ⎧+⎪=⎨+⎪⎩, n 为奇数, n 为偶数………………………………(5分)()()()()()()27274275421,42735227145,24k k f k f k k k k k k k k k k ++=∴++=+∴=+∴++=+∴==当为偶数时,为奇数, 当为奇数时,为偶数, 舍去综上,存在唯一的符合条件。
2021年高考数学压轴卷及答案解析——导数目录2021年高考数学导数压轴卷............. 错误!未定义书签。
一.解答题(共30小题)............ 错误!未定义书签。
2021年高考数学导数压轴卷答案解析 ..... 错误!未定义书签。
一.解答题(共30小题)............ 错误!未定义书签。
2021年高考数学导数压轴卷一.解答题(共30小题)1.(2021•株洲一模)已知函数f(x)=alnx﹣ax﹣3(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)假设函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,关于任意的t∈[1,2],函数在区间(t,3)上总不是单调函数,求m的取值范围;(Ⅲ)求证:.2.(2021•北京校级模拟)已知函数f(x)=x2+ax﹣lnx,a∈R.(1)假设函数f(x)在[1,2]上是减函数,求实数a的取值范围;(2)令g(x)=f(x)﹣x2,是不是存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,假设存在,求出a的值;假设不存在,说明理由;(3)当x∈(0,e]时,证明:.3.(2021•菏泽一模)设函数f(x)=lnx﹣﹣bx(Ⅰ)当a=b=时,求函数f(x)的单调区间;(Ⅱ)令F(x)=f(x)+<x≤3),其图象上任意一点P(x0,y0)处切线的斜率k≤恒成立,求实数a的取值范围;(Ⅲ)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.4.(2021•秦州区校级一模)设函数f(x)=(1+x)2﹣2ln(1+x)(1)假设关于x的不等式f(x)﹣m≥0在[0,e﹣1]有实数解,求实数m的取值范围.(2)设g(x)=f(x)﹣x2﹣1,假设关于x的方程g(x)=p至少有一个解,求p的最小值.(3)证明不等式:(n∈N*).5.(2021•陕西校级二模)关于函数f(x)和g(x),假设存在常数k,m,关于任意x∈R,不等式f(x)≥kx+m≥g(x)都成立,那么称直线y=kx+m是函数f(x),g(x)的分界限.已知函数f(x)=e x(ax+1)(e为自然对数的底,a∈R 为常数).(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)设a=1,试探讨函数f(x)与函数g(x)=﹣x2+2x+1是不是存在“分界限”?假设存在,求出分界限方程;假设不存在,试说明理由.6.(2021•安徽模拟)已知函数(a为实常数).(Ⅰ)当a=1时,求函数g(x)=f(x)﹣2x的单调区间;(Ⅱ)假设函数f(x)在区间(0,2)上无极值,求a的取值范围;(Ⅲ)已知n∈N*且n≥3,求证:.7.(2021•黄冈模拟)已知函数f(x)=ax,g(x)=lnx,其中a∈R.(Ⅰ)假设函数F(x)=f(x)﹣g(x)有极值点1,求a的值;(Ⅱ)假设函数G(x)=f[sin(1﹣x)]+g(x)在区间(0,1)上为增函数,求a的取值范围;(Ⅲ)证明:.8.(2021•衡水三模)已知函数f(x)=x﹣alnx,g(x)=﹣,(a∈R).(Ⅰ)假设a=1,求函数f(x)的极值;(Ⅱ)设函数h(x)=f(x)﹣g(x),求函数h(x)的单调区间;(Ⅲ)假设在[1,e](e=…)上存在一点x0,使得f(x0)<g(x0)成立,求a的取值范围.9.(2021•陕西模拟)已知函数.(a为常数,a>0)(Ⅰ)假设是函数f(x)的一个极值点,求a的值;(Ⅱ)求证:当0<a≤2时,f(x)在上是增函数;(Ⅲ)假设对任意的a∈(1,2),总存在,使不等式f(x0)>m(1﹣a2)成立,求实数m的取值范围.10.(2021•横峰县校级一模)已知函数f(x)=alnx﹣ax﹣3(a∈R,a≠0).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)假设函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为,问:m在什么范围取值时,关于任意的t∈[1,2],函数在区间[t,3]上总存在极值?(Ⅲ)当a=2时,设函数,假设在区间[1,e]上至少存在一个x0,使得h(x0)>f(x0)成立,试求实数p的取值范围.11.(2021•凤凰县校级模拟)已知函数f(x)=x3﹣ax2﹣3x(1)假设f(x)在区间[1,+∞)上是增函数,求实数a的取值范围;(2)假设x=﹣是f(x)的一个极值点,求f(x)在[1,a]上的最大值;(3)在(2)的条件下,是不是存在实数b,使得函数g(x)=bx的图象与函数f(x)的图象恰有3个交点,假设存在,请求出实数b的取值范围;假设不存在,试说明理由.12.(2021•路南区校级模拟)已知函数f(x)=x3﹣(2a+1)x2+(a2+a)x.(Ⅰ)假设f(x)在x=1处取得极大值,求实数a的值;(Ⅱ)假设∀m∈R,直线y=kx+m都不是曲线y=f(x)的切线,求k的取值范围;(Ⅲ)假设a>﹣1,求f(x)在区间[0,1]上的最大值.13.(2021•张家港市校级模拟)已知函数f(x)=x3+bx2+cx+d,设曲线y=f(x)在与x轴交点处的切线为y=4x﹣12,f′(x)为f(x)的导函数,知足f′(2﹣x)=f′(x).(Ⅰ)设g(x)=x,m>0,求函数g(x)在[0,m]上的最大值;(Ⅱ)设h(x)=lnf′(x),假设对一切x∈[0,1],不等式h(x+1﹣t)<h(2x+2)恒成立,求实数t的取值范围.14.(2021•安徽三模)已知函数在点(﹣1,f(﹣1))的切线方程为x+y+3=0.(Ⅰ)求函数f(x)的解析式;(Ⅱ)设g(x)=lnx,求证:g(x)≥f(x)在x∈[1,+∞)上恒成立;(Ⅲ)已知0<a<b,求证:.15.(2021秋•仙游县校级期中)已知函数f(x)=x+,h(x)=.(Ⅰ)设函数F(x)=f(x)﹣h(x),求F(x)的单调区间与极值;(Ⅱ)设a∈R,解关于x的方程log4[f(x﹣1)﹣]=log2h(a﹣x)﹣log2h(4﹣x);(Ⅲ)试比较f(100)h(100)﹣与的大小.16.(2021•遵义二模)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.17.(2021秋•大兴区校级月考)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知<<,估量ln2的近似值(精准到).18.(2021•武汉模拟)己知函数f(x)=x2e﹣x(Ⅰ)求f(x)的极小值和极大值;(Ⅱ)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.19.(2021•马山县校级模拟)已知函数f(x)=x3+3ax2+(3﹣6a)x+12a﹣4(a∈R)(Ⅰ)证明:曲线y=f(x)在x=0的切线过点(2,2);(Ⅱ)假设f(x)在x=x0处取得极小值,x0∈(1,3),求a的取值范围.20.(2021春•丰润区期中)已知函数f(x)=x3+3ax2+3x+1.(Ⅰ)求a=时,讨论f(x)的单调性;(Ⅱ)假设x∈[2,+∞)时,f(x)≥0,求a的取值范围.21.(2021•浙江)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)假设f(x)在[﹣1,1]上的最大值和最小值别离记为M(a),m(a),求M(a)﹣m (a);(Ⅱ)设b∈R,假设[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.22.(2021•河西区三模)已知函数f(x)=+cx+d(a,c,d∈R)知足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.(1)求a,c,d的值;(2)假设,解不等式f′(x)+h(x)<0;(3)是不是存在实数m,使函数g(x)=f′(x)﹣mx在区间[m,m+2]上有最小值﹣5?假设存在,请求出实数m的值;假设不存在,请说明理由.23.(2021•四川模拟)已知函数f(x)=lnx+x2.(Ⅰ)假设函数g(x)=f(x)﹣ax在其概念域内为增函数,求实数a的取值范围;(Ⅱ)在(Ⅰ)的条件下,假设a>1,h(x)=e3x﹣3ae x x∈[0,ln2],求h(x)的极小值;(Ⅲ)设F(x)=2f(x)﹣3x2﹣kx(k∈R),假设函数F(x)存在两个零点m,n(0<m<n),且2x0=m+n.问:函数F(x)在点(x0,F(x0))处的切线可否平行于x轴?假设能,求出该切线方程;假设不能,请说明理由.24.(2021•天津三模)已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)=xe1﹣x.(a∈R,e为自然对数的底数)(Ⅰ)当a=1时,求f(x)的单调区间;(Ⅱ)假设函数f(x)在上无零点,求a的最小值;(Ⅲ)假设对任意给定的x0∈(0,e],在(0,e]上总存在两个不同的x i(i=1,2),使得f(x i)=g(x0)成立,求a的取值范围.25.(2021•河西区一模)已知函数g(x)=,f(x)=g(x)﹣ax.(1)求函数g(x)的单调区间;(2)假设函数f(x)在(1,+∞)上是减函数,求实数a的最小值;(3)假设存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a,求实数a的取值范围.26.(2021•凉州区二模)已知函数f(x)=plnx+(p﹣1)x2+1.(1)讨论函数f(x)的单调性;(2)当P=1时,f(x)≤kx恒成立,求实数k的取值范围;(3)证明:1n(n+1)<1+…+(n∈N+).27.(2021•蚌埠二模)已知函数为大于零的常数.(1)假设函数f(x)在区间[1,+∞)内调递增,求a的取值范围;(2)求函数f(x)在区间[1,2]上的最小值;(3)求证:关于任意的成立.28.(2021•高州市模拟)设函数f(x)=(x﹣1)2+blnx,其中b为常数.(1)当时,判定函数f(x)在概念域上的单调性;(2)假设函数f(x)的有极值点,求b的取值范围及f(x)的极值点;(3)求证对任意不小于3的正整数n,不等式都成立.29.(2021•甘肃二模)已知函数f(x)=+lnx﹣2,g(x)=lnx+2x.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由.30.(2021•吉林三模)已知函数f(x)=lnx﹣,g(x)=f(x)+ax﹣6lnx,其中a∈R(1)当a=1时,判定f(x)的单调性;(2)假设g(x)在其概念域内为增函数,求正实数a的取值范围;(3)设函数h(x)=x2﹣mx+4,当a=2时,假设∃x1∈(0,1),∀x2∈[1,2],总有g(x1)≥h (x2)成立,求实数m的取值范围.2021年高考数学导数压轴卷答案解析一.解答题(共30小题)1.(2021•株洲一模)已知函数f(x)=alnx﹣ax﹣3(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)假设函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,关于任意的t∈[1,2],函数在区间(t,3)上总不是单调函数,求m的取值范围;(Ⅲ)求证:.考点:利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.专题:压轴题.分析:利用导数求函数的单调区间的步骤是①求导函数f′(x);②解f′(x)>0(或<0);③得到函数的增区间(或减区间),对于本题的(1)在求单调区间时要注意函数的定义域以及对参数a的讨论情况;(2)点(2,f(2))处的切线的倾斜角为45°,即切线斜率为1,即f'(2)=1,可求a 值,代入得g(x)的解析式,由t∈[1,2],且g(x)在区间(t,3)上总不是单调函数可知:,于是可求m的范围.(3)是近年来高考考查的热点问题,即与函数结合证明不等式问题,常用的解题思路是利用前面的结论构造函数,利用函数的单调性,对于函数取单调区间上的正整数自变量n 有某些结论成立,进而解答出这类不等式问题的解.解答:解:(Ⅰ)(2分)当a>0时,f(x)的单调增区间为(0,1],减区间为[1,+∞);当a<0时,f(x)的单调增区间为[1,+∞),减区间为(0,1];当a=0时,f(x)不是单调函数(4分)(Ⅱ)得a=﹣2,f(x)=﹣2lnx+2x﹣3∴,∴g'(x)=3x2+(m+4)x﹣2(6分)∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=﹣2 ∴由题意知:对于任意的t∈[1,2],g′(t)<0恒成立,所以有:,∴(10分)(Ⅲ)令a=﹣1此时f(x)=﹣lnx+x﹣3,所以f(1)=﹣2,由(Ⅰ)知f(x)=﹣lnx+x﹣3在(1,+∞)上单调递增,∴当x∈(1,+∞)时f(x)>f(1),即﹣lnx+x﹣1>0,∴lnx<x﹣1对一切x∈(1,+∞)成立,(12分)∵n≥2,n∈N*,则有0<lnn<n﹣1,∴∴点评:本题考查利用函数的导数来求函数的单调区间,已知函数曲线上一点求曲线的切线方程即对函数导数的几何意义的考查,考查求导公式的掌握情况.含参数的数学问题的处理,构造函数求解证明不等式问题.2.(2021•北京校级模拟)已知函数f(x)=x2+ax﹣lnx,a∈R.(1)假设函数f(x)在[1,2]上是减函数,求实数a的取值范围;(2)令g(x)=f(x)﹣x2,是不是存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,假设存在,求出a的值;假设不存在,说明理由;(3)当x∈(0,e]时,证明:.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:计算题;综合题;压轴题.分析:(1)先对函数f(x)进行求导,根据函数f(x)在[1,2]上是减函数可得到其导函数在[1,2]上小于等于0应该恒成立,再结合二次函数的性质可求得a的范围.(2)先假设存在,然后对函数g(x)进行求导,再对a的值分情况讨论函数g(x)在(0,e]上的单调性和最小值取得,可知当a=e2能够保证当x∈(0,e]时g(x)有最小值3.(3)令F(x)=e2x﹣lnx结合(2)中知F(x)的最小值为3,再令并求导,再由导函数在0<x≤e大于等于0可判断出函数ϕ(x)在(0,e]上单调递增,从而可求得最大值也为3,即有成立,即成立.解答:解:(1)在[1,2]上恒成立,令h(x)=2x2+ax﹣1,有得,得(2)假设存在实数a,使g(x)=ax﹣lnx(x∈(0,e])有最小值3,=①当a≤0时,g(x)在(0,e]上单调递减,g(x)min=g(e)=ae﹣1=3,(舍去),②当时,g(x)在上单调递减,在上单调递增∴,a=e2,满足条件.③当时,g(x)在(0,e]上单调递减,g(x)min=g(e)=ae﹣1=3,(舍去),综上,存在实数a=e2,使得当x∈(0,e]时g(x)有最小值3.(3)令F(x)=e2x﹣lnx,由(2)知,F(x)min=3.令,,当0<x≤e时,ϕ'(x)≥0,φ(x)在(0,e]上单调递增∴∴,即>(x+1)lnx.点评:本题主要考查导数的运算和函数的单调性与其导函数的正负之间的关系,当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.3.(2021•菏泽一模)设函数f(x)=lnx﹣﹣bx(Ⅰ)当a=b=时,求函数f(x)的单调区间;(Ⅱ)令F(x)=f(x)+<x≤3),其图象上任意一点P(x0,y0)处切线的斜率k≤恒成立,求实数a的取值范围;(Ⅲ)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.考利用导数研究函数的单调性;根的存在性及根的个数判断;利用导数研究曲线上某点切点:线方程.专题:计算题;压轴题.分析:(I)先求导数fˊ(x)然后在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,fˊ(x)>0的区间为单调增区间,fˊ(x)<0的区间为单调减区间.(II)先构造函数F(x)再由以其图象上任意一点P(x0,y0)为切点的切线的斜率k≤恒成立,知导函数≤恒成立,再转化为所以a≥(﹣,x02+x0)max求解.(III)先把程f(x)=mx有唯一实数解,转化为有唯一实数解,再利用单调函数求解.解答:解:(Ⅰ)依题意,知f(x)的定义域为(0,+∞).(1分)当a=b=时,f(x)=lnx﹣x2﹣x,f′(x)=﹣x﹣=.(2分)令f′(x)=0,解得x=1.当0<x<1时,f′(x)>0,此时f(x)单调递增;当x>1时,f′(x)<0,此时f(x)单调递减.(3分)所以函数f(x)的单调增区间(0,1),函数f(x)的单调减区间(1,+∞).(4分)(Ⅱ)F(x)=lnx+,x∈(0,3],所以k=F′(x0)=≤,在x0∈(0,3]上恒成立,(6分)所以a≥(﹣x02+x0)max,x0∈(0,3](7分)当x0=1时,﹣x02+x0取得最大值.所以a≥.(9分)(Ⅲ)当a=0,b=﹣1时,f(x)=lnx+x,因为方程f(x)=mx在区间[1,e2]内有唯一实数解,所以lnx+x=mx有唯一实数解.∴,设g(x)=,则g′(x)=.令g′(x)>0,得0<x<e;g′(x)<0,得x>e,∴g(x)在区间[1,e]上是增函数,在区间[e,e2]上是减函数,g(1)=1,g(e2)=1+=1+,g(e)=1+,所以m=1+,或1≤m<1+.点评:本题主要考查函数的单调性、极值、不等式、方程的解等基本知识,同时考查运用导数研究函数性质的方法,分类与整合及化归与转化等数学思想.4.(2021•秦州区校级一模)设函数f(x)=(1+x)2﹣2ln(1+x)(1)假设关于x的不等式f(x)﹣m≥0在[0,e﹣1]有实数解,求实数m的取值范围.(2)设g(x)=f(x)﹣x2﹣1,假设关于x的方程g(x)=p至少有一个解,求p的最小值.(3)证明不等式:(n∈N*).考点:利用导数研究函数的单调性;函数恒成立问题.专题:综合题;压轴题;导数的概念及应用.分析:(1)依题意得f(x)max≥m,x∈[0,e﹣1],求导数,求得函数的单调性,从而可得函数的最大值;(2)求导函数,求得函数的单调性与最值,从而可得p的最小值;(3)先证明ln(1+x)≤x,令,则x∈(0,1)代入上面不等式得:,从而可得.利用叠加法可得结论.解答:(1)解:依题意得f(x)max≥m,x∈[0,e﹣1]∵,而函数f(x)的定义域为(﹣1,+∞)∴f(x)在(﹣1,0)上为减函数,在(0,+∞)上为增函数,∴f(x)在[0,e﹣1]上为增函数,∴∴实数m的取值范围为m≤e2﹣2(2)解:g(x)=f(x)﹣x2﹣1=2x﹣2ln(1+x)=2[x﹣ln(1+x)],∴显然,函数g(x)在(﹣1,0)上为减函数,在(0,+∞)上为增函数∴函数g(x)的最小值为g(0)=0∴要使方程g(x)=p至少有一个解,则p≥0,即p的最小值为0(3)证明:由(2)可知:g(x)=2[x﹣ln(1+x)]≥0在(﹣1,+∞)上恒成立所以ln(1+x)≤x,当且仅当x=0时等号成立令,则x∈(0,1)代入上面不等式得:即,即所以ln2﹣ln1<1,,,…,将以上n个等式相加即可得到:点评:本题考查导数知识的运用,考查函数的单调性与最值,考查不等式的证明,考查恒成立问题,属于中档题.5.(2021•陕西校级二模)关于函数f(x)和g(x),假设存在常数k,m,关于任意x∈R,不等式f(x)≥kx+m≥g(x)都成立,那么称直线y=kx+m是函数f(x),g(x)的分界限.已知函数f(x)=e x(ax+1)(e为自然对数的底,a∈R 为常数).(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)设a=1,试探讨函数f(x)与函数g(x)=﹣x2+2x+1是不是存在“分界限”?假设存在,求出分界限方程;假设不存在,试说明理由.考点:利用导数研究函数的单调性;函数单调性的判断与证明.专题:计算题;压轴题;新定义.分析:(Ⅰ)f′(x)=e x(ax+1+a),当a>0时,f′(x)>0⇔函数f(x)在区间(﹣1﹣,+∞)上是增函数,在区间(﹣∞,﹣1﹣)上是减函数;a=0时,f′(x)>0,函数f(x)是区间(﹣∞,+∞)上的增函数;当a<0时,f′(x)>0⇔ax>﹣a﹣1,函数f(x)在区间(﹣∞,﹣1﹣)上是增函数,在区间(﹣1﹣,+∞)上是减函数.(Ⅱ)若存在,则e x(x+1)≥kx+m≥﹣x2+2x+1恒成立,令x=0,得m=1,因此x2+(k ﹣2)x≥0恒成立,由此及彼能推导出函数f(x)与函数g(x)=﹣x2+2x+1存在“分界线”.解答:解:(Ⅰ)f′(x)=e x(ax+1+a),(2分)当a>0时,f′(x)>0⇔ax>﹣a﹣1,即x>﹣1﹣,函数f(x)在区间(﹣1﹣,+∞)上是增函数,在区间(﹣∞,﹣1﹣)上是减函数;(3分)当a=0时,f′(x)>0,函数f(x)是区间(﹣∞,+∞)上的增函数;(5分)当a<0时,f′(x)>0⇔ax>﹣a﹣1,即x<﹣1﹣,函数f(x)在区间(﹣∞,﹣1﹣)上是增函数,在区间(﹣1﹣,+∞)上是减函数.(7分)(Ⅱ)若存在,则e x(x+1)≥kx+m≥﹣x2+2x+1恒成立,令x=0,则1≥m≥1,所以m=1,(9分)因此:kx+1≥﹣x2+2x+1恒成立,即x2+(k﹣2)x≥0恒成立,由△≤0得到:k=2,现在只要判断e x(x+1)≥2x+1是否恒成立,(11分)设∅(x)=e x(x+1)﹣(2x+1),因为:∅′(x)=e x(x+2)﹣2,当x>0时,e x>1,x+2>2,∅′(x)>0,当x<0时,e x(x+2)<2e x<2,∅′(x)<0,所以∅(x)≥∅(0)=0,即e x(x+1)≥2x+1恒成立,所以函数f(x)与函数g(x)=﹣x2+2x+1存在“分界线”.方程为y=2x+1.(14分)点评:本题考查导数函数单调性中的应用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地运用导数的性质进行求解.6.(2021•安徽模拟)已知函数(a为实常数).(Ⅰ)当a=1时,求函数g(x)=f(x)﹣2x的单调区间;(Ⅱ)假设函数f(x)在区间(0,2)上无极值,求a的取值范围;(Ⅲ)已知n∈N*且n≥3,求证:.考点:函数在某点取得极值的条件;利用导数研究函数的单调性;数列与不等式的综合.专题:综合题;压轴题;导数的综合应用.分析:(Ⅰ)求出函数定义域,当a=1时求出g′(x),只需解不等式g′(x)>0,g′(x)<0即可.(Ⅱ)函数f(x)在区间(0,2)上无极值,则f′(x)≥0或f′(x)≤0,由此即可求出a 的取值范围.(Ⅲ)由(Ⅱ)知,当a=1时,f(x)在(0,+∞)上的最大值为f(1)=0,得f(x)=≤0,即ln,令x=适当变形即可证明.解答:解:(I)当a=1时,,其定义域为(0,+∞),g′(x)=﹣2+=,,令g′(x)>0,并结合定义域知;令g′(x)<0,并结合定义域知;故g(x)的单调增区间为(0,);单调减区间为.(II),(1)当f′(x)≤0即a≤x在x∈(0,2)上恒成立时,a≤0,此时f(x)在(0,2)上单调递减,无极值;(2)当f′(x)≥0即a≥x在x∈(0,2)上恒成立时,a≥2,此时f(x)在(0,2)上单调递增,无极值.综上所述,a的取值范围为(﹣∞,0]∪[2,+∞).(Ⅲ)由(Ⅱ)知,当a=1时,f′(x)=,当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,∴f(x)=在x=1处取得最大值0.即f(x)=1﹣,∴,令x=(0<x<1),则,即ln(n+1)﹣lnn,∴ln=ln(n+1)﹣ln3=[ln(n+1)﹣lnn]+[lnn﹣ln(n﹣1)]+…+(ln4﹣ln3)<.故.点评:本题考查了利用导数研究函数的单调性、利用导数求函数最值问题,考查了运用知识解决问题的能力.7.(2021•黄冈模拟)已知函数f(x)=ax,g(x)=lnx,其中a∈R.(Ⅰ)假设函数F(x)=f(x)﹣g(x)有极值点1,求a的值;(Ⅱ)假设函数G(x)=f[sin(1﹣x)]+g(x)在区间(0,1)上为增函数,求a的取值范围;(Ⅲ)证明:.考点:函数在某点取得极值的条件;利用导数求闭区间上函数的最值.专题:计算题;压轴题;导数的综合应用.分析:(Ⅰ)根据已知条件函数F(x)=f(x)﹣g(x)有极值点1,可得F′(1)=0,得出等式,求出a值;(Ⅱ)因为函数G(x)=f[sin(1﹣x)]+g(x)在区间(0,1)上为增函数,可以对其进行转化,可以转化为G′(x)>0在(0,1)上恒成立,利用常数分离法进行求解;(Ⅲ)这个证明题可以利用一个恒等式,sinx<x,然后对从第三项开始进行放缩,然后进行证明;解答:解:(Ⅰ)∵函数f(x)=ax,g(x)=lnx,其中a∈R.∴F(x)=ax﹣lnx,则F′(x)=a﹣,∵函数F(x)=f(x)﹣g(x)有极值点1,∴F′(1)=0,∴a﹣1=0,解得a=1;(Ⅱ)∵函数G(x)=f[sin(1﹣x)]+g(x)=asin(1﹣x)+lnx,∴G′(x)=acos(1﹣x)×(﹣1)+,只要G′(x)在区间(0,1)上大于等于0,∴G′(x)=acos(1﹣x)×(﹣1)+≥0,∴a≤,求的最小值即可,求h(x)=xcos(1﹣x)的最大值即可,0<1﹣x<1,∵h′(x)=cos(1﹣x)+xsin(1﹣x)>0,∴h(x)在(0,1)增函数,h(x)<h(1)=1,∴的最小值为1,∴a≤1;(Ⅲ)∵0<<1,∵sinx<x在x∈(0,1)上恒成立,∴=sin+sin+…+sin≤++…+<+++++…+=﹣<<ln2,∴<ln2;点评:第一问利用导数可以很容易解决,第二问利用了常数分离法进行证明,第三问需要进行放缩证明,主要利用sinx<x进行证明,此题难度比较大,计算量比较大;8.(2021•衡水三模)已知函数f(x)=x﹣alnx,g(x)=﹣,(a∈R).(Ⅰ)假设a=1,求函数f(x)的极值;(Ⅱ)设函数h(x)=f(x)﹣g(x),求函数h(x)的单调区间;(Ⅲ)假设在[1,e](e=…)上存在一点x0,使得f(x0)<g(x0)成立,求a的取值范围.考点:利用导数研究函数的极值;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:计算题;压轴题;分类讨论;转化思想.分析:(Ⅰ)先求出其导函数,让其大于0求出增区间,小于0求出减区间即可得到函数的单调区间进而求出函数f(x)的极值;(Ⅱ)先求出函数h(x)的导函数,分情况讨论让其大于0求出增区间,小于0求出减区间即可得到函数的单调区间;(Ⅲ)先把f(x0)<g(x0)成立转化为h(x0)<0,即函数在[1,e]上的最小值小于零;再结合(Ⅱ)的结论分情况讨论求出其最小值即可求出a的取值范围.解答:解:(Ⅰ)f(x)的定义域为(0,+∞),(1分)当a=1时,f(x)=x﹣lnx,,(2分)x (0,1) 1 (1,+∞)f'(x)﹣0 +f(x)极小(3分)所以f(x)在x=1处取得极小值1.(4分)(Ⅱ),(6分)①当a+1>0时,即a>﹣1时,在(0,1+a)上h'(x)<0,在(1+a,+∞)上h'(x)>0,所以h(x)在(0,1+a)上单调递减,在(1+a,+∞)上单调递增;(7分)②当1+a≤0,即a≤﹣1时,在(0,+∞)上h'(x)>0,所以,函数h(x)在(0,+∞)上单调递增.(8分)(III)在[1,e]上存在一点x0,使得f(x0)<g(x0)成立,即在[1,e]上存在一点x0,使得h(x0)<0,即函数在[1,e]上的最小值小于零.(9分)由(Ⅱ)可知①即1+a≥e,即a≥e﹣1时,h(x)在[1,e]上单调递减,所以h(x)的最小值为h(e),由可得,因为,所以;(10分)②当1+a≤1,即a≤0时,h(x)在[1,e]上单调递增,所以h(x)最小值为h(1),由h(1)=1+1+a<0可得a<﹣2;(11分)③当1<1+a<e,即0<a<e﹣1时,可得h(x)最小值为h(1+a),因为0<ln(1+a)<1,所以,0<aln(1+a)<a故h(1+a)=2+a﹣aln(1+a)>2此时,h(1+a)<0不成立.(12分)综上讨论可得所求a的范围是:或a<﹣2.(13分)点评:本题第一问考查利用导函数来研究函数的极值.在利用导函数来研究函数的极值时,分三步①求导函数,②求导函数为0的根,③判断根左右两侧的符号,若左正右负,原函数取极大值;若左负右正,原函数取极小值.9.(2021•陕西模拟)已知函数.(a为常数,a>0)(Ⅰ)假设是函数f(x)的一个极值点,求a的值;(Ⅱ)求证:当0<a≤2时,f(x)在上是增函数;(Ⅲ)假设对任意的a∈(1,2),总存在,使不等式f(x0)>m(1﹣a2)成立,求实数m的取值范围.考点:利用导数研究函数的极值;导数在最大值、最小值问题中的应用.专题:计算题;压轴题;分类讨论;转化思想.分析:(Ⅰ)先求出其导函数:,利用是函数f(x)的一个极值点对应的结论f'()=0即可求a的值;(Ⅱ)利用:,在0<a≤2时,分析出因式中的每一项都大于等于0即可证明结论;(Ⅲ)先由(Ⅱ)知,f(x)在上的最大值为,把问题转化为对任意的a∈(1,2),不等式恒成立;然后再利用导函数研究不等式左边的最小值看是否符合要求即可求实数m的取值范围.解答:解:由题得:.(Ⅰ)由已知,得且,∴a2﹣a﹣2=0,∵a>0,∴a=2.(2分)(Ⅱ)当0<a≤2时,∵,∴,∴当时,.又,∴f'(x)≥0,故f(x)在上是增函数.(5分)(Ⅲ)a∈(1,2)时,由(Ⅱ)知,f(x)在上的最大值为,于是问题等价于:对任意的a∈(1,2),不等式恒成立.记,(1<a<2)则,当m=0时,,∴g(a)在区间(1,2)上递减,此时,g(a)<g(1)=0,由于a2﹣1>0,∴m≤0时不可能使g(a)>0恒成立,故必有m>0,∴.若,可知g(a)在区间上递减,在此区间上,有g(a)<g(1)=0,与g(a)>0恒成立矛盾,故,这时,g'(a)>0,g(a)在(1,2)上递增,恒有g(a)>g(1)=0,满足题设要求,∴,即,所以,实数m的取值范围为.(14分)点评:本题第一问主要考查利用极值求对应变量的值.可导函数的极值点一定是导数为0的点,但导数为0的点不一定是极值点.10.(2021•横峰县校级一模)已知函数f(x)=alnx﹣ax﹣3(a∈R,a≠0).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)假设函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为,问:m在什么范围取值时,关于任意的t∈[1,2],函数在区间[t,3]上总存在极值?(Ⅲ)当a=2时,设函数,假设在区间[1,e]上至少存在一个x0,使得h(x0)>f(x0)成立,试求实数p的取值范围.考点:利用导数研究函数的极值;利用导数研究函数的单调性.专题:计算题;综合题;压轴题.分析:(Ⅰ)求出f′(x)对a分类讨论,由f′(x)>0时,得到函数的递增区间;令f′(x)<0时,得到函数的递减区间;(Ⅱ)因为函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,得到f′(2)=1求出a的值代入到g(x)=中化简,求出导函数,因为函数在[t,3]上总存在极值得到g′(t)<0,g′(3)>0 解出m的范围记即可;(Ⅲ)F(x由题意构建新函数F(x))=f(x)﹣g(x),这样问题转化为使函数F(x)在[1,e]上至少有一解的判断.解答:解:(Ⅰ)∵f′(x)=﹣a=a()(x>0),∴(1)当a>0时,令f′(x)>0时,解得0<x<1,所以f(x)在(0,1)递增;令f′(x)<0时,解得x>1,所以f(x)在(1,+∞)递减.当a<0时,f′(x)=﹣a(),令f′(x)>0时,解得x>1,所以f(x)在(1,+∞)递增;令f′(x)<0时,解得0<x<1,所以f(x)在(0,1)递减;(Ⅱ)因为函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,所以f′(2)=1,所以a=﹣2,f′(x)=﹣+2,g(x)=x3+x2[+f′(x)]=x3+x2[+2﹣]=x3+(2+)•x2﹣2x,∴g′(x)=3x2+(4+m)x﹣2,因为对于任意的t∈[1,2],函数g(x)=x3+x2[+f′(x)]在区间[t,3]上总存在极值,所以只需g′(2)<0 g′(3)>0,解得﹣<m<﹣9;(Ⅲ)∴令F(x)=h(x)﹣f(x)=(p﹣2)x﹣﹣3﹣2lnx+2x+3=px﹣﹣﹣2lnx,①当p≤0时,由x∈[1,e]得px﹣≤0,﹣﹣2lnx<0.所以,在[1,e]上不存在x0,使得h(x0)>f(x0)成立;②当p>0时,F′(x)=,∵x∈[1,e],∴2e﹣2x≥0,px2+p>0,F′(x)>0在[1,e]上恒成立,故F(x)在[1,e]上单调递增.∴F(x)max=F(e)=pe﹣﹣4.故只要pe﹣﹣4>0,解得p>.所以p的取值范围是[,+∞).点评:(Ⅰ)考查学生利用导数研究函数单调性的能力,(Ⅱ)利用导数研究曲线上某点切线方程的能力,会根据直线的倾斜角求直线的斜率,(Ⅲ)此处重点考查了等价转化的思想,把问题转化为构建一新函数,并考查了函数F(x)在定义域下恒成立问题数式中含字母系数,需分类讨论,属于难题.11.(2021•凤凰县校级模拟)已知函数f(x)=x3﹣ax2﹣3x(1)假设f(x)在区间[1,+∞)上是增函数,求实数a的取值范围;(2)假设x=﹣是f(x)的一个极值点,求f(x)在[1,a]上的最大值;(3)在(2)的条件下,是不是存在实数b,使得函数g(x)=bx的图象与函数f(x)的图象恰有3个交点,假设存在,请求出实数b的取值范围;假设不存在,试说明理由.考点:利用导数求闭区间上函数的最值;函数的单调性与导数的关系;利用导数研究函数的极值.专题:综合题;压轴题.分(1)求导函数,可得f′(x)=3x2﹣2ax﹣3,利用f(x)在区间[1,+∞)上是增函数,可析:得3x2﹣2ax﹣3≥0在区间[1,+∞)上恒成立,从而可求实数a的取值范围;(2)依题意x=﹣是f(x)的一个极值点,所以,从而可得f(x)=x3﹣4x2﹣3x,利用导数确定函数的单调性与极值,从而可求f(x)在[1,4]上的最大值;(3)函数g(x)=bx的图象与函数f(x)的图象恰有3个交点,即方程x3﹣4x2﹣3x=bx 恰有3个不等实根,即方程x2﹣4x﹣3﹣b=0有两个非零不等实根,从而可求实数b的取值范围解答:解:(1)求导函数,可得f′(x)=3x2﹣2ax﹣3∵f(x)在区间[1,+∞)上是增函数,∴f′(x)≥0在区间[1,+∞)上恒成立,即3x2﹣2ax﹣3≥0在区间[1,+∞)上恒成立,则必有且f′(1)=﹣2a≥0,∴a≤0(5分)(2)依题意x=﹣是f(x)的一个极值点,∴即∴a=4,∴f(x)=x3﹣4x2﹣3x(6分)令f′(x)=3x2﹣8x﹣3=0,得则当x变化时,f′(x),f(x)的变化情况如下表:x 1 (1,3) 3 (3,4) 4 f′(x)﹣0 +f(x)﹣6 ﹣18 ﹣12 ∴f(x)在[1,4]上的最大值是f(1)=﹣6(10分)(3)函数g(x)=bx的图象与函数f(x)的图象恰有3个交点,即方程x3﹣4x2﹣3x=bx恰有3个不等实根(12分)∴x3﹣4x2﹣3x﹣bx=0恰有3个不等实根∵x=0是其中一个根,∴方程x2﹣4x﹣3﹣b=0有两个非零不等实根,∴∴b>﹣7,且b≠﹣3(14分)点评:本题考查导数知识的运用,考查函数的单调性与最值,考查函数图象的交点问题,解题的关键是将函数g(x)=bx的图象与函数f(x)的图象恰有3个交点,转化为方程x3﹣4x2﹣3x=bx恰有3个不等实根.12.(2021•路南区校级模拟)已知函数f(x)=x3﹣(2a+1)x2+(a2+a)x.(Ⅰ)假设f(x)在x=1处取得极大值,求实数a的值;(Ⅱ)假设∀m∈R,直线y=kx+m都不是曲线y=f(x)的切线,求k的取值范围;(Ⅲ)假设a>﹣1,求f(x)在区间[0,1]上的最大值.考点:利用导数求闭区间上函数的最值;利用导数研究函数的极值;利用导数研究曲线上某点切线方程.专题:综合题;压轴题;导数的概念及应用.分析:(Ⅰ)求导数,确定函数的单调性,利用f(x)在x=1处取得极大值,可求实数a的值;(II)求导数,根据∀m∈R,直线y=kx+m都不是曲线y=f(x)的切线,可得对x∈R成立,即使f'(x)的最小值大于k;(III)分类讨论,确定函数在区间[0,1]上的单调性,从而可求函数的最大值.解答:解:(Ⅰ)因为f'(x)=x2﹣(2a+1)x+(a2+a)=(x﹣a)[x﹣(a+1)]…(2分)令f'(x)=0,得x1=(a+1),x2=a所以f'(x),f(x)随x的变化情况如下表:x (﹣∞,a) a (a,a+1)a+1 (a+1,+∞)f'(x)+ 0 ﹣0 +f(x)极大值极小值…(4分)因为f(x)在x=1处取得极大值,所以a=1…(5分)(II)求导数可得…(6分)因为∀m∈R,直线y=kx+m都不是曲线y=f(x)的切线,所以对x∈R成立…(7分)所以只要f'(x)的最小值大于k,所以…(8分)(III)因为a>﹣1,所以a+1>0,当a≥1时,f'(x)≥0对x∈[0,1]成立,所以当x=1时,f(x)取得最大值…(9分)当0<a<1时,在x∈(0,a)时,f'(x)>0,f(x)单调递增,在x∈(a,1)时,f'(x)<0,f(x)单调递减,所以当x=a时,f(x)取得最大值…(10分)当a=0时,在x∈(0,1)时,f'(x)<0,f(x)单调递减,所以当x=0时,f(x)取得最大值f(0)=0…(11分)当﹣1<a<0时,在x∈(0,a+1)时,f'(x)<0,f(x)单调递减,在x∈(a+1,1)时,f'(x)>0,f(x)单调递增,又,当时,f(x)在x=1取得最大值当时,f(x)在x=0取得最大值f(0)=0当时,f(x)在x=0,x=1处都取得最大值0.…(14分)综上所述,当a≥1或时,f(x)取得最大值;当0<a <1时,f(x)取得最大值;当时,f(x)在x=0,x=1处都取得最大值0;当时,f(x)在x=0取得最大值f(0)=0.点评:本题考查导数知识的运用,考查函数的单调性与极值,考查导数的几何意义,考查分类讨论的数学思想,属于中档题.13.(2021•张家港市校级模拟)已知函数f(x)=x3+bx2+cx+d,设曲线y=f(x)在与x轴交点处的切线为y=4x﹣12,f′(x)为f(x)的导函数,知足f′(2﹣x)=f′(x).(Ⅰ)设g(x)=x,m>0,求函数g(x)在[0,m]上的最大值;(Ⅱ)设h(x)=lnf′(x),假设对一切x∈[0,1],不等式h(x+1﹣t)<h(2x+2)恒成立,求实数t的取值范围.考点:利用导数求闭区间上函数的最值;函数恒成立问题.专题:综合题;压轴题.分析:(Ⅰ)f′(x)=x2+2bx+c,由f′(2﹣x)=f′(x),解得b=﹣1.由直线y=4x﹣12与x轴的交点为(3,0),解得c=1,d=﹣3.由此能求出函数g(x)在[0,m]上的最大值.(Ⅱ)h(x)=ln(x﹣1)2=2ln|x﹣1|,则h(x+1﹣t)=2ln|x﹣t|,h(2x+2)=2ln|2x+1|,由当x∈[0,1]时,|2x+1|=2x+1,知不等式2ln|x﹣t|<2ln|2x+1|恒成立等价于|x﹣t|<2x+1,且x≠t恒成立,由此能求出实数t的取值范围.解答:(本小题满分14分)解:(Ⅰ)f′(x)=x2+2bx+c,∵f′(2﹣x)=f′(x),∴函数y=f′(x)的图象关于直线x=1对称,则b=﹣1.∵直线y=4x﹣12与x轴的交点为(3,0),∴f(3)=0,且f′(x)=4,即9+9b+3c+d=0,且9+6b+c=4,解得c=1,d=﹣3.则.故f′(x)=x2﹣2x+1=(x﹣1)2,g(x)=x=x|x﹣1|=,如图所示.当时,x=,根据图象得:(ⅰ)当x<m时,g(x)最大值为m﹣m2;。
高考数学复习压轴题型专题讲解与练习专题08 基本不等式综合1.已知三次函数32()()f x ax bx cx d a b =+++<在R 上单调递增,则a b cb a++-最小值为( ) ABCD【答案】D 【分析】由函数单调性可知()0f x '≥恒成立,结合二次函数图象与性质可确定203bc a≥>,由此化简所求式子为21131b b a a ba⎛⎫++⋅ ⎪⎝⎭-;利用1bt a =>,配凑出符合对号函数的形式,利用对号函数求得最小值. 【详解】()f x 在R 上单调递增,()2320f x ax bx c '∴=++≥恒成立,2304120a b ac >⎧∴⎨∆=-≤⎩,0b a ∴>>,23b ac ≤,203b c a ∴≥>, 2211331b b b a b a b c a a a b b a b a a⎛⎫++⋅++ ⎪++⎝⎭≥=∴---, 令1b t a=>,设()()211311t t g t t t ++=>-,则()()()2221115171331173151313131t t t t t t g t t t t t t ++-+-+++⎛⎫==⋅=⋅=⋅-++ ⎪----⎝⎭,1t >,10t ∴->,711t t ∴-+≥-711t t -=-,即1t =+, ()g t ∴≥a b c b a ++-故选:D . 【点睛】本题考查利用对号函数求解最值的问题,涉及到根据导数的单调性确定参数范围、分式型函数最值的求解问题;关键是能够通过二次函数的图象与性质确定,,a b c 的关系,进而构造出符合对号函数特点的函数.2.已知函数()ln 2e exf x x e x=-+-,若22018202020202020e e e f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()2019201920202e f a b ⎛⎫=+ ⎪⎝⎭,其中0b >,则12a a b +的最小值为 A .34B .54CD【答案】A 【分析】通过函数()f x 解析式可推得()()2f x f e x +-=,再利用倒序相加法求得2201820192020202020202020e e e e f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,得到a b +的值,然后对a 分类讨论利用基本不等式求最值即可得出答案. 【详解】解:因为()ln2e exf x x e x=-+-,所以()()()ln ()ln 22()e ex e e e xf x f e x x e x e x e e x -+-=-++--+--- 2()()lnln ln()ln 2ex e e x ex e e x e e x x e x x--=+=⋅==--, 令2201820192020202020202020ee e e Sf f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭则2019220182019222019202020202020202020202020e e e e e e S f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++⋅⋅⋅++=⨯⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭所以2019S = 所以()201920192a b +=,所以2a b +=,其中0b >,则2a b =-. 当0a >时1||121212()112||2222a b a b a b a b a b a b -+⎛⎫+=+=+-=+⋅- ⎪⎝⎭15215511222224b a a b ⎛⎛⎫=++-≥+-= ⎪ ⎝⎭⎝ 当且仅当2,2b a a b= 即 24,33a b == 时等号成立;当0a <时 1||1121212||222a ab a b a b a b a b ---+=+=+=++---112152()1122222b a a b a b a b --⎛⎫⎛⎫=+⋅++=-+++ ⎪ ⎪--⎝⎭⎝⎭1531224⎛≥-++= ⎝, 当且仅当2,2b aa b-=- 即 2,4a b =-= 时等号成立; 因为3544<,所以1||2||a a b +的最小值为34.故选:A. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.设0a b c >>>,则()221121025a ac c ab a a b ++-+-取得最小值时,a 的值为( )AB .2C .4 D.【答案】A 【分析】 转化条件为原式211()(5)()ab a a b a c ab a a b =+++-+--,结合基本不等式即可得解. 【详解】()221121025a ac c ab a a b ++-+- 2211()()21025()ab a a b ab a a b a ac c ab a a b =+++----+-+- 2211()1025()ab a a b a ac c ab a a b =+++-+-+- 211()(5)()ab a a b a c ab a a b =+++-+--04≥=, 当且仅当1()15ab a a b a c=⎧⎪-=⎨⎪=⎩,即a =b =c =.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1) “一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.已知*,,,1x y z x y z ∈++=R y z -的最大值是( )A B .12C .0D 【答案】A 【分析】利用均值不等式及三角换元法,即可得到结果. 【详解】(1)(1)y z x x -=--≤-(1)x =-令()2=sin 01,(0,)2x πθθ∈∈,21cos 2sin 22y z θθθ--≤=-112cos 222θθ=+-≤x y z === 故选:A本题考查利用基本不等式求最值问题,考查了三角换元法,考查逻辑推理能力与计算能力,属于压轴题.5.若a ,b 均为正实数,则22ab ba b 1+++的最大值为( )A .23BCD .2【答案】B 【分析】对原式变形,两次利用基本不等式,求解即可. 【详解】因为a ,b 均为正实数,则222ab b a 1a 1a b 1b b ++=≤===++++, 当且仅当2a 1b b+=,且a=1取等,即即则22ab b a b 1+++故选B . 【点睛】本题考查基本不等式求最值,熟练变形是关键,注意多次运用不等式,等号成立条件是否一致,是难题.6.已知ABC ∆的内角,,A B C 的对边分别是,,,a b c 且444222222a b c a b c a b +++=+,若c 为最大边,则a bc+的取值范围是( )A .1⎛ ⎝⎭B .(C .1⎛ ⎝⎦D .【答案】C 【分析】由444222222a b c a b c a b+++=+,化简得到cos C 的值,根据余弦定理和基本不等式,即可求解. 【详解】由444222222a b c a b c a b +++=+,可得222422222(2)a b c a b c a b ++-=+, 可得22222222222()c a b c a b a b c a b +-++-=+,通分得2222222222()()0a b c c a b a b a b +---+=+, 整理得222222()a b c a b +-=,所以22221()24a b c ab +-=, 因为C 为三角形的最大角,所以1cos 2C =-,又由余弦定理2222222cos ()c a b ab C a b ab a b ab =+-=++=+-2223()()()24a b a b a b +≥+-=+,当且仅当a b =时,等号成立,所以)c a b >+,即a b c +≤,又由a b c +>,所以a b c +的取值范围是. 故选:C. 【点睛】本题主要考查了代数式的化简,余弦定理,以及基本不等式的综合应用,试题难度较大,属于中档试题,着重考查了推理与运算能力.7.已知正数,,x y z 满足2221x y z ++=, 则11z S xy z+=+的最小值是( )A .2+B .3+C .3+D .4+【答案】B 【分析】利用不等式进行变型,转化为121z xy z +≥-,所以原式 11211((0,1))1(1)z zS z xy z z z z z ++=+≥+=∈--变化成关于z 的函数,然后求导进行求最值即可得到答案. 【详解】222222112x y z z x y xy ++=∴-=+≥(当且紧当x y =时取等号)221122z z xy xy-∴-≥∴≥又因为已知正数,,x y z 满足2221x y z ++=,所以01z << 即121z xy z+≥- 故11211((0,1))1(1)z zS z xy z z z z z ++=+≥+=∈-- 令22221121()(),(0,1)(1)()z z z z f z f z z z z z z z z +++-'==∴=∈---()0,1,1),f z z '>∈此时函数()f z 递增;()0,1),f z z '<∈此时函数()f z 递减;故min ()1)3f z f ==+故选B 【点睛】本题主要考查了不等式综合,利用基本不等式进行变型,然后还考查了导函数的应用,利用单调性求最值,属于较难题.8.(改编)已知正数,x y 满足1x y +=,则1114x y ++的最小值为( )A .73B .2C .95D .43【答案】C 【详解】分析:由1x y +=变形为414154y x +⎛⎫+= ⎪⎝⎭,将1114x y ++乘以41454y x +⎛⎫+ ⎪⎝⎭后再根据基本不等式求解即可得到所求. 详解:∵1x y +=, ∴14544y x ++=. ∴11414114514451414541454144544y x y y x x y x y y x y x ⎛⎫⎛⎫⎛⎫+++⎛⎫+=++=++≥+ ⎪ ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭4514992542545⎛⎫=+⨯=⨯= ⎪⎝⎭,当且仅当14144x y y x +=+且1x y +=,即5166x y ==,时等号成立. ∴1114x y ++的最小值为95.故选C .点睛:(1)使用基本不等式求最值时,注意使用的前提是“一正、二定、三相等”,且这三个条件缺一不可.(2)在运用基本不等式时,若条件不满足使用的条件,则要注意通过“拆”“拼”“凑”等技巧,使其满足重要不等式中“正”“定”“等”的条件.9.若0x >,0y >,1x y +=,则2221x y x y +++的最小值为A .14B C .4D .12【答案】A 【详解】设2,1x s y t +=+=,则34s t x y +=++=,所以2221x y x y +=++()()()22214141414262s t s t s t sts t s t s t --⎛⎫⎛⎫⎛⎫⎛⎫+=-++-+=+++-=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,因为()411411495444t s s t s t s t s t ⎛⎫⎛⎫+=++=++≥ ⎪ ⎪⎝⎭⎝⎭,所以2221x y x y +++14≥,故选A. 点睛:本题考查基本不等式的应用,属于压轴题目. 解此类题目的两个技巧: (1)创设运用基本不等式的条件,合理拆分项或配凑因式,其目的在于使等号能够成立.(2)既要记住基本不等式的原始形式,而且还要掌握它的变形形式及公式的逆用等,例如:22222a b a bab ++⎛⎫≤≤⎪⎝⎭2a b +≤a >0,b >0).10.设04b a b <<<,0m >,若三个数2a b+能组成一个三角形的三条边长,则实数m 的取值范围是( )A .5,14⎫⎪⎪⎝⎭B .(C .5,24⎤⎥⎣⎦ D .)2【答案】C 【分析】由题意可得a 14b<<,可令a t (1t 4)b=<<,判断可得a b2+<a b a b22++<,化为2m<<,结合基本不等式和导数判断单调性,以及不等式恒成立思想,即可得到所求范围. 【详解】0b a 4b <<<,m 0>,令a bx 2+=,y =z =2222a b 3x y ()(a b)024+-==--<,a b2+∴< x y ∴<,x ,y ,z能组成一个三角形的三条边长,可得y x z x y -<<+,a b a b22++<, 设0b a 4b <<<,可得a14b<<,可令a t (1t 4)b=<<,2m<<,即为2m<<,由4≥,当且仅当t 1=上式取得等号,但1t 4<<,可得4>, 则2m 4≤,即m 2≤;又设5k 2,2⎛⎫= ⎪⎝⎭,可得k =,由y k =的导数为y'1-=,由52k 2<<可得2k >y 为增函数,可得55k 22<=,即有52m 2≥,即有5m 4≥,5m 24≤≤, 故选C . 【点睛】本题考查导数和函数的单调性,基本不等式的性质,考查推理能力与计算能力,属于难题,关键是转化为关于a t (1t 4)b=<<的函数求最值.第II 卷(非选择题)二、填空题11.已知实数a ,b ,c 满足0a b c ++=________.【分析】先消去c ,再将分子分母同除以2a ,然后令1bt a+=,利用对勾函数的单调性即可求解. 【详解】解:先消去c ,再将分子分母同除以2a,可得原式=设1b t a +=,可得原式=, 由对勾函数的单调性可得1y t t=+在(),1-∞-上单调递增,在()1,0-上单调递减,在()0,1上单调递减,在()1,+∞上单调递增, 所以12t t+≥或12t t+≤-,所以原式=≤=12.若,x y R +∈,23()()-=x y xy ,则11x y +的最小值为___________. 【答案】2 【分析】根据题中所给等式可化为211()xy y x-=,再通过平方关系将其与11x y +联系起来,运用基本不等式求解最小值即可. 【详解】因为23()()-=x y xy 且,x y R +∈,则两边同除以2()xy ,得211()xy y x-=,又因为224(111111()44)xy y y x xy xy x -+=+=+≥=,当且仅当14xy xy =,即22x y =+=211x y+≥. 故答案为:213.已知0x >,0y >,若21122x y x y x y x y ⎛⎫⎛⎫+⎛⎫++≥+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭,则()2x y +的最大值是________.【答案】8+【分析】以xy 为主元,以x y +为参数,将问题转化为对勾函数的最值问题,利用对勾函数的单调性求解即可. 【详解】令xy t =,则2()04x y t +<,令21()()x y f t t t ++=+,因为2221121()2222x y x y x y x y xy x y x y xy x y ⎛⎫⎛⎫⎛⎫++++⎛⎫+⋅++⇔+-+ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭, 等价于2()()()4x y f t f +≥, 所以题意可转化为函数21()()x y f t t t ++=+在2()0,4x y ⎛⎤+ ⎥⎝⎦有最小值2()4x y f ⎛⎫+ ⎪⎝⎭,因为对勾函数21()()x y f t t t ++=+在上递减,在)+∞上递增,所以2()1(4x y x +++42()16()160x y x y +-+-≤,所以2()8x y +≤+故2()x y +的最大值是8+故答案为:8+【点睛】关键点点睛:本题的关键点是:由函数21()()x y f t t t ++=+在2()0,4x y ⎛⎤+ ⎥⎝⎦有最小值2()4x y f ⎛⎫+ ⎪⎝⎭结合对勾函数的单调性得到2()1(4x y x +++14.已知a ,b ,0c >,记()()()()419491abcT a a b b c c =++++,则T 最大值为________.【答案】1012 【分析】 将()()()()419491abcT a a b b c c =++++分子分母同除以ac ,利用基本不等式可得分母()()141949b a b c a c ⎛⎫⎛⎫++++⎪ ⎪⎝⎭⎝⎭()()2231≥,再将()()2231bT ≤,分子分母同除以b ,利用基本不等式求解. 【详解】()()()()()()141949141949abcb T b a a b bc c a b c a c ==++++⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭, 而()()144194936943691b b ba b c a b b c a c a c ⎛⎫⎛⎫⎛⎫⎛⎫++++=++++++ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,()()()()224936131b b ≥++=,当且仅当 214449a b c ==时,等号成立,所以()()()222231123210bbT b ≤==⎛⎫+ ⎪⎝⎭,21012120≤=⎛⎫⎪⎝⎭.当且仅当14b =时取等号,所以T 最大值为1012故答案为:1012 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方15.已知0x >,0y >,若21122x y x y x y x y ⎛⎫⎛⎫+⎛⎫++≥+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭,则()2x y +的最大值是________.【答案】8+【分析】以xy 为主元、x y +为参数,将问题转化为了对勾函数的最值问题,根据对勾函数的单调性可解得结果. 【详解】令xy t =,则2()04x y t +<,令21()()x y f t t t ++=+,因为2221121()2222x y x y x y x y xy x y x y xy x y ⎛⎫⎛⎫⎛⎫++++⎛⎫+⋅++⇔+-+ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭, 等价于2()()()4x y f t f +≥, 所以题意可转化为函数21()()x y f t t t ++=+在2()0,4x y ⎛⎤+ ⎥⎝⎦有最小值2()4x y f ⎛⎫+ ⎪⎝⎭,因为对勾函数21()()x y f t t t++=+在上递减,在)+∞上递增,所以2()1(4x y x +++42()16()160x y x y +-+-≤,所以2()8x y +≤+故2()x y +的最大值是8+故答案为:8+【点睛】本题考查了基本不等式在求最值中的应用.根据具体条件和解题需要,从不同的角度出发,在众多变元中选用一个变元为主元,并以此为线索把握解决问题的方法叫做主元法.本题中以xy 为主元、x y +为参数,将问题转化为了对勾函数的最值问题,达到了“避虚就实、变繁成简,化难为易”的解题效果.属于压轴题.三、解答题16.已知函数()1232f x x x =+++. (1)求不等式()47f x x ≤+的最小整数解m ;(2)在(1)的条件下,对任意a ,(),b m ∈-+∞,若4a b +=,求2211ba W ab =+--的最小值. 【答案】(1)1m =-;(2)8 【分析】(1)利用分类讨论法求解不等式,进而得到最小整数解m ;(2)化简整理221810113b a W a b ab =+=-+---,再利用基本不等式及不等式的性质求出031ab <-≤,进而求得结果.【详解】(1)当32x ≤-时,原不等式化为73472x x --≤+,解得32x ≥-,所以32x =-;当3122x -<≤-时,原不等式化为5472x x +≤+,解得32x ≥-,所以3122x -<≤-;当12x >-时,原不等式化为73472x x +≤+,解得72x ≥-,所以12x >-.综上,原不等式的解集为3,2⎡⎫-+∞⎪⎢⎣⎭.所以最小整数解1m =-.(2)由(1)知a ,()1,b ∈+∞,又4a b +=,所以()()2233221111b a a b a b W a b a b +--=+=----()()()()22221a b a ab b a b ab ab a b ⎡⎤+-+-+-⎣⎦=-++ ()()()()22321a b a b ab a b ab ab a b ⎡⎤⎡⎤++--+-⎣⎦⎣⎦=-++()()41631623ab ab ab ---=-48103ab ab -=-18103ab =-+-.1a >,1b >,()()1130a b ab ∴--=->, 又()244+≤=a b ab ,当且仅当2a b ==时等号成立,031ab ∴<-≤,18183ab ∴≥-,8W ∴≥,所以W 的最小值为8 【点睛】方法点睛:本题主要考查绝对值不等式的解法,函数与基本不等式的综合应用,含有多个绝对值符合的不等式,一般可用零点分段法求解,对于形如||||x a x b m -+->或m <,利用实数绝对值的几何意义求解,解答题采用零点分段法求解,考查学生的逻辑推理能力,属于压轴题.17.已知a ,b ,c 均为正实数,且满足3a b c ++=.证明:(1≤(2)22232a b c b c c a a b ++≥+++. 【答案】(1)证明见解析;(2)证明见解析. 【分析】(12()ca c +b 的式子,运用基本不等式可得结论;(2)运用基本不等式推得24a b c a b c +++,24b c a b c a +++,24c a bc a b +++,再相加即可得到所求结论. 【详解】(1)由a ,b ,c 均为正实数,且满足3a b c ++=,22()a c ac a c =+++,2()ca c +a c =时取得等号.22(3)(3)2b b b b -+- 当且仅当32b =,34a c ==时取得等号.(2)由a ,b ,c 均为正实数,且满足3a b c ++=,22244a b c a b ca b c b c +++=++,当且仅当2a b c =+取得等号, 同理可得24b c ab c a +++,当且仅当2b a c =+取得等号, 同理可得24c a bc a b +++,当且仅当2c b a =+取得等号, 上面三式相加可得222322a b c a b c b c c a a b++++=+++(当且仅当1a b c ===时取得等号). 【点睛】本题考查不等式的证明,注意运用基本不等式和累加法,考查逻辑推理能力,属于压轴题.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误. 18.已知a ,b ,c 为正数,且满足4abc =,证明: (1)3334()a c b a c b a b c ++≥++;(2)33322211148a b c b c a ⎛⎫⎛⎫⎛⎫+++++≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【答案】(1)证明见解析;(2)证明见解析. 【分析】(1)根据a ,b ,c 为正数,且4abc =,将不等式3334()a c b a c b a b c ++≥++转化为222a b c a b c b c a++≥++,再利用基本不等式结合不等式的性质证明; (2)根据a ,b ,c 为正数,且4abc =,直接利用基本不等式证明. 【详解】(1)因为a ,b ,c 为正数,且4abc =. 所以不等式3334()a c b a c b a b c ++≥++等价于333a c b a c b a b c abc++≥++,即等价于222a b c a b c b c a ++≥++.因为a ,b ,c 为正数,所以22a b a b +≥,22b c b c +≥,22c a c a +≥,所以2222()a b c a b c a b c b c a+++++≥++,即222a b c a b cb c a++≥++,当且仅当a b c ===. 所以a ,b ,c 为正数时,3334()a c b a c b a b c ++≥++成立.(2)因为a ,b ,c 为正数,且4abc =,所以原式≥2221113a b c b c a ⎛⎫⎛⎫⎛⎫=+⋅+⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭348≥⨯==. 当且仅当a b c ==.所以a ,b ,c 为正数时,33322211148a b c b c a ⎛⎫⎛⎫⎛⎫+++++≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭成立. 【点睛】本题主要考查基本不等式证明不等式问题以及不等式的基本性质,还考查了转化求解问题的能力,属于压轴题.19.已知a ,b ,R c ∈,2221a b c ++=.()1证明:112ab bc ca -≤++≤. ()2证明:()()()22222222223a b c b c a c a b +++++≤. 【答案】()1证明见解析;()2证明见解析.【分析】()1先利用完全平方式子证出12ab bc ca ++≥-,再利用均值不等式证出1ab bc ca ++≤,进而可求证;()2化简式子得()4441a b c -++,再利用完全平方公式和基本不等式的运用得44413a b c ++≥,进而可求证结论.【详解】解:()1证明:由()222222212220a b c a b c ab bc ca ab bc ca ++=+++++=+++≥, 得12ab bc ca ++≥-.另一方面,222a b ab +≥,222b c bc +≥,222c a ca +≥,所以222222222a b c ab bc ca ++≥++,即1ab bc ca ++≤. 所以112ab bc ca -≤++≤. ()2证明:()()()222222222a b c b c a c a b +++++()()()()2222224441111a a b b c c a b c =-+-+-=-++,因为()()24442222222224444442221a b c a b c a b b c c a a b b c c a ++=++---≥-+++++, 即()44431a b c ++≥,则44413a b c ++≥, 所以()()()22222222223a b c b c a c a b +++++≤. 【点睛】本题考查不等式的证明,结合基本不等式和完全平方公式的运用,属于压轴题.20.已知实数,a b 满足01,01a b <<<<.(1)若1a b +=,求1111a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值; (2)若14ab =,求1111a b+--的最小值, 【答案】(1)9;(2)4.【分析】(1)由1a b +=得1b a =-,并且将其代入得()1121111a b a a ⎛⎫⎛⎫++=+ ⎪⎪-⎝⎭⎝⎭,再根据二次函数的最值可求()11,4a a -≤从而可得1111a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值;(2)由14ab =得14b a =,并代入得2111114513a b a a a +=+---+-,再由214513453a a a aa =-+---+,利用基本不等式得11444a a a a ⎛⎫--=-+≤- ⎪⎝⎭,可得1111a b +--的最小值. 【详解】 (1)由1a b +=得1b a =-,所以()()111111121111111111a b a a a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++=++=+++=+ ⎪⎪ ⎪⎪----⎝⎭⎝⎭⎝⎭⎝⎭, 而()221111,244a a a a a ⎛⎫-=-+=--+≤ ⎪⎝⎭当()10,12a =∈取等号, 所以()112211119114a b a a ⎛⎫⎛⎫++=+≥+= ⎪⎪-⎝⎭⎝⎭,当()10,12a =∈取等号, 所以1111a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为9; (2)由14ab =得14b a=,所以()()2211111448111111141141451143a a a a a b a a a a a a a a-+-+=+=+==+--------+--,因为01a <<,所以214513453a a a aa =-+---+,又11444a a a a ⎛⎫--=-+≤-=- ⎪⎝⎭,当且仅当14a a =,即()10,12a =∈(12a =-舍去)时取等号, 所以2314514545333a a a aa =≥=-+--+--+, 所以2111134114513a ab a a +=+≥+=---+-,当且仅当()10,12a =∈时取等号, 所以1111a b +--的最小值为4; 故得解.【点睛】本题考查基本不等式的应用,解决问题的关键在于将两个量转化成求关于一个量的最值,再运用二次函数的最值和基本不等式求解,属于压轴题.。
姓名:________班级:________学号:________ 高考压轴大题突破练(四)函数与导数(2)1.已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,在x=0处的切线与直线3x+y=0平行.(1)求f(x)的解析式;(2)已知点A(2,m),求过点A的曲线y=f(x)的切线条数.2.已知f(x)=x ln x,g(x)=-x2+ax-3.(1)求函数f(x)在[t,t+2](t>0)上的最小值;(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;(3)证明:对一切x∈(0,+∞),都有ln x>1e x-2e x成立.(1)当a =2,b =12时,求函数f (x )在[1e,e]上的最大值; (2)当b =0时,若不等式f (x )≥m +x 对所有的a ∈[0,32],x ∈(1,e 2]都成立,求实数m 的取值范围.(1)若函数f (x )在点A (1,f (1))处的切线l 与直线4x +3y -3=0垂直,求a 的值;(2)若f (x )≤0恒成立,求实数a 的取值范围;(3)证明:ln(n +1)>12+13+…+1n +1(n ∈N *).答案精析高考压轴大题突破练(四)函数与导数(2)1.解 (1)f ′(x )=3ax 2+2bx +c ,由题意可得⎩⎪⎨⎪⎧ f ′(1)=3a +2b +c =0,f ′(-1)=3a -2b +c =0,f ′(0)=c =-3,解得⎩⎪⎨⎪⎧ a =1,b =0,c =-3.所以f (x )=x 3-3x .(2)设切点为(t ,t 3-3t ),由(1)知f ′(x )=3x 2-3,所以切线斜率k =3t 2-3,切线方程为y -(t 3-3t )=(3t 2-3)(x -t ).又切线过点A (2,m ),代入得m -(t 3-3t )=(3t 2-3)(2-t ),解得m =-2t 3+6t 2-6.设g (t )=-2t 3+6t 2-6,令g ′(t )=0,即-6t 2+12t =0,解得t =0或t =2.当t 变化时,g ′(t )与g (t )的变化情况如下表:所以g (t )的极小值为g (0)=-6,极大值为g (2)=2.作出函数草图可知:①当m >2或m <-6时,方程m =-2t 3+6t 2-6只有一解,即过点A 只有一条切线; ②当m =2或m =-6时,方程m =-2t 3+6t 2-6恰有两解,即过点A 有两条切线; ③当-6<m <2时,方程m =-2t 3+6t 2-6有三解,即过点A 有三条切线.2.(1)解 由f (x )=x ln x ,x >0,得f ′(x )=ln x +1,令f ′(x )=0,得x =1e. 当x ∈(0,1e)时,f ′(x )<0,f (x )单调递减; 当x ∈(1e,+∞)时,f ′(x )>0,f (x )单调递增. ①当0<t <1e <t +2,即0<t <1e时, f (x )min =f (1e )=-1e; ②当1e ≤t <t +2,即t ≥1e时,f (x )在[t ,t +2]上单调递增,f (x )min =f (t )=t ln t . 所以f (x )min =⎩⎨⎧ -1e ,0<t <1e ,t ln t ,t ≥1e .(2)解 ∀x ∈(0,+∞),有2x ln x ≥-x 2+ax -3,则a ≤2ln x +x +3x, 设h (x )=2ln x +x +3x(x >0), 则h ′(x )=(x +3)(x -1)x 2, ①当x ∈(0,1)时,h ′(x )<0,h (x )单调递减,②当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,所以h (x )min =h (1)=4.因为对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,所以a ≤h (x )min =4.(3)证明 问题等价于证明x ln x >x e x -2e(x ∈(0,+∞)). 由(1)可知f (x )=x ln x (x ∈(0,+∞))的最小值是-1e ,当且仅当x =1e 时取到,设m (x )=x e x -2e(x ∈(0,+∞)),则m ′(x )=1-x e x ,易知m (x )max =m (1)=-1e, 当且仅当x =1时取到.从而对一切x ∈(0,+∞),都有ln x >1e x -2e x成立. 3.解 (1)由题意知,f (x )=2ln x -12x 2, f ′(x )=2x -x =2-x 2x, 当1e≤x ≤e 时, 令f ′(x )>0得1e≤x <2; 令f ′(x )<0,得2<x ≤e ,∴f (x )在[1e ,2)上单调递增,在(2,e]上单调递减, ∴f (x )max =f (2)=ln2-1.(2)当b =0时,f (x )=a ln x ,若不等式f (x )≥m +x 对所有的a ∈[0,32],x ∈(1,e 2]都成立,则a ln x ≥m +x 对所有的a ∈[0,32],x ∈(1,e 2]都成立,即m ≤a ln x -x ,对所有的a ∈[0,32],x ∈(1,e 2]都成立, 令h (a )=a ln x -x ,则h (a )为一次函数,m ≤h (a )min .∵x ∈(1,e 2],∴ln x >0,∴h (a )在[0,32]上单调递增, ∴h (a )min =h (0)=-x ,∴m ≤-x 对所有的x ∈(1,e 2]都成立.∵1<x ≤e 2,∴-e 2≤-x <-1,∴m ≤(-x )min =-e 2.即实数m 的取值范围为(-∞,-e 2].4.(1)解 函数f (x )的定义域为(0,+∞),f ′(x )=1x-a . 所以f (1)=ln1-a +1=1-a ,f ′(1)=1-a .故切线l 的方程为y -(1-a )=(1-a )(x -1),即y =(1-a )x .因为切线l 与直线4x +3y -3=0垂直,所以1-a =34,解得a =14.(2)解 若a ≤0,则f ′(x )=1x-a >0, f (x )在(0,+∞)上是单调递增函数.而f (1)=1-a >0,故a ≤0时,f (x )≤0不恒成立.考虑a >0,则当x ∈(0,1a )时,f ′(x )=1x-a >0; 当x ∈(1a ,+∞)时,f ′(x )=1x-a <0. 所以f (x )在(0,1a)上是单调递增函数, 在(1a,+∞)上是单调递减函数. 所以f (x )的最大值为f (1a)=-ln a . 要使f (x )≤0恒成立,只须-ln a ≤0即可.由-ln a ≤0,解得a ≥1,即a 的取值范围为[1,+∞).(3)证明 由(2),知当a =1时,f (x )≤0在(0,+∞)上恒成立,且f (x )在(0,1)上是增函数,f (1)=0,所以ln x <x -1在x ∈(0,1)上恒成立.令x =k k +1(k ∈N *),则ln k k +1<k k +1-1=-1k +1, 令k =1,2,…,n ,则有ln 12<-12,ln 23<-13,ln 34<-14,…,ln n n +1<-1n +1, 以上各式两边分别相加,得ln 12+ln 23+…+ln n n +1<-(12+13+…+1n +1), 即ln 1n +1<-(12+13+…+1n +1), 故ln(n +1)>12+13+…+1n +1(n ∈N *).。
姓名:________ 班级:________ 学号:________高考压轴大题突破练(二)直线与圆锥曲线(2)1.已知B 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的一点,F 是椭圆右焦点,且BF ⊥x 轴,B ⎝⎛⎭⎫1,32. (1)求椭圆E 的方程;(2)设A 1和A 2是长轴的两个端点,直线l 垂直于A 1A 2的延长线于点D ,|OD |=4,P 是l 上异于点D 的任意一点.直线A 1P 交椭圆E 于M (不同于A 1,A 2),设λ=A 2M →·A 2P →,求λ的取值范围.2.(2015·课标全国Ⅱ)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为22,点(2,2)在C上.(1)求C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M,证明:直线OM的斜率与直线l的斜率的乘积为定值.3.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点(0,4),离心率为35. (1)求C 的方程;(2)过点(10,0)作直线l 与椭圆C 交于A ,B 两点,线段AB 的中点在直线y =x -1上,求l 的方程.4.已知椭圆C经过点P(3,12),两焦点坐标分别为F1(-3,0),F2(3,0).(1)求椭圆C的标准方程;(2)已知点A(0,-1),直线l与椭圆C交于M,N两点.若△AMN是以A为直角顶点的等腰直角三角形,试求直线l的方程.答案精析高考压轴大题突破练(二)直线与圆锥曲线(2)1.解 (1)依题意得半焦距c =1,设左焦点为F ′,∴|FF ′|=2c =2,又∵|BF |=32,BF ⊥x 轴, ∴在Rt △BFF ′中,|BF ′|=BF 2+FF ′2=52, ∵2a =|BF |+|BF ′|=4,∴a =2.∴b 2=a 2-c 2=22-12=3.所以椭圆E 的方程为x 24+y 23=1. (2)由(1)知,A 1(-2,0),A 2(2,0).设M (x 0,y 0).∵M 在椭圆E 上,∴y 20=34(4-x 20). 由P ,M ,A 1三点共线可得P ⎝⎛⎭⎫4,6y 0x 0+2. ∴A 2M →=(x 0-2,y 0),A 2P →=⎝⎛⎭⎫2,6y 0x 0+2. ∴A 2M →·A 2P →=2(x 0-2)+6y 20x 0+2=52(2-x 0), ∵-2<x 0<2,∴λ=A 2M →·A 2P →∈(0,10).2.解 (1)由题意得a 2-b 2a =22,4a 2+2b2=1,解得a 2=8,b 2=4. 所以C 的方程为x 28+y 24=1. (2)设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入x 28+y 24=1, 得(2k 2+1)x 2+4kbx +2b 2-8=0.故x M =x 1+x 22=-2kb 2k 2+1,y M =k ·x M +b =b 2k 2+1. 于是直线OM 的斜率k OM =y M x M =-12k, 即k OM ·k =-12. 所以直线OM 的斜率与直线l 的斜率的乘积为定值.3.解 (1)由椭圆过点(0,4),知b =4.又e =c a =35,所以a 2-42a 2=925,解得a =5. 所以C 的方程为x 225+y 216=1. (2)设A (x 1,y 1),B (x 2,y 2),AB 的中点为M (a ,a -1),则x 2125+y 2116=1,x 2225+y 2216=1. 两式相减并变形,得(x 1+x 2)(x 1-x 2)25+(y 1+y 2)(y 1-y 2)16=0, 因为x 1+x 2=2a ,y 1+y 2=2(a -1),y 1-y 2x 1-x 2=k AB =a -1a -10, 所以2a 25+2(a -1)16·a -1a -10=0. 解得a =541或a =5. 当a =5时,点M (5,4)在椭圆外部,不符合要求,所以k AB =541-1541-10=445. 故直线l 的方程为y =445(x -10),即4x -45y -40=0. 4.解 (1)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0). 依题意,得2a =|PF 1|+|PF 2|=12+14+14=4, 所以a =2.又c =3,所以b 2=a 2-c 2=1.于是椭圆C 的标准方程为x 24+y 2=1.(2)依题意,显然直线l 的斜率存在.设直线l 的方程为y =kx +m ,由⎩⎪⎨⎪⎧ x 24+y 2=1,y =kx +m ,得(4k 2+1)x 2+8kmx +4m 2-4=0.由Δ=64k 2m 2-4(4k 2+1)(4m 2-4)>0,得4k 2-m 2+1>0.(*)设M (x 1,y 1),N (x 2,y 2),线段MN 的中点为Q (x 0,y 0),则⎩⎪⎨⎪⎧ x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1,于是x 0=-4km 4k 2+1,y 0=kx 0+m =m 4k 2+1. 因为|AM |=|AN |,线段MN 的中点为Q ,所以AQ ⊥MN .①当x 0≠0,即k ≠0且m ≠0时,y 0+1x 0k =-1,整理得3m =4k 2+1.(**) 因为AM ⊥AN ,AM →=(x 1,y 1+1),AN →=(x 2,y 2+1),所以AM →·AN →=x 1x 2+(y 1+1)(y 2+1)=(1+k 2)x 1x 2+k (m +1)(x 1+x 2)+m 2+2m +1=(1+k 2)4m 2-44k 2+1+k (m +1)(-8km 4k 2+1)+m 2+2m +1=0, 整理得5m 2+2m -3=0,解得m =35或m =-1. 当m =-1时,由(**),知不合题意舍去.由(*)(**),知m =35时,k =±55. 此时直线l 的方程为5x -5y +3=0或5x +5y -3=0.②当x 0=0时.(ⅰ)当k =0时,直线l 的方程为y =m ,代入椭圆方程中得x =±21-m 2.设M (-21-m 2,m ),N (21-m 2,m ),依题意,若△AMN 为等腰直角三角形,则|QN |=|AQ |,即21-m 2=|1+m |,解得m =-1(舍去)或m =35, 故此时直线l 的方程为y =35. (ⅱ)当k ≠0且m =0时,即直线l 过原点.由椭圆的对称性有Q (0,0),则依题意不能有AQ ⊥MN ,即此时不满足△AMN 为等腰直角三角形.综上,直线l 的方程为y =35或5x -5y +3=0或5x +5y -3=0.。
题型突破练——压轴题专练压轴题专练(一)建议用时:40分钟1.[2015·山西质监]已知椭圆E 的两焦点分别为(-1,0),(1,0),且经过点⎝⎛⎭⎪⎫1,22.(1)求椭圆E 的方程;(2)过P (-2,0)的直线l 交E 于A ,B 两点,且PB →=3P A →,设A ,B 两点关于x 轴的对称点分别是C ,D ,求四边形ACDB 的外接圆的方程.解 (1)由题意知c =1,2a -22=22+⎝ ⎛⎭⎪⎫222,∴a =2,b =a 2-c 2=1,椭圆E 的方程为x 22+y 2=1.(2)设l :x =my -2,代入椭圆方程得(m 2+2)y 2-4my +2=0, 由Δ=8m 2-16>0得m 2>2.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m m 2+2,①y 1y 2=2m 2+2.②由PB →=3P A →,得y 2=3y 1.③ 由①②③解得m 2=4,符合m 2>2.不妨取m =2,则线段AB 的垂直平分线的方程为y =-2x -23,则所求圆的圆心为⎝ ⎛⎭⎪⎫-13,0.又B (0,1), ∴圆的半径r =103.∴圆的方程为⎝⎛⎭⎪⎫x +132+y 2=109.2.已知函数f (x )=(ax 2+bx +c )e x 在[0,1]上单调递减且满足f (0)=1,f (1)=0.(1)求实数a 的取值范围;(2)设g (x )=f (x )-f ′(x ),求g (x )在[0,1]上的最大值和最小值. 解 (1)由f (0)=1,f (1)=0得c =1,a +b =-1, 则f (x )=[ax 2-(a +1)x +1]e x , f ′(x )= [ax 2+(a -1)x -a ]e x .依题意知,对任意的x ∈[0,1],有f ′(x )≤0.当a >0时,因为二次函数y =ax 2+(a -1)x -a 的图象开口向上,而f ′(0)=-a <0,所以f ′(1)=(a -1)e ≤0,即0<a ≤1;当a =0时,对任意的x ∈[0,1],f ′(x )=-x e x ≤0,符合条件;当a <0时,f ′(0)=-a >0,不符合条件.故实数a 的取值范围是[0,1].(2)因为g (x )=(-2ax +1+a )e x ,g ′(x )=(-2ax +1-a )e x , ①当a =0时,g ′(x )=e x >0,g (x )在x =0处取得最小值g (0)=1,在x =1处取得最大值g (1)=e.②当a =1时,对任意的x ∈[0,1]有g ′(x )=-2x e x ≤0,g (x )在x =0处取得最大值g (0)=2,在x =1处取得最小值g (1)=0.③当0<a <1时,由g ′(x )=0得x =1-a2a >0.a .当1-a 2a ≥1,即0<a ≤13时,g (x )在[0,1]上单调递增,g (x )在x =0处取得最小值g (0)=1+a ,在x =1处取得最大值g (1)=(1-a )e.b .当1-a 2a <1,即13<a <1时,g (x )在x =1-a 2a 处取得最大值g ⎝⎛⎭⎪⎫1-a 2a =2a e 1-a2a ,在x =0或x =1处取得最小值,而g (0)=1+a ,g (1)=(1-a )e ,则当13<a ≤e -1e +1时,g (x )在x =0处取得最小值g (0)=1+a ;当e -1e +1<a <1时,g (x )在x =1处取得最小值g (1)=(1-a )e. 3.选做题(1)[选修4-1:几何证明选讲]如图,P 是⊙O 外一点,P A 是切线,A 为切点,割线PBC 与⊙O 相交于点B ,C ,PC =2P A ,D 为PC 的中点,AD 的延长线交⊙O 于点E .证明:①BE =EC ; ②AD ·DE =2PB 2.(2)[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos αy =2+2sin α(α为参数),M 为C 1上的动点,P 点满足OP →=2OM →,点P 的轨迹为曲线C 2. ①求C 2的参数方程;②在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |.(3) [选修4-5:不等式选讲]已知函数f (x )=|x -m |+|x +6|(m ∈R ).①当m =5时,求不等式f (x )≤12的解集;②若不等式f (x )≥7对任意实数x 恒成立,求m 的取值范围. 解 (1)证明:①∵PC =2P A ,PD =DC ,∴P A =PD ,△P AD 为等腰三角形.连接AB ,则∠P AB =∠DEB =β,∠BCE =∠BAE =α, ∵∠P AB +∠BCE =∠P AB +∠BAD =∠P AD =∠PDA =∠DEB +∠DBE ,∴β+α=β+∠DBE ,即α=∠DBE ,即∠BCE =∠DBE ,所以BE =EC .②∵AD ·DE =BD ·DC ,P A 2=PB ·PC ,PD =DC =P A ,BD ·DC =(P A -PB )P A =PB ·PC -PB ·P A =PB ·(PC -P A ), PB ·P A =PB ·2PB =2PB 2.(2)①设P (x ,y ),则由条件知M ⎝ ⎛⎭⎪⎫x 2,y 2.由于M 点在C 1上,所以⎩⎪⎨⎪⎧x 2=2cos αy 2=2+2sin α,即⎩⎪⎨⎪⎧x =4cos αy =4+4sin α.从而C 2的参数方程为⎩⎪⎨⎪⎧x =4cos αy =4+4sin α(α为参数). ②曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ.射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3, 射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3. 所以|AB |=|ρ2-ρ1|=2 3.(3)①当m =5时,f (x )≤12即|x -5|+|x +6|≤12, 当x <-6时,得-2x ≤13, 即x ≥-132,所以-132≤x <-6;当-6≤x ≤5时,得11≤12成立,所以-6≤x ≤5; 当x >5时,得2x ≤11, 即x ≤112,所以5<x ≤112.故不等式f (x )≤12的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-132≤x ≤112.②f (x )=|x -m |+|x +6|≥|(x -m )-(x +6)|=|m +6|,由题意得|m +6|≥7,则m +6≥7或m +6≤-7,解得m ≥1或m ≤-13,故m 的取值范围是(-∞,-13]∪[1,+∞).压轴题专练(二)建议用时:40分钟1.如图,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 是椭圆的两个顶点,椭圆的离心率为12,点C 在x 轴上,BC ⊥BF ,B ,C ,F 三点确定的圆M 恰好与直线x +3y +3=0相切.(1)求椭圆的方程;(2)过F 作一条与两坐标轴都不垂直的直线l 交椭圆于P ,Q 两点,在x 轴上是否存在点N ,使得NF 恰好为△PNQ 的内角平分线,若存在,求出点N 的坐标,若不存在,请说明理由.解 (1)由题意可知F (-c,0),∵e =12,∴b =3c ,即B (0,3c ),∵k BF =3c 0-(-c )=3,又∵k BC =-33,∴C (3c,0), 圆M 的圆心坐标为(c,0),半径为2c , 由直线x +3y +3=0与圆M 相切可得|c +3|1+(3)2=2c ,∴c =1.∴椭圆的方程为x 24+y 23=1.(2)假设存在满足条件的点N (x 0,0)由题意可设直线l 的方程为y =k (x +1)(k ≠0), 设P (x 1,y 1),Q (x 2,y 2) ∵NF 为△PNQ 的内角平分线,∴k NP =-k NQ ,即y 1x 1-x 0=-y 2x 2-x 0,∴k (x 1+1)x 1-x 0=-k (x 2+1)x 2-x 0⇒(x 1+1)(x 2-x 0)=-(x 2+1)(x 1-x 0).∴x 0=x 1+x 2+2x 1x 2x 1+x 2+2.又⎩⎨⎧y =k (x +1)x 24+y 23=1,∴3x 2+4k 2(x +1)2=12.∴(3+4k 2)x 2+8k 2x +4k 2-12=0. ∴x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2.∴x 0=-8k 23+4k 2+8k 2-243+4k 22-8k 23+4k 2=-4, ∴存在满足条件的点N ,点N 的坐标为(-4,0).2.[2015·沈阳质监(一)]已知函数f (x )=a ln x (a >0),e 为自然对数的底数.(1)若过点A (2,f (2))的切线斜率为2,求实数a 的值; (2)当x >0时,求证:f (x )≥a ⎝⎛⎭⎪⎫1-1x ;(3)在区间(1,e)上f (x )x -1>1恒成立,求实数a 的取值范围.解 (1)f ′(x )=a x ,f ′(2)=a2=2,a =4. (2)令g (x )=a ⎝ ⎛⎭⎪⎫ln x -1+1x ,g ′(x )=a ⎝ ⎛⎭⎪⎫1x -1x 2.令g ′(x )>0,即a ⎝⎛⎭⎪⎫1x -1x 2>0,解得x >1,所以g (x )在(0,1)上单调递减,在(1,+∞)上单调递增. 所以g (x )的最小值为g (1)=0,所以f (x )≥a ⎝ ⎛⎭⎪⎫1-1x .(3)令h (x )=a ln x +1-x ,则h ′(x )=ax -1,令h ′(x )>0,解得x <a .当a >e 时,h (x )在(1,e)上单调递增,所以h (x )>h (1)=0. 当1<a ≤e 时,h (x )在(1,a )上单调递增,在(a ,e)上单调递减, 所以只需h (e)≥0,即a ≥e -1.当a ≤1时,h (x )在(1,e)上单调递减,则需h (e)≥0, 而h (e)=a +1-e <0,不合题意. 综上,a ≥e -1.3. 选做题(1)[选修4-1:几何证明选讲]如图所示,AB 为圆O 的直径,CD 为圆O 的切线,切点为D ,AD ∥OC .①求证:BC 是圆O 的切线; ②若AD ·OC =2,试求圆O 的半径. (2)[选修4-4:坐标系与参数方程]以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,并在两种坐标系中取相同的单位长度.设圆C :⎩⎪⎨⎪⎧x =2cos θy =2sin θ(θ为参数)上的点到直线l :ρcos ⎝⎛⎭⎪⎫θ-π4=2k 的距离为d . ①当k =3时,求d 的最大值;②若直线l 与圆C 相交,试求k 的取值范围. (3)[选修4-5:不等式选讲] 设f (x )=|x -3|+|2x -4|. ①解不等式f (x )≤4;②若对任意实数x ∈ [5,9],f (x )≤ax -1恒成立,求实数a 的取值范围.解 (1)①证明:如图,连接BD 、OD . ∵CD 是圆O 的切线,∴∠ODC =90°. ∵AD ∥OC ,∴∠BOC =∠OAD . ∵OA =OD ,∴∠OAD =∠ODA . ∴∠BOC =∠DOC .又∵OC =OC ,OB =OD ,∴△BOC ≌△DOC . ∴∠OBC =∠ODC =90°,即OB ⊥BC . ∴BC 是圆O 的切线.②由①知∠OAD =∠DOC ,∴Rt △BAD ∽Rt △COD , ∴AD AB =OD OC .AD ·OC =AB ·OD =2r ×r =2,∴r =1.(2)①由l :ρcos ⎝ ⎛⎭⎪⎫θ-π4=32,得l :ρcos θcos π4+ρsin θsin π4=32,整理得l :x +y -6=0.则d =|2cos θ+2sin θ-6|2=⎪⎪⎪⎪⎪⎪2sin ⎝⎛⎭⎪⎫θ+π4-62∴d max =82=4 2.②将圆C 的参数方程化为普通方程得x 2+y 2=2,直线l 的极坐标方程化为普通方程得x +y -k =0.∵直线l 与圆C 相交,∴圆心O 到直线l 的距离d <2, 即|-k |2<2,解得-2<k <2.(3)①当x <2时,f (x )=7-3x ≤4,得1≤x <2; 当2≤x ≤3时,f (x )=x -1≤4,得2≤x ≤3; 当x >3时,f (x )=3x -7≤4,得3<x ≤113.综上可得不等式f (x )≤4的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1≤x ≤113 ②∵x ∈[5,9],∴f (x )≤ax -1即3x -7≤ax -1, ∴a ≥3-6x ,即a ≥3-69=73.压轴题专练(三)建议用时:40分钟1.[2015·河南洛阳统考]已知椭圆的中心是坐标原点O ,焦点在x 轴上,离心率为22,坐标原点O 到过右焦点F 且斜率为1的直线的距离为22.(1)求椭圆的标准方程;(2)设过右焦点F 且与坐标轴不垂直的直线l 交椭圆于P ,Q 两点,在线段OF 上是否存在点M (m,0),使得|MP |=|MQ |?若存在,求出m 的取值范围;若不存在,请说明理由.解 (1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),F (c,0)(c >0),由坐标原点O 到直线x -y -c =0的距离为22,得|0-0-c |2=22,解得c =1.又e =c a =22,故a =2,b =1. ∴所求椭圆方程为x 22+y 2=1.(2)假设存在点M (m,0)(0<m <1)满足条件,则以MP ,MQ 为邻边的平行四边形是菱形.∵直线l 与x 轴不垂直,∴设直线l 的方程为y =k (x -1)(k ≠0),P (x 1,y 1),Q (x 2,y 2).由⎩⎪⎨⎪⎧x 2+2y 2=2y =k (x -1)可得(1+2k 2)x 2-4k 2x +2k 2-2=0, Δ>0恒成立,∴x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k 2.设线段PQ 的中点为N (x 0,y 0),则x 0=x 1+x 22=2k 21+2k 2,y 0=k (x 0-1)=-k 1+2k 2.∵|MP |=|MQ |,∴MN ⊥PQ ,∴k MN ·k PQ =-1, 即-k1+2k 22k 21+2k 2-m ·k =-1,∴m =k 21+2k 2=12+1k 2.∵k 2>0,∴0<m <12. 2.[2015·九江一模]设函数f (x )=12x 2-(a +b )x +ab ln x (其中e 为自然对数的底数,a ≠e ,b ∈R ),曲线y =f (x )在点(e ,f (e))处的切线方程为y =-12e 2.(1)求b ;(2)若对任意x ∈⎣⎢⎡⎭⎪⎫1e ,+∞,f (x )有且只有两个零点,求a 的取值范围.解 (1)f ′(x )=x -(a +b )+ab x =(x -a )(x -b )x , ∵f ′(e)=0,a ≠e ,∴b =e.(2)由(1)得f (x )=12x 2-(a +e)x +a eln x ,f ′(x )=(x -a )(x -e )x , ①当a ≤1e 时,由f ′(x )>0得x >e ;由f ′(x )<0得1e <x <e.此时f (x )在⎝ ⎛⎭⎪⎫1e ,e 上单调递减,在(e ,+∞)上单调递增.∵f (e)=12e 2-(a +e)e +a eln e =-12e 2<0,f (e 2)=12e 4-(a +e)e 2+2a e =12e(e -2)(e 2-2a )≥12e(e -2)⎝ ⎛⎭⎪⎫e 2-2e >0,(或当x →+∞时,f (x )>0亦可)∴要使得f (x )在⎣⎢⎡⎭⎪⎫1e ,+∞上有且只有两个零点,则只需f ⎝ ⎛⎭⎪⎫1e =12e 2-a +e e +a eln 1e =(1-2e 2)-2e (1+e 2)a2e 2≥0,即a ≤1-2e 22e (1+e 2). ②当1e <a <e 时,由f ′(x )>0得1e <x <a 或x >e ;由f ′(x )<0得a <x <e.此时f (x )在(a ,e)上单调递减,在⎝ ⎛⎭⎪⎫1e ,a 和(e ,+∞)上单调递增.f (a )=-12a 2-a e +a eln a <-12a 2-a e +a eln e =-12a 2<0,∴此时f (x )在⎣⎢⎡⎭⎪⎫1e ,+∞上至多只有一个零点,不合题意.③当a >e 时,由f ′(x )>0得1e <x <e 或x >a ,由f ′(x )<0得e<x <a ,此时f (x ) 在⎝⎛⎭⎪⎫1e ,e 和(a ,+∞)上单调递增,在(e ,a )上单调递减,且f (e)=-12e 2<0,∴f (x )在⎣⎢⎡⎭⎪⎫1e ,+∞上至多只有一个零点,不合题意.综上所述,a 的取值范围为⎝⎛⎦⎥⎤-∞,1-2e 22e (1+e 2). 3.选做题(1)[选修4-1:几何证明选讲]如图,四边形ABCD 内接于圆O ,∠BAD =60°,∠ABC =90°,BC =3,CD =5.求对角线BD 、AC 的长.(2)[选修4-4:坐标系与参数方程]已知直线l 的参数方程为⎩⎨⎧x =12t ,y =1+32t(t 为参数),曲线C 的极坐标方程为ρ=22sin ⎝ ⎛⎭⎪⎫θ+π4,直线l 与曲线C 交于A ,B 两点,与y轴交于点P .①求曲线C 的直角坐标方程; ②求1|P A |+1|PB |的值. (3)[选修4-5:不等式选讲]已知实数m ,n 满足:关于x 的不等式|x 2+mx +n |≤|3x 2-6x -9|的解集为R .①求m ,n 的值;②若a ,b ,c ∈R +,且a +b +c =m -n ,求证:a +b +c ≤ 3. 解 (1)如图,延长DC ,AB交于点E .∵∠BAD =60°,∴∠ECB =60°, ∵∠ABC =90°,BC =3,CD =5,∴∠EBC =90°,∴∠E =30°,∴EC =2BC =2×3=6,∴EB =3BC =33, ∴ED =DC +EC =5+6=11, ∵EC ×ED =EB ×(EB +AB ),则6×11=33×(33+AB ),解得AB =1333, ∴AC =32+⎝⎛⎭⎪⎫13332=1433. ∵∠EDB =∠EAC ,∠E =∠E , ∴△EDB ∽△EAC ,∴BD AC =BECE , ∴BD =AC ·BECE =1433×336=7. (2)①利用极坐标公式,把曲线C 的极坐标方程ρ=22sin ⎝ ⎛⎭⎪⎫θ+π4化为ρ2=2ρsin θ+2ρcos θ,∴普通方程是x 2+y 2=2y +2x , 即(x -1)2+(y -1)2=2.②∵直线l 与曲线C 交于A ,B 两点,与y 轴交于点P ,把直线l 的参数方程⎩⎨⎧x =12t ,y =1+32t代入曲线C 的普通方程 (x -1)2+(y -1)2=2中,得t 2-t -1=0,∴⎩⎪⎨⎪⎧t 1·t 2=-1,t 1+t 2=1, ∴1|P A |+1|PB |=1|t 1|+1|t 2|=|t 1-t 2||t 1t 2|=(t 1+t 2)2-4t 1t 2=12-4×(-1)= 5.(3)①由于解集为R ,那么x =3,x =-1都满足不等式,即有⎩⎪⎨⎪⎧|9+3m +n |≤0|1-m +n |≤0, 即⎩⎪⎨⎪⎧9+3m +n =01-m +n =0,解得m =-2,n =-3, 经验证当m =-2,n =-3时,不等式的解集是R .②证明:a +b +c =1,a +b ≥2ab ,b +c ≥2bc ,c +a ≥2ca , ∴(a +b +c )2=a +b +c +2ab +2bc +2ca ≤3(a +b +c )=3,故a +b +c ≤3(当且仅当a =b =c =13时取等号).压轴题专练(四)建议用时:40分钟1.[2015·九江一模]已知椭圆C 的中心在坐标原点,右焦点为F (7,0),A 、B 分别是椭圆C 的左、右顶点,D 是椭圆C 上异于A 、B 的动点,且△ADB 面积的最大值为12.(1)求椭圆C 的方程;(2)求证:当点P (x 0,y 0)在椭圆C 上运动时,直线l :x 0x +y 0y =2与圆O :x 2+y 2=1恒有两个交点,并求直线l 被圆O 所截得的弦长L 的取值范围.解 (1)设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0), 由已知可得(S △ADB )max =12·2a ·b =ab =12,① ∵F (7,0)为椭圆右焦点,∴a 2=b 2+7,②由①②可得a =4,b =3,∴椭圆C 的方程为x 216+y 29=1.(2)证明:∵P (x 0,y 0)是椭圆上的动点,∴x 2016+y 209=1, ∴y 20=9-9x 2016,∴圆心O 到直线l :x 0x +y 0y =2的距离d =2x 20+y 20=2x 20+9-916x 2=2716x 20+9<1(0≤x 20≤16), ∴直线l :x 0x +y 0y =2与圆O :x 2+y 2=1恒有两个交点, L =2r 2-d 2=21-4716x 20+9(r 为圆x 2+y 2=1的半径),∵0≤x 20≤16,∴9≤716x 20+9≤16,∴253≤L ≤ 3.2.[2015·唐山统考]已知函数f (x )=a e x +x 2,g (x )=sin x +bx ,直线l 与曲线C 1:y =f (x )切于点(0,f (0)),且与曲线C 2:y =g (x )切于点⎝ ⎛⎭⎪⎫π2,g ⎝ ⎛⎭⎪⎫π2.(1)求a ,b 的值和直线l 的方程;(2)证明:除切点外,曲线C 1,C 2位于直线l 的两侧. 解 (1)f ′(x )=a e x +2x ,g ′(x )=cos x +b ,f (0)=a ,f ′(0)=a ,g ⎝ ⎛⎭⎪⎫π2=1+π2b ,g ′⎝ ⎛⎭⎪⎫π2=b , 曲线y =f (x )在点(0,f (0))处的切线方程为y =ax +a ,曲线y =g (x )在点⎝⎛⎭⎪⎫π2,g ⎝ ⎛⎭⎪⎫π2处的切线方程为y =b ⎝ ⎛⎭⎪⎫x -π2+1+π2b ,即y =bx +1. 依题意,有a =b =1,直线l 的方程为y =x +1. (2)证明:由(1)知f (x )=e x +x 2,g (x )=sin x +x .设F (x )=f (x )-(x +1)=e x +x 2-x -1,则F ′(x )=e x +2x -1, 当x ∈(-∞,0)时,F ′(x )<F ′(0)=0; 当x ∈(0,+∞)时,F ′(x )>F ′(0)=0.F (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,故F (x )≥F (0)=0.设G (x )=x +1-g (x )=1-sin x ,则G (x )≥0, 当且仅当x =2k π+π2(k ∈Z )时等号成立.综上可知,f (x )≥x +1≥g (x ),且两个等号不同时成立,因此f (x )>g (x ).所以除切点外,曲线C 1,C 2位于直线l 的两侧. 3.选做题(1)[选修4-1:几何证明选讲]在Rt △ABC 中,∠B =90°,AB =4,BC =3,以AB 为直径作圆O 交AC 于点D .①求线段CD 的长度;②点E 为线段BC 上一点,当点E 在什么位置时,直线ED 与圆O 相切,并说明理由.(2)[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =-5+22t ,y =5+22t(t 为参数),以O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,曲线C 的极坐标方程为ρ=4cos θ.①求曲线C 的直角坐标方程及直线l 的普通方程;②将曲线C 上的所有点的横坐标缩短为原来的12,再将所得曲线向左平移1个单位,得到曲线C 1.求曲线C 1上的点到直线l 的距离的最小值.(3)[选修4-5:不等式选讲]已知a +b =1,对∀a ,b ∈(0,+∞),1a +4b ≥|2x -1|-|x +1|恒成立,求x 的取值范围.解 (1)①连接BD ,在直角三角形ABC 中,易知AC =5,∠BDC =∠ADB =90°,所以∠BDC =∠ABC ,又因为∠C =∠C , 所以Rt △ABC ∽Rt △BDC , 所以CD BC =BC AC ,所以CD =BC 2AC =95.②当点E 是BC 的中点时,ED 与⊙O 相切;证明:连接OD ,∵DE 是Rt △BDC 的中线,∴ED =EB , ∴∠EBD =∠EDB ,∵OB =OD ,∴∠OBD =∠ODB , ∴∠ODE =∠ODB +∠BDE =∠OBD +∠EBD =∠ABC =90°, ∴ED ⊥OD ,∴ED 与⊙O 相切.(2)①曲线C 的直角坐标方程为:x 2+y 2=4x ,即:(x -2)2+y 2=4, 直线l 的普通方程为x -y +25=0.②将曲线C 上的所有点的横坐标缩为原来的12,得 (2x -2)2+y 2=4,即(x -1)2+y 24=1.再将所得曲线向左平移1个单位,得C 1:x 2+y24=1.又曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos θy =2sin θ(θ为参数),设曲线C 1上任一点P (cos θ,2sin θ),则d p →l =|cos θ-2sin θ+25|2=|25-5sin (θ-φ)|2≥102(其中tan φ=12),∴点P 到直线l 的距离的最小值为102. (3)∵a >0,b >0且a +b =1,∴1a +4b =(a +b )⎝ ⎛⎭⎪⎫1a +4b =5+b a +4a b ≥9, 故1a +4b 的最小值为9,因为对a ,b ∈(0,+∞),使1a +4b ≥|2x -1|-|x +1|恒成立, 所以|2x -1|-|x +1|≤9,当x ≤-1时,2-x ≤9,∴-7≤x ≤-1, 当-1<x <12时,-3x ≤9,∴-1<x <12, 当x ≥12时,x -2≤9,∴12≤x ≤11,∴-7≤x ≤11.。