高三物理 专题复习 《功和功率》 《功能关系》(含答案解析)
- 格式:docx
- 大小:1.64 MB
- 文档页数:19
高考物理二轮复习第一部分专题:功 功率和功能关系1.(2018·江苏卷)从地面竖直向上抛出一只小球,小球运动一段时间后落回地面。
忽略空气阻力,该过程中小球的动能E k 与时间t 的关系图像是( )解析 对于整个竖直上抛过程(包括上升与下落),速度与时间的关系为v =v 0-gt ,v2=g 2t 2-2v 0gt +v 20,E k =12mv 2,可见动能与时间是二次函数关系,由数学中的二次函数知识可判断A 正确。
答案 A2.一辆CRH2型动车组的总质量M =2×105kg ,额定输出功率为4 800 kW 。
假设该动车组在水平轨道上运动时的最大速度为270 km/h ,受到的阻力F f 与速度v 满足F f =kv 。
当匀速行驶的速度为最大速度一半时,动车组的输出功率为( )A .600 kWB .1 200 kWC .2 400 kWD .4 800 kW解析 v m =270 km/h =75 m/s ,动车组以最大速度行驶时的牵引力大小F =P v m=4 800×10375N =6.4×104N ,动车组以最大速度行驶时的牵引力大小与阻力的大小相等,则F f =6.4×104N ,所以k =F f v m =6.4×10475N·s/m=853.3 N·s/m;机车匀速行驶的速度为最大速度一半时,v ′=37.5 m/s ,动车组受到的阻力为F f ′=kv ′=853.3×37.5 N=3.2×104N ,机车匀速行驶的速度为最大速度一半时,动车组的输出功率为P ′=F ′v ′=F f ′v ′=3.2×104×37.5 W=1.2×106W =1 200 kW ,故A 、C 、D 错误,B 正确。
答案 B3.(2019·安徽芜湖二模)一质量为m 的物体,同时受几个力的作用而处于静止状态。
功、功率和功能关系专题强化练1.(2019·辽宁省葫芦岛市一模)一辆CRH2型动车组的总质量M =2×105kg ,额定输出功率为4800kW.假设该动车组在水平轨道上运动时的最大速度为270km/h ,受到的阻力F f 与速度v 满足F f =kv .当匀速行驶的速度为最大速度一半时,动车组的输出功率为()A .600kWB .1200kWC .2400kWD .4800kW 【答案】B2.(2019·湖南怀化一模)(多选)质量为2千克的物体,放在水平面上,物体与水平面间的动摩擦因数μ=0.1,在水平拉力的作用下,由静止开始运动,水平拉力做的功W 和物体发生的位移s 之间的关系如图所示,则(g 取10m/s 2)()A .此物体在AB 段做匀加速直线运动B .此物体在AB 段做匀速直线运动C .此物体在OA 段做匀加速直线运动D .此物体在OA 段做匀速直线运动【答案】BC3.(2019·广东省汕头市质检)一质量为m 的汽车原来在平直路面上以速度v 匀速行驶,发动机的输出功率为P .从某时刻开始,司机突然加大油门将汽车发动机的输出功率提升至某个值并保持不变,结果汽车在速度到达2v 之后又开始匀速行驶.若汽车行驶过程所受路面阻力保持不变,不计空气阻力.下列说法正确的是()A .汽车加速过程的最大加速度为P mvB .汽车加速过程的平均速度为32v C .汽车速度从v 增大到2v 过程中做匀加速运动D .汽车速度增大时发动机产生的牵引力不断增大【答案】A【解析】设汽车所受的阻力为F f ,则开始时P =F f v ,加大油门后,P 1=F f ·2v ,则P 1=2P .汽车在开始加大油门时的加速度最大,最大加速度为a m =2P v -F f m =P mv ,选项A 正确;若汽车做匀加速运动,则平均速度为v +2v 2=32v ,但随速度的增加,由P =Fv 可知汽车牵引力减小,则加速度减小,即汽车做加速度减小的加速运动,则平均速度不等于32v ,选项B 、C 、D 错误.4.(2019·江西景德镇一中月考)(多选)如图甲所示,在光滑水平面上叠放着质量均为M =2kg 的A 、B 两个滑块,用随位移均匀减小的水平推力F 推滑块A ,使它们运动,推力F 随位移x 变化的图像如图乙所示.已知两滑块间的动摩擦因数μ=0.3,g 取10m/s 2.下列说法正确的是()A .在运动过程中滑块A 的最大加速度是2.5m/s 2B .在运动过程中滑块B 的最大加速度是3m/s 2C .滑块在水平面上运动的最大位移是3mD .滑块运动的最大速度为5m/s【答案】AD【解析】假设开始时A 、B 相对静止,对整体,根据牛顿第二定律,有F =2Ma ,解得a =F 2M =102×2m/s 2=2.5m/s 2;分析B ,B 受到重力、支持力和A 对B 的摩擦力,根据牛顿第二定律有f =Ma =2×2.5N =5N <μMg =6N ,所以A 、B 不会发生相对滑动,保持相对静止,最大加速度均为2.5m/s 2,故A 正确,B 错误.当F =0时,加速度为0,之后A 、B 做匀速运动,位移继续增大,故C 错误.F -x 图线与x 轴所围的面积表示力F 做的功,W =12×2×10J =10J ,当F =0,即a =0时,A 、B 达到最大速度,对A 、B 整体,根据动能定理有W =12×2Mv 2m -0,代入数据得v m =5m/s ,故D 正确.5.(多选)如图所示,轻质弹簧一端固定,另一端连接一小物块,O 点为弹簧在原长时物块的位置.物块由A 点静止释放,沿粗糙程度相同的水平面向右运动,最远到达B 点.在从A 到B 的过程中,物块()A .加速度先减小后增大B .经过O 点时的速度最大C .所受弹簧弹力始终做正功D .所受弹簧弹力做的功等于克服摩擦力做的功【答案】AD【解析】由A 点开始运动时,F 弹>F f ,合力向右,小物块向右加速运动,弹簧压缩量逐渐减小,F 弹减小,由F 弹-F f =ma 知,a 减小;当运动到F 弹=F f 时,a 减小为零,此时弹簧仍处于压缩状态,由于惯性,小物块继续向右运动,此时F 弹<F f ,小物块做减速运动,且随着压缩量减小,F 弹与F f 差值增大,即加速度增大;当越过O 点后,弹簧被拉伸,此时弹力方向与摩擦力方向相同,有F 弹′+F f =ma ′,随着拉伸量增大,a ′也增大.故从A 到B 过程中,物块加速度先减小后增大,在压缩状态F 弹=F f 时速度达到最大,故A 对,B 错;在AO 段物块运动方向与弹力方向相同,弹力做正功,在OB 段物块运动方向与弹力方向相反,弹力做负功,故C 错;由动能定理知,A 到B 的过程中,弹力做功和摩擦力做功之和为0,故D 对.6.(2019·河北邢台月考)(多选)把质量为0.2kg 的小球放在竖立的弹簧上,并把球向下按至A 位置,如图甲所示.迅速松手后,弹簧把球弹起,球升至最高位置C (图丙),途中经过位置B 时弹簧正好处于自由状态(图乙).已知B 、A 的高度差为0.1m ,C 、B 的高度差为0.2m ,弹簧的质量和空气阻力均可忽略,g 取10m/s 2.则下列说法正确的是()A .小球在A 位置时弹簧的弹性势能等于小球在C 位置的重力势能B .小球到达B 位置时,速度达到最大值2m/sC .小球到达B 位置时,小球机械能最大D .若将弹簧上端与小球焊接在一起,小球将不能到达B 、C 的中点【答案】CD【解析】小球从A 到C 的过程中,系统减少的弹性势能转化为重力势能,所以弹性势能的变化量等于重力势能的变化量,但重力势能的大小与零势能面的选取有关,故A 错误;当小球受到的合力为零时,动能最大,此时弹簧处于压缩状态,故B 错误;从A 到B 的过程中弹簧对小球做正功,所以小球的机械能增加,当弹簧恢复原长时小球机械能达到最大,故C正确;根据题意,若将弹簧上端与小球焊接在一起,B、C中点处的弹性势能与A处的弹性势能相等,根据能量守恒,从A向上运动到最高点的过程中重力势能增加,所以弹性势能必定要减小,即不能到达B、C的中点,故D正确.7.(2019·四川省成都市新都区摸底)(多选)某段滑雪道倾角为30°,滑雪运动员(包括雪具在内)总质量为m,从距底端高为h处由静止开始匀加速下滑,下滑加速度为g3(重力加速度为g).在运动员下滑的整个过程中()A.运动员减少的重力势能全部转化为动能B.运动员克服摩擦力做功为2mgh3C.运动员最后获得的动能为2mgh3D.系统减少的机械能为mgh3【答案】CD【解析】由于运动员下滑的加速度a=13g<g sin30°=12g,所以运动员在下滑过程中受到了摩擦力的作用,摩擦力做负功,因此运动员减少的重力势能转化为动能和内能,故A错误;由牛顿第二定律可知,运动员受到的合力F合=ma=13mg,下落的距离为s=2h,故合力做的功W=F合s =23mgh.由动能定理可知,运动员最后获得的动能为E k=W=23mgh,故C正确;运动员所受合外力F合=mg sin30°-F f=13mg,故摩擦力F f=16mg,摩擦力所做的功W f=-F f s=-13mgh,故克服摩擦力做功为13mgh,故B错误;根据功能关系知,克服摩擦力做的功等于机械能的减小量,故机械能减小了13mgh,故D正确.8.(2019·四川眉山中学月考)(多选)如图所示,质量M=4kg的物块B与质量m=2kg的物块A用一轻质弹簧连接后,置于一倾角θ=37°且足够长的固定光滑斜面上,C 为固定在斜面底部且与斜面垂直的挡板,整个装置处于静止状态.现用一平行于斜面向上、大小恒为F =60N 的拉力作用在物块A 上,使其沿斜面向上运动,当物块B 刚要离开挡板C 时,物块A 运动的距离为x =6m ,则(已知sin 37°=0.6,cos 37°=0.8,g 取10m/s 2)()A .此时物块A 动能的增加量为360JB .整个过程中弹簧弹性势能的增加量为300JC .此时物块A 的加速度大小为12m/s 2D .该轻弹簧的劲度系数为6N/m【答案】CD【解析】在物块A 向上运动6m 的过程中,拉力F 做的功为W F =Fx =360J ,由功能关系可知,拉力F 做的功转化为物块A 增加的动能、重力势能和弹簧的弹性势能,所以物块A 动能的增加量小于360J ,故A 错误;当物块A 静止不动时,设弹簧的压缩量为Δx ,对A 有mg sin 37°=k Δx ,即Δx =mg sin 37°k ,当物块A 运动的距离为x =6m 时,物块B 刚要离开挡板C ,对物块B 进行受力分析,可知Mg sin 37°=k (x -Δx ),代入数据解得k =6N/m ,故D 正确;当物块A 运动的距离为x =6m 时,设物块A 运动的加速度大小为a ,弹簧的伸长量为Δx ′,由牛顿第二定律可得F -mg sin 37°-k Δx ′=ma ,又Δx ′=x -Δx =6m -mg sin 37°k,两式联立并代入数据解得a =12m/s 2,故C 正确;由功能关系可知弹簧弹性势能的增加量ΔE p =W F -mgx sin 37°-ΔE k A ,因W F -mgx sin 37°=360J -72J =288J ,所以整个过程中弹簧弹性势能的增加量小于288J ,故B 错误.9.(多选)如图所示,一个质量为2m 的甲球和一个质量为m的乙球,用长度为2R 的轻杆连接,两个球都被限制在半径为R的光滑圆形竖直轨道上,轨道固定于水平地面.初始时刻,轻杆竖直,且质量为2m 的甲球在上方,此时,受扰动两球开始运动,重力加速度为g ,则下列说法正确的是()A .甲球下滑过程中减少的机械能总等于乙球增加的机械能B .甲球下滑过程中减少的重力势能总等于乙球增加的重力势能C .整个运动过程中甲球的最大速度为233gRD.甲球运动到最低点前,轻杆对乙球一直做正功【答案】ACD【解析】在运动的过程中,重力对系统做正功,甲和乙的动能都增加.由于只有动能和重力势能之间的相互转化,所以甲球下滑过程中减少的机械能总等于乙球增加的机械能,故A正确;在运动的过程中,重力对系统做正功,甲和乙的动能都增加,所以甲球下滑过程中减少的重力势能总大于乙球增加的重力势能,故B错误;当甲到达最低点时,乙也到达了最高点,该过程中系统减小的重力势能等于系统增加的动能,由于两球的线速度相等,设该速度为v,则:2mg·2R-mg·2R=12mv2+12×2mv2,得:v=233gR,故C正确;甲球运动到最低点前,乙的重力势能一直增大,同时乙的动能也一直增大,可知轻杆对乙球一直做正功,故D正确.10.(2019·山东日照一模)冰壶比赛是在水平冰面上进行的体育项目,比赛场地示意图如图所示.比赛时,运动员脚蹬起蹬器,身体成跪式,手推冰壶从本垒圆心O向前滑行,至前卫线时放开冰壶使其沿直线OO′滑向营垒圆心O′,为使冰壶能在冰面上滑的更远,运动员可用毛刷刷冰面以减小冰壶与冰面间的动摩擦因数.已知O点到前卫线的距离d=4m,O、O′之间的距离L=30.0m,冰壶的质量为20kg,冰壶与冰面间的动摩擦因数μ1=0.008,用毛刷刷过冰面后动摩擦因数减小到μ2=0.004,营垒的半径R=1m,g取10m/s2.(1)若不刷冰面,要使冰壶恰好滑到O′点,运动员对冰壶的推力多大?(2)若运动员对冰壶的推力为10N,要使冰壶滑到营垒内,用毛刷刷冰面的距离是多少?【解析】(1)设运动员对冰壶的推力为F,对整个过程,由动能定理得Fd-μ1mgL=0代入数据得F=12N(2)设冰壶运动到营垒的最左边时,用毛刷刷冰面的距离是x1,冰壶运动到营垒的最右边时,用毛刷刷冰面的距离是x2,对冰壶的推力为F′由动能定理得F ′d -μ1mg (L -R -x 1)-μ2mgx 1=0代入数据解得x 1=8m由动能定理得F ′d -μ1mg (L +R -x 2)-μ2mgx 2=0代入数据解得x 2=12m所以要使冰壶滑到营垒内,用毛刷刷冰面的距离是8~12m.【答案】(1)12N (2)8~12m11.(2019·河北省邯郸市质检)如图所示,在水平地面上固定一倾角θ=30°的粗糙斜面,一质量为m 的小物块自斜面底端以一定的初速度沿斜面匀减速上滑高度H 后停止,在上滑的过程中,其加速度和重力加速度g 大小相等.求:(1)小物块与斜面间的动摩擦因数μ;(2)该过程中系统由于摩擦产生的热量Q .【解析】(1)在小物块沿斜面匀减速上滑的过程中,由牛顿第二定律有:mg sin θ+μmg cos θ=ma ,a =g ,解得:μ=33.(2)该过程中,小物块克服摩擦力所做的功为:W =μmg cos θ·H sin θ由功能关系有:Q =W ,解得:Q =mgH .【答案】见解析12.(2019·湖北省武汉市调研)如图,半径为R 的光滑圆轨道固定在竖直平面内,O 为其圆心.一质量为m 的小滑块,在外力F (未画出)的作用下静止在圆轨道上的B 点,OB 与竖直方向的夹角为θ(θ<π2),重力加速度为g .(1)为使小滑块静止在B 点,外力F 的最小值F min 多少?(2)若在B 点撤去力F 的同时,给小滑块一个沿切线方向向的初速度,为使小滑块能滑上圆轨道的最高点C ,求初速度v 0的范围.【解析】(1)为使小滑块静止在B点,外力F最小时其方向垂直于OB向上,大小为:F min=mg sinθ.(2)设小滑块沿圆轨道运动到C点时的速度大小为v C,由牛顿运动定律有mv2CR≥mg小滑块从B点运动到C点,由机械能守恒定律有12mv20=12mv2C+mgR(1+cosθ)联立解得v0【答案】(1)mg sinθ(2)v0。
2025年高考物理一轮复习考点精讲精练—功功率动能定律(解析版)考点一功的分析与计算1.功的正负(1)0≤α<90°,力对物体做正功.(2)90°<α≤180°,力对物体做负功,或者说物体克服这个力做了功.(3)α=90°,力对物体不做功.2.功的计算:W=Fl cos_α(1)α是力与位移方向之间的夹角,l为物体对地的位移.(2)该公式只适用于恒力做功.(3)功是标(填“标”或“矢”)量.[例题1](2024•重庆模拟)关于摩擦力做功,下列说法中正确的是()A.静摩擦力一定不做功B.滑动摩擦力一定做负功C.相互作用的一对静摩擦力做功的代数和可能不为0D.静摩擦力和滑动摩擦力都可做正功【解答】解:A、静摩擦力方向与物体的相对运动趋势方向相反,与运动方向可以相同、相反、垂直,故静摩擦力对物体可以做正功、负功、不做功,故A错误;B、滑动摩擦力方向与物体的相对运动方向相反,与运动方向可以相同、相反、垂直,故滑动摩擦力对物体可以做正功、负功、不做功,故B错误;C、相互作用的一对静摩擦力,由于二者的位移大小一定相等,故做功的代数和一定为零;故C错误;D、根据AB的分析可知静摩擦力和滑动摩擦力均可以做正功;故D正确;故选:D。
[例题2](2024•顺庆区校级一模)如图所示,有一条宽度为800m的小河自西向东流淌,水流速度为v0,各点到较近河岸的距离为x,v0与x之间的关系为v0=0.0075x(均采用国际单位)。
让小船船头垂直河岸由南向北渡河,小船相对于河水的速度恒为v1=4m/s,下列说法正确的选项是()A.小船在水中做类平抛运动B.小船到达北岸时位移大小为100√73mC.小船刚到达北岸时,相对于河岸的速度大小为5m/sD.小船在行驶过程中,水流一直对小船做正功【解答】解:A、小船的运动可以分解为垂直于河岸的速度为v1=4m/s的匀速直线运动和沿水流的分运动,则垂直于河岸的方向上有x=v1t沿水流方向上有v0=0.0075x解得v0=0.0075v1t可知,沿水流方向上的分速度与时间成正比,即加速度大小为a=0.0075v1=0.03m/s2由于x为各点到较近河岸的距离,即小船沿水流方向先做匀加速直线运动,后做匀减速直线运动,所以小船先做类平抛运动,后做类斜抛运动,故A错误;B、小船到达河中央前做类平抛运动,根据运动规律可知:d=v1t0,y0=12at022x0=√d2+(2y0)2解得小船到达北岸时位移大小为x0=100√73m故B正确;C、小船先做类平抛运动,后做类斜抛运动,根据对运动的称性可知,小船刚到达北岸时,沿水流方向的分速度恰好等于0,所以相对于河岸的速度大小为v1=4m/s,方向垂直于河岸,故C错误;D、根据上述可知,沿水流方向做匀加速直线运动,后做匀减速直线运动,即小船在行驶过程中,水流对小船先做正功后做负功,故D错误。
专题四 功能关系知识梳理一、功和功率 1、功〔1〕恒力的功:W=Fscosθ 〔2〕变力的功W=Pt 2、功率:tWP=Fvcos θ 〔1〕当v 为即时速度时,对应的P 为即时功率; 〔2〕当v 为平均速度时,对应的P 为平均功率 二、 动能定理1、 定义:合外力所做的总功等于物体动能的变化量.2、 表达式:三、 机械能守恒定律 1、条件:〔1〕对单个物体,只有重力或弹力做功.〔2〕对某一系统,物体间只有动能和重力势能及弹性势能相互转化,系统跟外界没有发生机械能的传递, 机械能也没有转变成其它形式的能(如没有内能产生),那么系统的机械能守恒. 2、 表达式 四、 能量守恒定律专题测试一、选择题(每题4分,共44分)1.用水平力F 拉一物体,使物体在水平地面上由静止开始做匀加速直线运动,t 1时刻撤去拉力F ,物体做匀减速直线运动,到t 2时刻停止,其速度—时间图象如图1所示,且α>β,假设拉力F 做的功为W 1,平均功率为P 1;物体克服摩擦阻力F f 做的功为W 2,平均功率为P 2,那么以下选项正确的选项是 ( ) A .W 1>W 2;F =2F f B .W 1=W 2;F>2F f C .P 1>P 2;F>2F fD .P 1=P 2;F =2F f2.如图2所示,滑块A 、B 的质量均为m ,A 套在固定竖直杆上,A 、B 通过转轴用长度为L 的刚性轻杆连接,B 放在水平面上并靠着竖直杆,A 、B 均静止.由于微小的扰动,B 开始沿水平面向右运动.不计一切摩擦,滑块A 、B 视为质点.在A 下滑的过程中,以下说法中正确的选图1项是( )A .A 、B 组成的系统机械能守恒 B .在A 落地之前轻杆对B 一直做正功C .A 运动到最低点时的速度的大小为2gLD .当A 的机械能最小时,B 对水平面的压力大小为2mg3.如图3所示,足够长的传送带以恒定速率沿顺时针方向运转.现将一个物体轻轻放在传送带底端,物体第一阶段被加速到与传送带具有相同的速度,第二阶段匀速运动到传送带顶端.那么以下说法中正确的选项是( )A .第一阶段和第二阶段摩擦力对物体都做正功B .第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加量C .第二阶段摩擦力对物体做的功等于第二阶段物体机械能的增加量D .两个阶段摩擦力对物体所做的功等于物体机械能的减少量4.如图4所示,均匀带正电的圆环水平放置,AB 为过圆心O 的竖直轴线.一带正电的微粒(可视为点电荷),从圆心O 正上方某处由静止释放向下运动,不计空气阻力.在运动的整个过程中,以下说法中正确的选项是 ( ) A .带电微粒的加速度可能一直增大 B .带电微粒的电势能可能一直减小 C .带电微粒的动能可能一直增大 D .带电微粒的运动轨迹可能关于O 点对称5.如图5所示为测定运发动体能的装置,轻绳拴在腰间沿水平线跨过定滑轮(不计滑轮的质量与摩擦),轻绳的另一端悬重为G 的物体.设人的重心相对地面不动,人用力向后蹬传送带,使水平传送带以速率v 逆时针转动.那么 ( ) A .人对重物做功,功率为GvB .人对传送带的摩擦力大小等于G ,方向水平向左C .在时间t 内人对传送带做功消耗的能量为GvtD .假设增大传送带的速度,人对传送带做功的功率不变6.如图6所示,有一光滑的半径可变的14圆形轨道处于竖直平面内,圆心O 点离地高度为H .现调节轨道半径,让一可视为质点的小球a 从与O 点等高的轨道最高点由静止沿轨道下落,使小球离开轨道后运动的水平位移S 最大,那么小球脱离轨道最低点时的速度大小应为( ) A. gHB. gH3C.2gH3D.4gH 37.一辆质量为m 的卡车在平直的公路上,以初速度v 0开始加速行驶,经过一段时间t ,卡图3图4 图5图6车前进的距离为s 时,恰好到达最大速度v m .在这段时间内,卡车发动机的输出功率恒为P ,卡车运动中受到的阻力大小恒为F ,那么这段时间内发动机对卡车做的功为( ) A .Pt B .FsC .Fv m tD. 12mv m 2+Fs -12mv02 8.如图7所示,处于真空中的匀强电场与水平方向成15°角,AB 直线与匀强电场E 垂直,在A 点以大小为v 0的初速度水平抛出一质量为m 、电荷量为+q 的小球,经时间t ,小球下落一段距离过C 点(图中未画出)时速度大小仍为v 0,在小球由A 点运动到C 点的过程中,以下说法正确的选项是( )A .电场力对小球做功为零B .小球的电势能减小C .小球的电势能增量大于mg 2t 2/2 D .C 可能位于AB 直线的左侧9.如图8所示,一形状为抛物线的光滑曲面轨道置于竖直平面内,轨道的下半部处在一个垂直纸面向外的磁场中,磁场的上边界是y =a 的直线(图中虚线所示),一个小金属环从抛物线上y =b (b >a )处以速度v 沿抛物线下滑.假设抛物线足够长,且不计空气阻力,那么金属环沿抛物线运动的整个过程中损失的机械能的总量ΔE 为 ( ) A .假设磁场为匀强磁场,ΔE =mg (b -a )+12mv 2B .假设磁场为匀强磁场,ΔE =mg (b -a )C .假设磁场为非匀强磁场,ΔE =12mv 2D .假设磁场为非匀强磁场,ΔE =mgb +12mv 210.如图9所示,一粗糙的平行金属轨道平面与水平面成θ角,两轨道上端用一电阻R 相连,该装置处于匀强磁场中,磁场方向垂直轨道平面向上.质量为m 的金属杆ab 以初速度v 0从轨道底端向上滑行,滑行到某高度h 后又返回到底端.假设运动过程中金属杆始终保持与导轨垂直且接触良好,轨道与金属杆的电阻均忽略不计.那么以下说法正确的选项是( ) A .金属杆ab 上滑过程与下滑过程通过电阻R 的电量一样多B .金属杆ab 上滑过程中克服重力、安培力与摩擦力所做功之和等于12mv 2C .金属杆ab 上滑过程与下滑过程因摩擦而产生的内能不一定相等D .金属杆ab 在整个过程中损失的机械能等于装置产生的热量 11.如图10所示,空间存在水平向左的匀强电场和垂直纸面向里的水平匀强磁场.在该区域中,有一个竖直放置的光滑绝缘圆环,环上套有一个带正电的小球.O图7图8图9点为圆环的圆心,a、b、c、d为圆环上的四个点,a点为最高点,c点为最低点,bd沿水平方向.小球所受电场力与重力大小相等.现将小球从环的顶端a点由静止释放.以下判断正确的选项是( )A.小球能越过与O等高的d点并继续沿环向上运动B.当小球运动到c点时,洛伦兹力最大C.小球从a点到b点,重力势能减小,电势能增大D.小球从b点运动到c点,电势能增大,动能先增大后减小二、实验题(12、13题各6分,共12分)12.(6分)“探究功与物体速度变化的关系〞的实验如图11所示,当小车在一条橡皮筋作用下弹出时,橡皮筋对小车做的功记为W.当用2条、3条……完全相同的橡皮筋并在一起进行第2次、第3次……实验时,使每次实验中橡皮筋伸长的长度都保持一致.每次实验中小车获得的速度由打点计时器所打的纸带测出.图11(1)(2分)除了图中已有的实验器材外,还需要导线、开关、__________(填测量工具)和________电源(填“交流〞或“直流〞).(2)(2分)假设木板水平放置,小车在两条橡皮筋作用下运动,当小车的速度最大时,关于橡皮筋所处的状态与小车所在的位置,以下说法正确的选项是________.A.橡皮筋处于原长状态B.橡皮筋仍处于伸长状态C.小车在两个铁钉的连线处D.小车已过两个铁钉的连线(3)(2分)在正确操作情况下,打在纸带上的点并不都是均匀的,如图12所示.为了测量小车获得的速度,应选用纸带的________局部进行测量(根据下面所示的纸带答复,并用字母表示).图1213.(6分)用如图13所示的实验装置验证机械能守恒定律.重锤由静止开始落下,重锤上拖着的纸带通过打点计时器打出一系列的点,对纸带上的点进行测量,即可验证机械能守恒定律.(1)下面列举了该实验的几个操作步骤:A.按照图示装置安装好器材B.将打点计时器接到直流电源上C.先松开悬挂纸带的夹子,后接通电源打出一条纸带D.根据测量的结果计算重锤下落过程中减少的重力势能是否等于增加的动能图13 指出其中没有必要进行的或者操作不恰当的步骤,将其选项对应的字母填写在下面的空行内.________________________________________________________________________ (2)利用这个装置可以测量重锤下落的加速度的数值.如图14所示,根据打出的纸带,选取纸带上打出的连续五个点A 、B 、C 、D 、E ,测量出A 点距打下的第一个点O 距离为x 0,点A 、C 间的距离为x 1、点C 、E 间的距离为x 2,使用交流电的频率为f ,那么根据这些条件计算重锤下落的加速度的表达式为a =________,打C 点时重锤的速度v =________.图14三、解答题(14题11分,15题14分,16题18分,共44分)14.(上海卷第31题).(12 分)如图,质量2m kg =的物体静止于水平地面的A 处,A 、B 间距L =20m 。
高三物理复习——功功率和功能关系[专题复习定位]1.解决问题本专题主要培养学生应用功能关系分析和解决问题的能力.2.高考重点功和功率的分析与计算;动能定理的应用;机械能和能量守恒定律的应用;功能关系的理解和应用.3.题型难度以选择题为主,一般考查功和功率的分析、动能定理的应用以及功能关系的理解,题目难度较大.1.几种力做功的特点(1)重力、弹簧弹力、静电力做功与路径无关.(2)摩擦力做功的特点①单个摩擦力(包括静摩擦力和滑动摩擦力)可以做正功,也可以做负功,还可以不做功.②相互作用的一对静摩擦力做功的代数和总等于零,在静摩擦力做功的过程中,只有机械能的转移,没有机械能转化为其他形式的能;相互作用的一对滑动摩擦力做功的代数和不为零,且总为负值.在一对滑动摩擦力做功的过程中,不仅有相互摩擦的物体间机械能的转移,还有部分机械能转化为内能,转化为内能的量等于系统机械能的减少量,等于滑动摩擦力与相对位移的乘积.③摩擦生热是指滑动摩擦生热,静摩擦不会生热.2.几个重要的功能关系(1)重力的功等于重力势能减少量,即W G=-ΔE p.(2)弹力的功等于弹性势能减少量,即W弹=-ΔE p.(3)合力的功等于动能的变化,即W=ΔE k.(4)重力(或系统内弹簧弹力)之外的其他力的功等于机械能的变化,即W其他=ΔE.(5)系统内一对滑动摩擦力做的功是系统内能改变的量度,即Q=F f·x相对.1.功和功率的求解(1)功的求解:W=Fl cos α用于恒力做功,变力做功可以用动能定理或者图象法来求解.(2)功率的求解:可以用定义式P =W t来求解,如果力是恒力,可以用P =F v cos α来求解. 2.动能定理的应用技巧若运动包括几个不同的过程,可以全程或者分过程应用动能定理.例1 (多选)(2019·山东菏泽市下学期第一次模拟)如图1所示,半径为R 的半圆弧槽固定在水平地面上,槽口向上,槽口直径水平,一个质量为m 的物块从P 点由静止释放刚好从槽口A 点无碰撞地进入槽中,并沿圆弧槽匀速率地滑行到最低点B 点,不计物块的大小,P 点到A 点高度为h ,重力加速度大小为g ,则下列说法正确的是( )图1A .物块从P 到B 过程克服摩擦力做的功为mg (R +h )B .物块从A 到B 过程重力的平均功率为2mg 2gh πC .物块在B 点时对槽底的压力大小为(R +2h )mg RD .物块到B 点时重力的瞬时功率为mg 2gh答案 BC解析 物块从A 到B 过程做匀速圆周运动,根据动能定理有mgR -W f =0,因此克服摩擦力做功W f =mgR ,A 项错误;根据机械能守恒,物块到A 点时的速度大小由mgh =12m v 2得v =2gh ,从A 到B 运动的时间t =12πR v =πR 22gh,因此从A 到B 过程中重力的平均功率为P =W t =2mg 2gh π,B 项正确;物块在B 点时,根据牛顿第二定律F N -mg =m v 2R,求得F N =(R +2h )mg R ,根据牛顿第三定律可知,F N ′=F N =(R +2h )mg R,C 项正确;物块到B 点时,速度的方向与重力方向垂直,因此重力的瞬时功率为零,D 项错误.拓展训练1 (2020·山东等级考模拟卷·3)我国自主研制的绞吸挖泥船“天鲲号”达到世界先进水平.若某段工作时间内,“天鲲号”的泥泵输出功率恒为1×104 kW,排泥量为 1.4 m 3/s ,排泥管的横截面积为0.7 m2.则泥泵对排泥管内泥浆的推力为() A.5×106 N B.2×107 NC.2×109 N D.5×109 N答案A解析由排泥量和排泥管横截面积可求排泥速度v=1.4 m3/s0.7 m2=2 m/s.由P=F v可得F=P v=1×107 W2 m/s=5×106 N.拓展训练2(2019·北京市东城区二模)我国自主研制、具有自主知识产权的新一代喷气式客机C919首飞成功后,拉开了全面试验试飞的新征程.如图2,飞机在水平跑道上的滑跑可视作初速度为零的匀加速直线运动,当位移x=1.6×103 m时才能达到起飞所要求的速度v=80 m/s.已知飞机质量m=7.0×104 kg,滑跑时受到的阻力恒为自身重力的0.1倍,重力加速度g取10 m/s2,求飞机滑跑过程中:图2(1)飞机的加速度a的大小;(2)飞机受到平均牵引力的大小;(3)飞机受到牵引力的平均功率P.答案(1)2 m/s2(2)2.1×105 N(3)8.4×106 W解析(1)由题意知,飞机滑跑过程中做初速度为零的匀加速直线运动,由:v2=2ax代入数据,解得:a=2 m/s2(2)设飞机滑跑受到的阻力大小为F f,则F f=0.1mg由牛顿第二定律:F-F f=ma代入数据,解得:F=2.1×105 N(3)设飞机滑跑过程中的平均速度为v,则v=v 2在滑跑阶段,牵引力的平均功率:P=F v 解得P=8.4×106 W.。
绝密★启用前高考物专题五考点范围:功和功率;动能和动能定;重力做功与重力势能;功能关系、机械能守恒定律及其应用一、选择题(本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,有的只有一个选项符合题目要求,有的有多个选项符合题目要求。
全部选对的得4分,选对但不全的得2分,有选错的得0分。
)1.关于机械能下列说法中正确的是 ( )A .做匀速运动的物体,其机械能一定守恒B .做匀加速运动的物体,其机械能可能守恒.如果合外力对物体做功为零,物体的机械能可能增加 D .只要有摩擦力存在,机械能一定减少2.测定运动员体能的一种装置如右图所示,运动员的质量为1,绳栓在腰间沿水平方向跨过滑轮(不计滑轮摩擦与质量),悬挂重物2。
人用力蹬传送带而人的重心不动,使传送带以速率v 向右运动,下面四种说法正确的是 ( )A .人对传送带不做功B .人对传送带做正功 .传送带对人做负功D .人对传送带做功的功率为2gv3.如右图所示,质量为的物体在与水平方向成θ的恒力F 作用下以加速度做匀加速度直线运动,已知物体和地面间的动摩擦因为μ,物体在地面上运动距离为的过程中力F 做功为 ( )A .μmgxB .()θμx μg a m tan 1-+.()θμx μg a m tan 1+-D .θμμmgx tan 1+4.如右图所示,物体受到水平推力F 的作用在粗糙水平面上做直线运动。
监测到推力F 、物体速度v 随时间变的规律如图所示。
取g =10/2,则 ( )A .第1内推力做功为1JB .第2内物体克服摩擦力做的功W =20J .第15时推力F 的功率为2WD .第2内推力F 做功的平均功率W 51.P =5.把动力装置分散安装在每节车厢上,使其既具有牵引动力,又可以载客,这样的客车车辆叫做动车。
而动车组是几节自带动力的车辆(动车)加几节不带动力的车辆(也叫拖车)编成一组,如右图所示,假设动车组运行过程中受到的阻力与其所受重力成正比,每节动车与拖车的质量都相等,每节动车的额定功率都相等。
高考物理专题复习——功能关系综合运用(附参考答案)知识点归纳:一、动能定理1.动能定理的表述合外力做的功等于物体动能的变化。
(这里的合外力指物体受到的所有外力的合力,包括重力)。
表达式为W=ΔE K动能定理也可以表述为:外力对物体做的总功等于物体动能的变化。
实际应用时,后一种表述比较好操作。
不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功2.对外力做功与动能变化关系的理解:外力对物体做正功,物体的动能增加,这一外力有助于物体的运动,是动力;外力对物体做负功,物体的动能减少,这一外力是阻碍物体的运动,是阻力,外力对物体做负功往往又称物体克服阻力做功.功是能量转化的量度,外力对物体做了多少功;就有多少动能与其它形式的能发生了转化.所以外力对物体所做的功就等于物体动能的变化量.即.3.应用动能定理解题的步骤(1)确定研究对象和研究过程。
和动量定理不同,动能定理的研究对象只能是单个物体,如果是系统,那么系统内的物体间不能有相对运动。
(原因是:系统内所有内力的总冲量一定是零,而系统内所有内力做的总功不一定是零)。
(2)对研究对象进行受力分析。
(研究对象以外的物体施于研究对象的力都要分析,含重力)。
(3)写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负)。
如果研究过程中物体受力情况有变化,要分别写出该力在各个阶段做的功。
(4)写出物体的初、末动能。
(5)按照动能定理列式求解。
二、机械能守恒定律1.机械能守恒定律的两种表述(1)在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。
(2)如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。
2.对机械能守恒定律的理解:(1)机械能守恒定律的研究对象一定是系统,至少包括地球在内。
通常我们说“小球的机械能守恒”其实一定也就包括地球在内,因为重力势能就是小球和地球所共有的。
2023年新高考物理考试热点7 功 功率 功能关系1.(2021·山东卷·3)如图1所示,粗糙程度处处相同的水平桌面上有一长为L 的轻质细杆,一端可绕竖直光滑轴O 转动,另一端与质量为m 的小木块相连.木块以水平初速度v 0出发,恰好能完成一个完整的圆周运动.在运动过程中,木块所受摩擦力的大小为( )图1 A.m v 022πLB.m v 024πLC.m v 028πLD.m v 0216πL答案 B解析 在运动过程中,只有摩擦力做功,而摩擦力做功与路径有关,根据动能定理-f ·2πL =0-12m v 02,可得摩擦力的大小f =m v 024πL,故选B. 2.(2021·广东东莞市高三期末)如图2所示,质量为m 的物体静止在地面上,物体上面连着一个轻弹簧,用手拉住弹簧上端向上移动H ,将物体缓缓提高h ,拉力F 做功W F ,不计弹簧的质量,已知重力加速度为g ,则下列说法正确的是( )图2A .重力做功-mgh ,重力势能减少mghB .弹力做功-W F ,弹性势能增加W FC .重力势能增加mgh ,弹性势能增加FHD .重力势能增加mgh ,弹性势能增加W F -mgh答案 D解析 由题知重物缓慢上升h ,则重力做功为W G =-mgh ,重力势能增加mgh ,整个过程,根据功能关系有W F +W 弹+W G =0,解得W 弹=mgh -W F ,故弹性势能增加ΔE p =-W 弹=W F -mgh ,故选D.3.(多选)(2021·河北邯郸市一模)如图3所示,一固定斜面的倾角为30°,一质量为m 的小物块自斜面底端以一定的初速度沿斜面向上做匀减速运动,加速度大小等于0.8g (g 为重力加速度大小),物块上升的最大高度为H ,则此过程中( )图3A .物块的重力势能减少了mgHB .物块的动能损失了1.6mgHC .物块的机械能损失了0.8mgHD .物块克服摩擦力做功0.6mgH答案 BD解析 重力做功-mgH ,说明物块的重力势能增加了mgH ,故A 错误;由动能定理可知W=-ma H sin 30°=-1.6mgH ,说明物块的动能损失了1.6mgH ,故B 正确;在上升过程中,动能减少了1.6mgH ,而重力势能增加了mgH ,故机械能损失了0.6mgH ,故C 错误;设物块克服摩擦力做功为W 克f ,由动能定理可得W =-mgH -W 克f =-1.6mgH ,解得W 克f =0.6mgH ,故D 正确.4.(2021·河北廊坊市高三期末)一质量为m 的小球,从地面附近的某高度处以初速度v 水平抛出,除重力外小球还受一水平恒力作用,经过一段时间,小球的速度大小变为2v ,方向竖直向下,小球还未到达地面.在此过程中( )A .小球的动能增加了12m v 2 B .小球的重力势能减少了2m v 2C .小球的机械能增加了2m v 2D .水平恒力做功的大小大于重力做功的大小答案 B解析 小球的动能增加了ΔE k 增=12m (2v )2-12m v 2=32m v 2,故A 错误;小球在竖直方向做自由落体运动,设小球下落的高度为h ,则(2v )2=2gh ,小球的重力势能减少了ΔE p 减=mgh ,解得ΔE p 减=2m v 2,故B 正确;设水平恒力做功为W F ,小球下落过程根据动能定理得W F +mgh =12m (2v )2-12m v 2,即W F +2m v 2=12m ·(2v )2-12m v 2,解得W F =-12m v 2,故小球的机械能减少了12m v 2,重力做功的大小等于重力势能的减少量即为2m v 2,则水平恒力做功的大小小于重力做功的大小,故C 、D 错误.5.(2021·安徽马鞍山市高三一模)一辆质量为m 的汽车在水平路面上以速度v 匀速行驶,此时发动机功率为P ,汽车运动中所受阻力恒定不变.当汽车功率突然变为34P 的瞬间,此时加速度大小为( )A .0 B.P 4m v C.3P 4m v D.P m v答案 B解析 汽车匀速行驶时,有F =F f ,P =F v ,汽车功率突然变为34P 的瞬间,牵引力发生变化,速度不变,则有34P =F ′v ,由牛顿第二定律有F f -F ′=ma ,联立解得a =P 4m v,所以B 正确,A 、C 、D 错误.6.(多选)(2021·河北张家口市一模)2020年12月25日,国产C919大型客机飞抵呼伦贝尔海拉尔东山国际机场,开展高寒试验试飞专项任务.已知此客机质量为m ,起飞前,在平直的水泥路上从静止开始沿直线加速,经过时间t 速度达到v ,此过程飞机发动机输出功率恒为P ,所受阻力恒为F f ,那么在这段时间内( )A .飞机做匀加速运动,加速度大小为v tB .飞机位移大小为Pt F f -m v 22F fC .飞机受到的合外力所做的功为PtD .飞机受到的阻力所做的功为m v 22-Pt 答案 BD解析 对飞机受力分析有P v -F f =ma ,随着速度增大,合力减小,加速度减小,所以飞机做变加速运动,A 错误;根据动能定理得W 合=Pt -F f s =12m v 2,解得s =Pt F f -m v 22F f,飞机受到的阻力所做的功为-F f s =m v 22-Pt ,B 、D 正确,C 错误. 7.(多选)如图4所示,一根足够长的圆管竖直固定在地面上,管内有一劲度系数为k =10 N/m 的轻质弹簧,弹簧上端连有质量可以忽略的活塞,下端连有质量为m =0.1 kg 的小球(小球直径小于管径),已知活塞与管壁间的最大静摩擦力f =1.4 N ,弹簧从自然长度开始伸长x 的过程中平均弹力为F =12kx ,最大静摩擦力等于滑动摩擦力,重力加速度大小g =10 m/s 2.当弹簧处于自然长度时由静止释放小球,在小球第一次运动到最低点的过程中( )图4A.小球先做加速度减小的加速运动,再做加速度增大的减速运动直到静止B.弹簧的最大伸长量为0.14 mC.当小球运动到最低点时,弹簧的弹性势能为0.098 JD.活塞克服摩擦力做的功为0.105 J答案BC解析小球的重力为G=mg=1 N,当弹簧的弹力等于小球的重力时有kx0=mg,得x0=0.10 m,小球开始向下运动的过程中弹簧逐渐变长,弹簧的弹力增大,开始时小球的重力大于弹簧的弹力,小球向下做加速运动,加速度随弹簧长度的增大而减小;当弹簧的弹力大于重力时,小球开始做减速运动,加速度随弹簧长度的增大而增大,小球做加速度增大的减速运动;当弹簧的弹力等于活塞受到的最大静摩擦力时,活塞开始运动,弹簧不再增长;弹簧最长时有kx m=f,所以x m=0.14 m,所以小球在开始下降的0.1 m内做加速运动,在0.1 m到0.14 m 内做减速运动,在弹簧伸长0.14 m时,小球仍然有向下的速度,此后小球继续向下运动,由于活塞受到的摩擦力不变,所以小球做加速度不变的减速运动,直到小球到达最低点.由以上分析可知,A错误,B正确;小球到达最低点时弹簧的弹性势能等于克服弹力做的功,即E p=F·x m=12kx m2=0.098 J,C正确;小球下降0.14 m时,有mgx m-E p=12m v2,小球继续下降的过程中弹簧的长度不变,所以弹簧弹力不做功,重力和摩擦力做功,则mgΔx-fΔx=0-12m v2,W克f=fΔx,联立解得W克f=0.147 J,故D错误.8.(多选)(2020·山东卷·11)如图5所示,质量为M的物块A放置在光滑水平桌面上,右侧连接一固定于墙面的水平轻绳,左侧通过一倾斜轻绳跨过光滑定滑轮与一竖直轻弹簧相连.现将质量为m的钩码B挂于弹簧下端,当弹簧处于原长时,将B由静止释放,当B下降到最低点时(未着地),A对水平桌面的压力刚好为零.轻绳不可伸长,弹簧始终在弹性限度内,物块A始终处于静止状态.以下判断正确的是()图5A.M<2mB.2m<M<3mC.在B从释放位置运动到最低点的过程中,所受合力对B先做正功后做负功D.在B从释放位置运动到速度最大的过程中,B克服弹簧弹力做的功等于B机械能的减少量答案ACD解析由题意知,B在开始位置到最低点之间做简谐运动,则最低点时弹簧弹力F T=2mg;对物块A,设左侧绳子与桌面间夹角为θ,依题意有:2mg sin θ=Mg,则M<2m,故A正确,B错误.B从释放到最低点过程中,开始时弹簧弹力小于重力,B加速,合力做正功;后来弹簧弹力大于重力,B减速,合力做负功,故C正确.对B,从释放到速度最大过程中,系统的机械能守恒,B机械能的减少量等于弹簧弹性势能的增加量,即等于B克服弹簧弹力所做的功,故D正确.。
压轴题03功和功率、功能关系专题1.本专题是功能关系的典型题型,包括功和功率、机车启动问题、动能定理及其应用、功能关系机械能守恒定律含功和能的综合题。
是历年高考考查的热点。
2.通过本专题的复习,可以培养同学们的用功能关系解决问题的能力,提高学生物理核心素养和关键能力。
3.用到的相关知识有:功和功率的求解,如何求变力做功,动能定理、机械能守恒定律功能关系的灵活运用等。
实践中包括体育运动中功和功率问题,风力发电功率计算,蹦极运动、过山车等能量问题,汽车启动问题,生活、生产中能量守恒定律的应用等。
要求考生在探究求解变力做功的计算,机车启动问题,单物体机械能守恒,用绳、杆连接的系统机械能守恒问题,含弹簧系统机械能守恒问题,传送带、板块模型的能量等问题的过程中,形成系统性物理思维,对做功是能量转化的量度这一功能观点有更深刻的理解。
考向一:变力功的求解求变力做功的五种方法质量为m 的木块在水平面内做圆周运动,运动一周克服摩擦力做功W f =F f ·Δx 1+F f ·Δx 2+F f ·Δx 3+…=F f (Δx 1+Δx 2+Δx 3+…)=F f ·2πR恒力F 把物块从A 拉到B ,绳子对物块做功W =F ·(hsin α-hsin β)一水平拉力拉着一物体在水平面上运动的位移为x 0,F -x图线与横轴所围面积表示拉力所做的功,W =F 0+F 12x 0平均值法当力与位移为线性关系,力可用平均值F =F 1+F 22表示,W =F Δx ,可得出弹簧弹性势能表达式为E p =12k (Δx )2应用动能定理用力F 把小球从A 处缓慢拉到B 处,F 做功为W F ,则有:W F -mgL (1-cos θ)=0,得W F =mgL (1-cos θ)考向二:机车启动问题1.两种启动方式P2.三个重要关系式(1)无论哪种启动过程,机车的最大速度都为v m =P F 阻。
复习备考建议1.能量观点是高中物理三大观点之一,是历年高考必考内容;或与直线运动、平抛运动、圆周运动结合,或与电场、电磁感应结合,或与弹簧、传送带、板块连接体等结合;或借助选择题单独考查功、功率、动能定理、功能关系的理解,或在计算题中考查动力学与能量观点的综合应用,难度较大.2.对于动量问题,可以只在选择题中出现,考查动量守恒定律、动量定理的基本应用,也可在计算题中出现,特别是动量与动力学、能量结合、综合性强、难度高,应加大训练.第4课时 功和功率 功能关系 考点功、功率的分析与计算1.恒力功的计算(1)单个恒力的功 W =Fl cos α.(2)合力为恒力的功①先求合力,再求W =F 合l cos α.②W =W 1+W 2+….2.变力功的计算(1)若力大小恒定,且方向始终沿轨迹切线方向,可用力的大小跟路程的乘积计算.(2)力的方向不变,大小随位移线性变化可用W =F l cos α计算.(3)F -l 图象中,功的大小等于“面积”.(4)求解一般变力做的功常用动能定理.3.功率的计算(1)P =W t,适用于计算平均功率; (2)P =F v ,若v 为瞬时速度,则P 为瞬时功率;若v 为平均速度,则P 为平均功率. 注意:力F 与速度v 方向不在同一直线上时功率为F v cos θ.例1 (多选)(2019·山西晋中市适应性调研)如图1甲所示,足够长的固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,沿杆方向给环施加一个拉力F ,使环由静止开始运动,已知拉力F 及小环速度v 随时间t 变化的规律如图乙、丙所示,重力加速度g 取10 m/s 2.则以下判断正确的是( )图1A .小环的质量是1 kgB .细杆与地面间的倾角是30°C .前3 s 内拉力F 的最大功率是2.25 WD .前3 s 内拉力对小环做功5.75 J答案 AD解析 由速度-时间图象得到环先匀加速上升,然后匀速运动,由题图可得:第1 s 内,a =Δv t =0.51m/s 2=0.5 m/s 2,加速阶段:F 1-mg sin θ=ma ;匀速阶段:F 2-mg sin θ=0,联立以上三式解得:m =1 kg ,sin θ=0.45,故A 正确,B 错误;第1 s 内,速度不断变大,拉力的瞬时功率也不断变大,第1 s 末,P =F v 1=5×0.5 W =2.5 W ;第1 s 末到第3 s 末,P =F v 1=4.5×0.5 W =2.25 W ,即拉力的最大功率为2.5 W ,故C 错误;从速度-时间图象可以得到,第1 s 内的位移为0.25 m,1~3 s 内的位移为1 m ,前3 s 内拉力做的功为:W =5×0.25 J +4.5× 1 J =5.75 J ,故D 正确.变式训练1.(2020·山东等级考模拟卷·3)我国自主研制的绞吸挖泥船“天鲲号”达到世界先进水平.若某段工作时间内,“天鲲号”的泥泵输出功率恒为1×104 kW ,排泥量为1.4 m 3/s ,排泥管的横截面积为0.7 m 2.则泥泵对排泥管内泥浆的推力为( )A .5×106 NB .2×107 NC .2×109 ND .5×109 N答案 A解析 由排泥量和排泥管横截面积可求排泥速度v =1.4 m 3/s 0.7 m2=2 m/s.由P =F v 可得F =P v =1×107 W 2 m/s =5×106 N.2.(多选)(2019·福建龙岩市期末质量检查)如图2所示,在竖直平面内有一条不光滑的轨道ABC ,其中AB 段是半径为R 的14圆弧,BC 段是水平的.一质量为m 的滑块从A 点由静止滑下,最后停在水平轨道上C 点,此过程克服摩擦力做功为W 1.现用一沿着轨道方向的力推滑块,使它缓慢地由C 点推回到A 点,此过程克服摩擦力做功为W 2,推力对滑块做功为W ,重力加速度为g ,则下列关系中正确的是( )图2A .W 1=mgRB .W 2=mgRC .mgR <W <2mgRD .W >2mgR答案 AC解析 滑块由A 到C 的过程,由动能定理可知mgR -W 1=0,故A 对;滑块由A 到B 做圆周运动,而在推力作用下从C 经过B 到达A 的过程是一个缓慢的匀速过程,所以从A 到B 的过程中平均支持力大于从B 到A 的平均支持力,那么摩擦力从A 到B 做的功大于从B 到A 做的功,而两次经过BC 段摩擦力做功相等,故W 2<W 1=mgR ,故B 错;滑块由C 到A 的过程中,由能量守恒可知,推力对滑块做的功等于滑块重力势能增加量与克服摩擦力所做的功两部分,即W -mgR -W 2=0,即W =W 1+W 2,由于 W 2<W 1=mgR ,所以mgR <W <2mgR ,故C 对,D 错. 考点功能关系的理解和应用1.几个重要的功能关系 (1)重力做的功等于重力势能的减少量,即W G =-ΔE p . (2)弹力做的功等于弹性势能的减少量,即W 弹=-ΔE p .(3)合力做的功等于动能的变化量,即W =ΔE k .(4)重力(或系统内弹力)之外的其他力做的功等于机械能的变化量,即W 其他=ΔE .(5)系统内一对滑动摩擦力做的功是系统内能改变的量度,即Q =F f ·x 相对.2.理解(1)做功的过程就是能量转化的过程,不同形式的能量发生相互转化可以通过做功来实现.(2)功是能量转化的量度,功和能的关系,一是体现在不同性质的力做功对应不同形式的能转化,二是做功的多少与能量转化的多少在数值上相等.3.应用(1)分析物体运动过程中受哪些力,有哪些力做功,有哪些形式的能发生变化.(2)列动能定理或能量守恒定律表达式.例2(多选)(2019·全国卷Ⅱ·18)从地面竖直向上抛出一物体,其机械能E总等于动能E k与重力势能E p之和.取地面为重力势能零点,该物体的E总和E p随它离开地面的高度h的变化如图3所示.重力加速度取10 m/s2.由图中数据可得()图3A.物体的质量为2 kgB.h=0时,物体的速率为20 m/sC.h=2 m时,物体的动能E k=40 JD.从地面至h=4 m,物体的动能减少100 J答案AD解析根据题图图像可知,h=4 m时物体的重力势能mgh=80 J,解得物体质量m=2 kg,抛出时物体的动能为E k0=100 J,由公式E k0=12m v2可知,h=0时物体的速率为v=10 m/s,选项A正确,B错误;由功能关系可知F f h=|ΔE总|=20 J,解得物体上升过程中所受空气阻力F f=5 N,从物体开始抛出至上升到h=2 m的过程中,由动能定理有-mgh-F f h=E k-100 J,解得E k=50 J,选项C错误;由题图图像可知,物体上升到h=4 m时,机械能为80 J,重力势能为80 J,动能为零,即从地面上升到h=4 m,物体动能减少100 J,选项D正确.变式训练3.2018年2月13日,平昌冬奥会女子单板滑雪U形池项目中,我国选手刘佳宇荣获亚军,为我国夺得此届冬奥会首枚奖牌.如图4为U形池模型,其中A、B为U形池两侧边缘,C 为U形池最低点,U形池轨道各处粗糙程度相同.运动员(可看成质点)在池边高h处自由下落由左侧进入池中,从右侧飞出后上升的最大高度为h2,下列说法正确的是()图4A .运动员再次进入池中后,能够冲出左侧边缘A 然后返回B .运动员再次进入池中后,刚好到达左侧边缘A 然后返回C .由A 到C 过程与由C 到B 过程相比,运动员损耗机械能相同D .由A 到C 过程与由C 到B 过程相比,前一过程运动员损耗机械能较小答案 A解析 运动员由h 处自由下落,到右侧h 2高度,损失的机械能ΔE =mg h 2.运动员受到的摩擦力与正压力成正比,由圆周运动的规律可知,运动员返回时比开始进入时的平均速率要小,平均摩擦力要小,则阻力做功小于mg h 2,故能冲出A 点,选项A 正确,B 错误,同理,A 到C 过程比C 到B 过程平均速率大,平均摩擦力大,运动员损耗机械能大,故C 、D 错误.4.(多选)(2018·安徽安庆市二模)如图5所示,一运动员穿着飞行装备从飞机上跳出后的一段运动过程可近似认为是匀变速直线运动,运动方向与水平方向成53°角,运动员的加速度大小为3g 4.已知运动员(包含装备)的质量为m ,则在运动员下落高度为h 的过程中,下列说法正确的是(sin 53°=45,cos 53°=35)( )图5A .运动员重力势能的减少量为35mgh B .运动员动能的增加量为34mgh C .运动员动能的增加量为1516mgh D .运动员的机械能减少了116mgh 答案 CD解析 运动员下落的高度是h ,则重力做功:W =mgh ,所以运动员重力势能的减少量为mgh ,故A 错误;运动员下落的高度是h ,则飞行的距离:L =h sin 53°=54h ,运动员受到的合外力:F 合=ma =34mg ,动能的增加量等于合外力做的功,即:ΔE k =W 合=F 合L =34mg ×54h =1516mgh ,故B 错误,C 正确;运动员重力势能的减少量为mgh ,动能的增加量为1516mgh ,所以运动员的机械能减少了116mgh ,故D 正确. 考点动能定理的应用1.表达式:W 总=E k2-E k1.2.五点说明 (1)W 总为物体在运动过程中所受各力做功的代数和.(2)动能变化量E k2-E k1一定是物体在末、初两状态的动能之差.(3)动能定理既适用于直线运动,也适用于曲线运动.(4)动能定理既适用于恒力做功,也适用于变力做功.(5)力可以是各种性质的力,既可以同时作用,也可以分阶段作用.3.基本思路(1)确定研究对象和研究过程.(2)进行运动分析和受力分析,确定初、末速度和各力做功情况,利用动能定理全过程或者分过程列式.4.在功能关系中的应用(1)对于物体运动过程中不涉及加速度和时间,而涉及力和位移、速度的问题时,一般选择动能定理,尤其是曲线运动、多过程的直线运动等.(2)动能定理也是一种功能关系,即合外力做的功(总功)与动能变化量一一对应.例3 如图6所示,在地面上竖直固定了刻度尺和轻质弹簧,弹簧原长时上端与刻度尺上的A 点等高.质量m =0.5 kg 的篮球静止在弹簧正上方,其底端距A 点的高度h 1=1.10 m ,篮球由静止释放,测得第一次撞击弹簧时,弹簧的最大形变量x 1=0.15 m ,第一次反弹至最高点,篮球底端距A 点的高度h 2=0.873 m ,篮球多次反弹后静止在弹簧的上端,此时弹簧的形变量x 2=0.01 m ,弹性势能为E p =0.025 J .若篮球运动时受到的空气阻力大小恒定,忽略篮球与弹簧碰撞时的能量损失和篮球形变,弹簧形变在弹性限度范围内,g 取10 m/s 2.求:图6(1)弹簧的劲度系数;(2)篮球在运动过程中受到的空气阻力的大小;(3)篮球在整个运动过程中通过的路程.答案(1)500 N/m(2)0.50 N(3)11.05 m解析(1)由最后静止的位置可知kx2=mg,所以k=500 N/m(2)由动能定理可知,在篮球由静止下落到第一次反弹至最高点的过程中mgΔh-F f·L=12m v22-12m v12整个过程动能变化为0,重力做功mgΔh=mg(h1-h2)=1.135 J空气阻力大小恒定,作用距离为L=h1+h2+2x1=2.273 m故可得F f≈0.50 N(3)整个运动过程中,空气阻力一直与运动方向相反根据动能定理有mgΔh′+W f+W弹=12m v2′2-12m v12整个过程动能变化为0,重力做功mgΔh′=mg(h1+x2)=5.55 J弹力做功W弹=-E p=-0.025 J则空气阻力做功W f=-mgΔh′-W弹=-5.525 J因W f=-F f s故解得s=11.05 m.变式训练5.(2019·全国卷Ⅲ·17)从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用.距地面高度h在3 m以内时,物体上升、下落过程中动能E k随h的变化如图7所示.重力加速度取10 m/s2.该物体的质量为()图7A.2 kg B.1.5 kg C.1 kg D.0.5 kg答案 C解析设物体的质量为m,则物体在上升过程中,受到竖直向下的重力mg和竖直向下的恒定外力F,当Δh=3 m时,由动能定理结合题图可得-(mg+F)×Δh=(36-72) J;物体在下落过程中,受到竖直向下的重力mg和竖直向上的恒定外力F,当Δh=3 m时,再由动能定理结合题图可得(mg-F)×Δh=(48-24) J,联立解得m=1 kg、F=2 N,选项C正确,A、B、D均错误.6.由相同材料的木板搭成的轨道如图8所示,其中木板AB、BC、CD、DE、EF…的长均为L=1.5 m,木板OA和其他木板与水平地面的夹角都为β=37°,sin 37°=0.6,cos 37°=0.8,g取10 m/s2.一个可看成质点的物体在木板OA上从离地高度h=1.8 m处由静止释放,物体与木板间的动摩擦因数都为μ=0.2,在两木板交接处都用小曲面相连,使物体能顺利地经过,既不损失动能,也不会脱离轨道,在以后的运动过程中,求:(最大静摩擦力等于滑动摩擦力)图8(1)物体能否静止在木板上?请说明理由.(2)物体运动的总路程是多少?(3)物体最终停在何处?并作出解释.答案(1)不能理由见解析(2)11.25 m(3)C点解释见解析解析(1)物体在木板上时,重力沿木板方向的分力为mg sin β=0.6mg最大静摩擦力F fm=μmg cos β=0.16mg因mg sin β>μmg cos β,故物体不会静止在木板上.(2)从物体开始运动到停下,设总路程为s,由动能定理得mgh-μmgs cos β=0解得s=11.25 m(3)假设物体依次能到达B、D点,由动能定理得mg(h-L sin β)-μmg cos β(L+hsin β)=12m v B2解得v B>0mg(h-L sin β)-μmg cos β(3L+hsin β)=12m v D2v D无解说明物体能通过B点但不能到达D点,因物体不能静止在木板上,故物体最终停在C点.考点动力学与能量观点的综合应用1.两个分析(1)综合受力分析、运动过程分析,由牛顿运动定律做好动力学分析.(2)分析各力做功情况,做好能量的转化与守恒的分析,由此把握各运动阶段的运动性质,各连接点、临界点的力学特征、运动特征、能量特征.2.四个选择(1)当物体受到恒力作用发生运动状态的改变而且又涉及时间时,一般选择用动力学方法解题;(2)当涉及功、能和位移时,一般选用动能定理、机械能守恒定律、功能关系或能量守恒定律解题,题目中出现相对位移时,应优先选择能量守恒定律;(3)当涉及细节并要求分析力时,一般选择牛顿运动定律,对某一时刻的问题选择牛顿第二定律求解;(4)复杂问题的分析一般需选择能量的观点、运动与力的观点综合分析求解.例4(2019·河北邯郸市测试)如图9所示,一根轻弹簧左端固定于竖直墙上,右端被质量m =1 kg可视为质点的小物块压缩而处于静止状态,且弹簧与物块不拴接,弹簧原长小于光滑平台的长度.在平台的右端有一传送带,AB长L=5 m,物块与传送带间的动摩擦因数μ1=0.2,与传送带相邻的粗糙水平面BC长s=1.5 m,它与物块间的动摩擦因数μ2=0.3,在C点右侧有一半径为R的光滑竖直圆弧轨道与BC平滑连接,圆弧对应的圆心角为θ=120°,在圆弧的最高点F处有一固定挡板,物块撞上挡板后会以原速率反弹回来.若传送带以v=5 m/s 的速率顺时针转动,不考虑物块滑上和滑下传送带的机械能损失.当弹簧储存的E p=18 J能量全部释放时,小物块恰能滑到与圆心等高的E点,取g=10 m/s2.图9(1)求右侧圆弧的轨道半径R;(2)求小物块最终停下时与C点的距离;(3)若传送带的速度大小可调,欲使小物块与挡板只碰一次,且碰后不脱离轨道,求传送带速度的可调节范围.答案 (1)0.8 m (2)13m (3)37 m/s ≤v ≤43 m/s 解析 (1)物块被弹簧弹出,由E p =12m v 02,可知: v 0=6 m/s因为v 0>v ,故物块滑上传送带后先减速,物块与传送带相对滑动过程中,由:μ1mg =ma 1,v =v 0-a 1t 1,x 1=v 0t 1-12a 1t 12 得到:a 1=2 m/s 2,t 1=0.5 s ,x 1=2.75 m因为x 1<L ,故物块与传送带同速后相对静止,最后物块以5 m/s 的速度滑上水平面BC ,物块滑离传送带后恰到E 点,由动能定理可知:12m v 2=μ2mgs +mgR 代入数据得到:R =0.8 m.(2)设物块从E 点返回至B 点的速度大小为v B ,由12m v 2-12m v B 2=μ2mg ·2s 得到v B =7 m/s ,因为v B >0,故物块会再次滑上传送带,物块在恒定摩擦力的作用下先减速至0再反向加速,由运动的对称性可知,物块以相同的速率离开传送带,经分析可知最终在BC 间停下,设最终停在距C 点x 处,由12m v B 2=μ2mg (s -x ),代入数据解得:x =13m. (3)设传送带速度为v 1时物块恰能到F 点,在F 点满足mg sin 30°=m v F 2R从B 到F 过程中由动能定理可知:-μ2mgs -mg (R +R sin 30°)=12m v F 2-12m v 12 解得:v 1=37 m/s设传送带速度为v 2时,物块撞挡板后返回能再次上滑恰到E 点,由12m v 22=μ2mg ·3s +mgR 解得:v 2=43 m/s若物块在传送带上一直加速运动,由12m v B m 2-12m v 02=μ1mgL知其到B 点的最大速度v B m =56 m/s 若物块在E 、F 间速度减为0,则物块将脱离轨道.综合上述分析可知,只要传送带速度37 m/s ≤v ≤43 m/s 就满足条件.变式训练7.(2019·山东青岛二中上学期期末)如图10所示,O 点距水平地面的高度为H =3 m ,不可伸长的细线一端固定在O 点,另一端系一质量m =2 kg 的小球(可视为质点),另一根水平细线一端固定在墙上A 点,另一端与小球相连,OB 线与竖直方向的夹角为37°,l <H ,g 取10 m/s 2,空气阻力不计.(sin 37°=0.6,cos 37°=0.8)图10(1)若OB 的长度l =1 m ,剪断细线AB 的同时,在竖直平面内垂直OB 的方向上,给小球一个斜向下的冲量,为使小球恰好能在竖直平面内做完整的圆周运动,求此冲量的大小;(2)若先剪断细线AB ,当小球由静止运动至最低点时再剪断OB ,小球最终落地,求OB 的长度l 为多长时,小球落地点与O 点的水平距离最远,最远水平距离是多少.答案 (1)246 kg·m/s (2)1.5 m 355 m 解析 (1)要使小球恰好能在竖直平面内做完整的圆周运动,最高点需满足:mg =m v 2l从B 点到最高点,由动能定理有:-mg (l +l cos 37°)=12m v 2-12m v 02 联立得一开始的冲量大小为I =m v 0=246 kg·m/s (2)从剪断AB 到小球至(H -l )高度过程,设小球至(H -l )高度处的速度为v 0′,由机械能守恒可得12m v 0′2=mgl (1-cos 37°) 小球从(H -l )高度做初速度为v 0′的平抛运动,12gt 2=H -l x =v 0′t联立得,x =45(-l 2+3l ) 当l =1.5 m 时x 取最大值,为355 m.专题突破练级保分练1.(2019·山东烟台市上学期期末)如图1所示,把两个相同的小球从离地面相同高度处,以相同大小的初速度v分别沿竖直向上和水平向右方向抛出,不计空气阻力.则下列说法中正确的是()图1A.两小球落地时速度相同B.两小球落地时,重力的瞬时功率相同C.从小球抛出到落地,重力对两小球做的功相等D.从小球抛出到落地,重力对两小球做功的平均功率相等答案 C解析两小球运动过程中均只有重力做功,故机械能都守恒,由机械能守恒定律得,两小球落地时的速度大小相同,但方向不同,故A错误;两小球落地时,由于竖直方向的分速度不同,故重力的瞬时功率不相同,故B错误;由重力做功公式W=mgh得,从开始运动至落地,重力对两小球做功相同,故C正确;从抛出至落地,重力对两小球做的功相同,但是落地的时间不同,故重力对两小球做功的平均功率不相同,故D错误.2.(2019·河北张家口市上学期期末)如图2所示,运动员跳伞将经历加速下降和减速下降两个过程,在这两个过程中,下列说法正确的是()图2A.运动员先处于超重状态后处于失重状态B.空气浮力对系统始终做负功C.加速下降时,重力做功大于系统重力势能的减小量D.任意相等的时间内系统重力势能的减小量相等答案 B解析 运动员先加速向下运动,处于失重状态,后减速向下运动,处于超重状态,选项A 错误;空气浮力与运动方向总相反,则对系统始终做负功,选项B 正确;无论以什么运动状态运动,重力做功都等于系统重力势能的减小量,选项C 错误;因为是变速运动,相等的时间内,因为系统下降的高度不相等,则系统重力势能的减小量不相等,选项D 错误.3.(2019·河南驻马店市上学期期终)一物体在竖直向上的恒力作用下,由静止开始上升,到达某一高度时撤去外力.若不计空气阻力,则在整个上升过程中,物体的机械能E 随时间t 变化的关系图象是( )答案 A解析 设物体在恒力作用下的加速度为a ,机械能增量为:ΔE =F Δh =F ·12at 2,知此时E -t 图象是开口向上的抛物线;撤去外力后的上升过程中,机械能守恒,则机械能不随时间改变,故A 正确,B 、C 、D 错误.4.(多选)(2018·广东揭阳市一模)如图3,第一次,小球从粗糙的14圆形轨道顶端A 由静止滑下,到达底端B 时的速度为v 1,克服摩擦力做功为W 1;第二次,同一小球从底端B 以v 2冲上圆形轨道,恰好能到达A 点,克服摩擦力做功为W 2,则( )图3A .v 1可能等于v 2B .W 1一定小于W 2C .小球第一次运动机械能增加了D .小球第一次经过圆弧某点C 的速率小于它第二次经过同一点C 的速率答案 BD5.一名外卖送餐员用电动自行车沿平直公路行驶给客户送餐,中途因电瓶“没电”,只能改用脚蹬车以5 m/s 的速度匀速前行,骑行过程中所受阻力大小恒为车和人总重力的0.02倍(取g =10 m/s 2),该送餐员骑电动自行车以5 m/s 的速度匀速前行过程做功的功率最接近( )A .10 WB .100 WC .1 kWD .10 kW答案 B解析 设送餐员和车的总质量为100 kg ,匀速行驶时的速率为5 m/s ,匀速行驶时的牵引力与阻力大小相等,F =0.02mg =20 N ,则送餐员骑电动自行车匀速行驶时的功率为P =F v =100 W ,故B 正确.6.(多选)如图4所示,楔形木块abc 固定在水平面上,粗糙斜面ab 和光滑斜面bc 与水平面的夹角相同,顶角b 处安装一定滑轮.质量分别为M 、m (M >m )的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中( )图4A .两滑块组成的系统机械能守恒B .轻绳对m 做的功等于m 机械能的增加量C .重力对M 做的功等于M 动能的增加量D .两滑块组成的系统机械能的损失等于M 克服摩擦力做的功答案 BD7.(多选)(2019·四川第二次诊断)如图5甲所示,质量m =1 kg 的物块在平行斜面向上的拉力F 作用下从静止开始沿斜面向上运动,t =0.5 s 时撤去拉力,其1.5 s 内的速度随时间变化关系如图乙所示,g 取10 m/s 2.则( )图5A .0.5 s 时拉力功率为12 WB .0.5 s 内拉力做功9 JC .1.5 s 后物块可能返回D .1.5 s 后物块一定静止答案 AC解析 0~0.5 s 内物体的位移:x 1=12×0.5×2 m =0.5 m ;0.5~1.5 s 内物体的位移:x 2=12×1× 2 m =1 m ;由题图乙知,各阶段加速度的大小:a 1=4 m/s 2,a 2=2 m/s 2;设斜面倾角为θ,斜面对物块的动摩擦因数为μ,根据牛顿第二定律,0~0.5 s 内F -μgm cos θ-mg sin θ=ma 1;0.5~1.5 s内-μmg cos θ-mg sin θ=-ma2,联立解得:F=6 N,但无法求出μ和θ.0.5 s时,拉力的功率P=F v=12 W,故A正确.拉力做的功为W=Fx1=3 J,故B错误.无法求出μ和θ,不清楚tan θ与μ的大小关系,故无法判断物块能否静止在斜面上,故C正确,D错误.8.(多选)(2019·安徽安庆市期末调研监测)如图6所示,重力为10 N的滑块轻放在倾角为30°的光滑斜面上,从a点由静止开始下滑,到b点接触到一个轻质弹簧,滑块压缩弹簧到c点开始弹回,返回b点离开弹簧,最后又回到a点.已知ab=1 m,bc=0.2 m,则以下结论正确的是()图6A.整个过程中弹簧弹性势能的最大值为6 JB.整个过程中滑块动能的最大值为6 JC.从c到b弹簧的弹力对滑块做功5 JD.整个过程中弹簧、滑块与地球组成的系统机械能守恒答案AD解析滑块从a到c, mgh ac+W弹′=0-0解得:W弹′=-6 J.则E pm=-W弹′=6 J所以整个过程中弹簧弹性势能的最大值为6 J,故A正确;当滑块受到的合外力为0时,滑块速度最大,设滑块在d点合外力为0,由分析可知d点在b 点和c点之间.滑块从a到d有:mgh ad+W弹=E k d-0因mgh ad<6 J,W弹<0所以E k d<6J,故B错误;从c点到b点弹簧的弹力对滑块做的功与从b点到c点弹簧的弹力对滑块做的功大小相等,即为6 J,故C错误;整个过程中弹簧、滑块与地球组成的系统机械能守恒,没有与系统外发生能量转化,故D正确.9.(多选)如图7所示,滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b放在地面上.a、b通过铰链用刚性轻杆连接,由静止开始运动.不计摩擦,a、b可视为质点,重力加速度大小为g.则()图7A.a落地前,轻杆对b一直做正功B.a落地时速度大小为2ghC.a下落过程中,其加速度大小始终不大于gD.a落地前,当a的机械能最小时,b对地面的压力大小为mg答案BD解析滑块b的初速度为零,末速度也为零,所以轻杆对b先做正功,后做负功,选项A错误;以滑块a、b及轻杆组成的系统为研究对象,系统的机械能守恒,当a刚落地时,b的速度为零,则mgh=12+0,即v a=2gh,选项B正确;a、b的先后受力如图甲、乙所示,2m v a由a的受力图可知,a下落过程中,其加速度大小先小于g后大于g,选项C错误;当a落地前b的加速度为零(即轻杆对b的作用力为零)时,b的机械能最大,a的机械能最小,这时b受重力、支持力,且F N b=mg,由牛顿第三定律可知,b对地面的压力大小为mg,选项D 正确.级争分练10.(2019·吉林“五地六校”合作体联考)一辆赛车在水平路面上由静止启动,在前5 s内做匀加速直线运动,5 s末达到额定功率,之后保持以额定功率运动.其v-t图象如图8所示.已知赛车的质量为m=1×103 kg,赛车受到的阻力为车重力的0.1倍,重力加速度g取10 m/s2,则以下说法正确的是()图8A .赛车在前5 s 内的牵引力为5×102 NB .赛车速度为25 m /s 时的加速度为5 m/s 2C .赛车的额定功率为100 kWD .赛车的最大速度为80 m/s答案 C解析 匀加速直线运动的加速度大小为:a =Δv Δt =205 m/s 2=4 m/s 2,根据牛顿第二定律得:F -F f =ma ,解得牵引力为:F =F f +ma =0.1×1×103×10 N +1×103×4 N =5×103 N ,故A 错误;额定功率为:P =F v =5 000×20 W =100 000 W =100 kW.当车的速度是25 m/s 时,牵引力:F ′=P v ′=100 00025 N =4 000 N ,车的加速度:a ′=F ′-F f m =4 000-0.1×1×1041×103m/s 2=3 m/s 2,故B 错误,C 正确;当牵引力与阻力相等时,速度最大,最大速度为:v m =P F =P F f=100 0001 000m/s =100 m/s ,故D 错误. 11.(2019·福建泉州市期末质量检查)如图9所示,四分之一圆弧AB 和半圆弧BC 组成的光滑轨道固定在竖直平面内,A 、C 两端点等高,直径BC 竖直,圆弧AB 的半径为R ,圆弧BC的半径为R 2.一质量为m 的小球从A 点上方的D 点由静止释放,恰好沿A 点切线方向进入并沿轨道运动,不计空气阻力,重力加速度大小为g .图9(1)要使小球能运动到C 点,D 、A 两点间的高度差h 至少为多大?(2)改变h ,小球通过C 点后落到圆弧AB 上的最小动能为多少?答案 (1)R 4 (2)32mgR 解析 (1)设小球刚好通过C 点的速度为v ,则。