第一章 函数 极限 连续
- 格式:ppt
- 大小:1.62 MB
- 文档页数:94
第一章 函数、极限和连续§ 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=fx, x ∈D定义域: Df, 值域: Zf.2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y 3.隐函数: Fx,y= 04.反函数: y=fx → x=φy=f -1y y=f -1 x定理:如果函数: y=fx, Df=X, Zf=Y 是严格单调增加或减少的; 则它必定存在反函数:y=f -1x, Df -1=Y, Zf -1=X且也是严格单调增加或减少的;㈡ 函数的几何特性1.函数的单调性: y=fx,x ∈D,x 1、x 2∈D 当x 1<x 2时,若fx 1≤fx 2,则称fx 在D 内单调增加 ;若fx 1≥fx 2,则称fx 在D 内单调减少 ;若fx 1<fx 2,则称fx 在D 内严格单调增加 ;若fx 1>fx 2,则称fx 在D 内严格单调减少 ;2.函数的奇偶性:Df 关于原点对称 偶函数:f-x=fx 奇函数:f-x=-fx3.函数的周期性:周期函数:fx+T=fx, x ∈-∞,+∞ 周期:T ——最小的正数4.函数的有界性: |fx|≤M , x ∈a,b ㈢ 基本初等函数1.常数函数: y=c , c 为常数2.幂函数: y=x n , n 为实数3.指数函数: y=a x , a >0、a ≠14.对数函数: y=log a x ,a >0、a ≠15.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=fu , u=φxy=f φx , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算加、减、乘、除和复合所构成的,并且能用一个数学式子表示的函数§ 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:Aynn =∞→lim称数列{}n y 以常数A 为极限; 或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界.2.函数的极限:⑴当∞→x 时,)(x f 的极限:⑵当0x x →时,)(x f 的极限:左极限:Ax f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件:定理:AxfxfAxfxxxxxx==⇔=+-→→→)(lim)(lim)(lim㈡无穷大量和无穷小量1.无穷大量:+∞=)(lim xf称在该变化过程中)(xf为无穷大量;X再某个变化过程是指:2.无穷小量:)(lim=xf称在该变化过程中)(xf为无穷小量;3.无穷大量与无穷小量的关系:定理:)0)((,)(1lim)(lim≠+∞=⇔=xfxfxf4.无穷小量的比较:lim,0lim==βα⑴若lim=αβ,则称β是比α较高阶的无穷小量;⑵若c=αβlimc为常数,则称β与α同阶的无穷小量;⑶若1lim=αβ,则称β与α是等价的无穷小量,记作:β~α;⑷若∞=αβlim ,则称β是比α较低阶的无穷小量; 定理:若:;,2211~~βαβα则:2121limlim ββαα=㈢两面夹定理1. 数列极限存在的判定准则:设:n n n z x y ≤≤ n=1、2、3…且: a z y n n n n ==∞→∞→lim lim则: a x n n =∞→lim2. 函数极限存在的判定准则: 设:对于点x 0的某个邻域内的一切点 点x 0除外有:且:Ax h x g x x x x ==→→)(lim )(lim 0则:A x f x x =→)(lim 0㈣极限的运算规则若:B x v A x u ==)(lim ,)(lim则:①B A x v x u x v x u ±=±=±)(lim )(lim )]()(lim[②B A x v x u x v x u ⋅=⋅=⋅)(lim )(lim )]()(lim[③BA x v x u x v x u ==)(lim )(lim )()(lim )0)((lim ≠x v 推论:①)]()()(lim [21x u x u x u n ±±±②)(lim )](lim[x u c x u c ⋅=⋅③nnx u x u )]([lim )](lim [=㈤两个重要极限1.1sin lim 0=→xxx 或 1)()(sin lim 0)(=→x x x ϕϕϕ 2.e xxx =+∞→)11(lim e x xx =+→10)1(lim§ 连续一、主要内容㈠ 函数的连续性 1. 函数在0x 处连续:)(x f 在0x 的邻域内有定义,1o 0)]()([lim lim 000=-∆+=∆→∆→∆x f x x f y x x2o)()(lim 00x f x f x x =→左连续:)()(lim 00x f x f x x =-→右连续:)()(lim 00x f x f x x =+→2. 函数在0x 处连续的必要条件:定理:)(x f 在0x 处连续⇒)(x f 在0x 处极限存在3. 函数在0x 处连续的充要条件:定理:)()(lim )(lim )()(lim 000x f x f x f x f x f x x x x x x ==⇔=+-→→→4. 函数在[]b a ,上连续:)(x f 在[]b a ,上每一点都连续;在端点a 和b 连续是指:)()(lim a f x f ax =+→ 左端点右连续;)()(lim b f x f b x =-→ 右端点左连续;a + 0b - x 5. 函数的间断点:若)(x f 在0x 处不连续,则0x 为)(x f 的间断点;间断点有三种情况:1o)(x f在0x 处无定义;2o)(lim 0x f x x →不存在;3o)(x f在0x 处有定义,且)(lim 0x f x x →存在,但)()(lim 00x f x f x x ≠→;两类间断点的判断: 1o 第一类间断点:特点:)(lim 0x f x x -→和)(lim 0x f x x +→都存在;可去间断点:)(lim 0x f x x →存在,但)()(lim 00x f x f x x ≠→,或)(x f在0x 处无定义;2o 第二类间断点:特点:)(lim 0x f x x -→和)(lim 0x f x x +→至少有一个为∞,或)(lim 0x f x x →振荡不存在;无穷间断点:)(lim 0x f x x -→和)(lim 0x f x x +→至少有一个为∞㈡函数在0x 处连续的性质1.连续函数的四则运算:设)()(lim 00x f x f x x =→,)()(lim 00x g x g x x =→1o)()()]()([lim 000x g x f x g x f x x ±=±→2o)()()]()([lim 000x g x f x g x f x x ⋅=⋅→3o)()()()(lim 000x g x f x g x f x x =→ ⎪⎭⎫ ⎝⎛≠→0)(lim 0x g x x2. 复合函数的连续性:则:)]([)](lim [)]([lim 00x f x f x f x x x x ϕϕϕ==→→3.反函数的连续性:㈢函数在],[b a 上连续的性质1.最大值与最小值定理:)(x f 在],[b a 上连续⇒)(x f 在],[b a 上一定存在最大值与最小值;fx0 a b xm-M0 ab x2.有界定理:) (xf在],[ba上连续⇒)(x f在],[b a上一定有界;3.介值定理:) (xf在],[ba上连续⇒在),(b a内至少存在一点ξ,使得:cf=)(ξ,其中:Mcm≤≤y yCfx0 a ξm0 a ξ1 ξ2 b x 推论:)(x f 在],[b a 上连续,且)(a f 与)(b f 异号⇒在),(b a 内至少存在一点ξ,使得:0)(=ξf ;4.初等函数的连续性:初等函数在其定域区间内都是连续的; 第二章 一元函数微分学 § 导数与微分 一、主要内容 ㈠导数的概念1.导数:)(x f y =在0x 的某个邻域内有定义, 2.左导数:00)()(lim )(0x x x f x f x f x x --='-→- 右导数:00)()(lim )(0x x x f x f x f x x --='+→+ 定理:)(x f 在0x 的左或右邻域上连续在其内可导,且极限存在;则:)(lim )(00x f x f x x '='-→-或:)(lim )(00x f x f x x '='+→+3.函数可导的必要条件:定理:)(x f 在0x 处可导⇒)(x f 在0x 处连续4. 函数可导的充要条件:定理:)(00x f y x x '='=存在)()(00x f x f +-'='⇒,且存在;5.导函数: ),(x f y '=' ),(b a x ∈)(x f 在),(b a 内处处可导; y )(0x f '6.导数的几何性质: y ∆)(0x f '是曲线)(x f y =上点 ∆()00,y x M 处切线的斜率; o x 0㈡求导法则 1.基本求导公式: 2.导数的四则运算: 1o v u v u '±'='±)(2ov u v u v u '⋅+⋅'='⋅)(3o2v v u v u v u '⋅-⋅'='⎪⎭⎫⎝⎛ )0(≠v 3.复合函数的导数:dxdu du dy dx dy ⋅=,或 )()]([})]([{x x f x f ϕϕϕ'⋅'=' ☆注意})]([{'x f ϕ与)]([x f ϕ'的区别:})]([{'x f ϕ表示复合函数对自变量x 求导;)]([x f ϕ'表示复合函数对中间变量)(x ϕ求导;4.高阶导数:)(),(),()3(x f x f x f 或'''''函数的n 阶导数等于其n-1导数的导数; ㈢微分的概念 1.微分:)(x f 在x 的某个邻域内有定义,其中:)(x A 与x ∆无关,)(x o ∆是比x ∆较高阶的无穷小量,即:0)(lim 0=∆∆→∆x x o x 则称)(x f y =在x 处可微,记作:2.导数与微分的等价关系: 定理:)(x f 在x 处可微)(x f ⇒在x 处可导,且:)()(x A x f ='3.微分形式不变性:不论u 是自变量,还是中间变量,函数的微分dy 都具有相同的形式;§ 中值定理及导数的应用 一、主要内容 ㈠中值定理1.罗尔定理: )(x f 满足条件:y)(ξf ' )(x fa o ξb x a o x2.拉格朗日定理:)(x f 满足条件:㈡罗必塔法则:∞∞,型未定式 定理:)(x f 和)(x g 满足条件:1o)或)或∞=∞=→→(0)(lim (0)(lim x g x f ax ax ;2o 在点a 的某个邻域内可导,且0)(≠'x g ;3o)(或∞=''∞→,)()(lim )(A x g x f a x则:)(或∞=''=∞→∞→,)()(lim )()(lim )()(A x g x f x g x f a x a x☆注意:1o 法则的意义:把函数之比的极限化成了它们导数之比的极限; 2o若不满足法则的条件,不能使用法则;即不是型或∞∞型时,不可求导;3o 应用法则时,要分别对分子、分母 求导,而不是对整个分式求导; 4o 若)(x f '和)(x g '还满足法则的条件,可以继续使用法则,即: 5o 若函数是∞-∞∞⋅,0型可采用代数变形,化成或∞∞型;若是0,0,1∞∞型可采用对数或指数变形,化成或∞∞型;㈢导数的应用 1.切线方程和法线方程:设:),(),(00y x M x f y =切线方程:))((000x x x f y y -'=-法线方程:)0)((),()(10000≠'-'-=-x f x x x f y y 2. 曲线的单调性:⑴),(0)(b a x x f ∈≥'内单调增加;在),()(b a x f ⇒⑵),(0)(b a x x f ∈>'内严格单调增加;在),(b a ⇒3.函数的极值: ⑴极值的定义:设)(x f 在),(b a 内有定义,0x 是),(b a 内的一点;若对于x 的某个邻域内的任意点x x ≠,都有:则称)(0x f 是)(x f 的一个极大值或极小值,称x 为)(x f 的极大值点或极小值点;⑵极值存在的必要条件:定理:)()(.2)()(.1=⇒⎭⎬⎫'xfxfxfxf存在。
第一章函数极限与连续总结函数极限与连续是高等数学中的重要概念,对于函数的性质和特征有着深远的影响。
在第一章的学习中,我们主要学习了函数的极限以及连续的定义与性质。
本文将对第一章的内容进行总结。
函数的极限是研究函数在其中一点或其中一区间的变化趋势的工具。
当自变量趋近于其中一点或其中一区间时,函数的值也有可能趋近于其中一固定值,这个固定值就是函数的极限。
在函数的极限的概念中,我们主要学习了一些基本的性质和计算方法。
通过极限的四则运算法则,我们可以将复杂的函数进行简化和转化,从而更好地研究它们的性质。
我们还学习了一些常见的函数的极限值,如指数、对数、三角函数及其反函数的极限。
通过对函数的极限的学习,我们可以了解函数在其中一点或其中一区间的变化趋势,从而更好地理解函数的特征和性质。
极限的计算方法也有助于我们解决实际问题,比如利用极限来计算一些数列的极限,从而得到更加精确的近似值。
连续是函数的一个重要性质,它代表了函数图像的连贯性和平滑性。
连续函数的定义是:当自变量在其中一点或其中一区间内变化时,函数的值也会在同一点或同一区间内变化,并且不会有跳跃或断层的现象。
我们学习了一些常见的连续函数,并掌握了判断函数连续性的方法。
其中,我们主要研究了基本初等函数、分段函数和复合函数的连续性。
通过学习这些连续性的性质,我们可以更好地分析函数的行为和特点。
在函数极限和连续的学习中,我们还学习了一些重要的定理和概念。
例如,极限存在准则、函数极限的无穷大与无穷小、函数极限的唯一性等。
这些定理和概念帮助我们更好地理解和应用函数的极限和连续性。
总的来说,函数的极限和连续性是高等数学中重要的概念和工具。
通过学习函数的极限,我们可以更好地了解函数的性质和特征,对于求解实际问题和进行精确计算有着重要的作用。
而学习连续性则可以帮助我们判断函数的连贯性和平滑性,更好地分析函数的行为和特点。
对于进一步学习高等数学以及其他数学学科,函数的极限和连续性是必不可少的基础知识。
第一章 函数、极限、连续典型例题1:函数2sin(2)()(1)(2)x x f x x x x -=--在下列哪个区间内有界( ). A. (1,0)- B. (0,1) C. (1,2) D. (2,3) 解析:有如下的两个重要结论:❶若()f x 在闭区间[,]a b 上连续,则()f x 在闭区间[,]a b 上有界;❷若()f x 在开区间(,)a b 内连续,且极限lim ()x af x +→与lim ()x bf x -→存在,则()f x 在开区间(,)a b 内有界.当0,1,2x ≠时,()f x 连续,而1sin 3lim ()18x f x +→-=-,0sin 2lim ()4x f x -→=-,0sin 2lim ()4x f x +→=,1lim ()x f x →=∞,2lim ()x f x →=∞.所以()f x 在(1,0)-内有界,选(A ).2:设{}n a ,{}n b ,{}n c 均为非负数列,且lim 0n n a →∞=,lim 1n n b →∞=,lim n n c →∞=∞,则必有( ).A .n n a b <对任意n 成立B .n n b c <对任意n 成立C .lim n n n a c →∞不存在 D .lim n n n b c →∞不存在解析:应选(D ).由数列极限保号性的条件得A 、B 两项不是无条件成立的,故A 、B错误.C 项中的极限是“0⋅∞”的未定式,极限有可能是存在的,故C 项也错误.选D 项.3:设()f x 在0x =的某邻域内连续,0()lim 21cos x f x x→=-,则在0x =处()f x ( ).A .不可导B .可导且(0)0f '≠C .取得极大值D .取得极小值 解析:应选(D ).由0()lim21cos x f x x→=-可得,0x →时,1cos 0x -→,则()0f x →,而()f x 在点0x =的某邻域内连续,得(0)0f =.于是000()()(0)0()(0)2limlim lim 21cos 01cos 0x x x f x f x f x f x f x x x x x→→→---=⋅=⋅=----,而02limx x →=∞,因此0()(0)lim 00x f x f x →-=-,即'(0)0f =.(A )(B )均错误. 00()()(0)limlim 201cos 1cos x x f x f x f x x→→-==>--,由函数极限的局部保号性可得,(0,)U δ∃,(0,)x U δ∀∈,有()(0)01c o s f x f x->-,而1c o s 0x ->,得()(0)f x f >,因此()f x 在0x =处取得极小值.4:设lim ,n n a a →∞=且0,a ≠则当n 充分大时有( ).A. 2n a a >B. 2n a a <C. 1n a a n >-D. 1n a a n<+ 解析:应选(A ).用排除法,令n a 为简单数列的通项. (1)令21n a n =+,则lim 1n n a →∞=,11n a n >+,排除(D ).(2)令21n a n =-,则lim 1n n a →∞=,11n a n <-,排除(C ).(3)令11n a n=--,则lim 1n n a →∞=-,1112n a n -=+>,排除(B ).5:设数列{}n x 满足110,sin (1,2,...).n n x x x n π+<<== (1)证明lim n n x →∞存在,并求该极限.(2)计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. 证明(1) 由于0x π<<时,0sin x x <<,于是10sin n n n x x x +<=<,说明数列{}n x 单调减少且0n x >. 由单调有界准则知lim n n x →∞存在.记为A .递推公式两边取极限得sin A A =,解得0A =. (2)原式21sin lim()nxn n nx x →∞=,为“1∞”型极限.因为离散型不能直接用洛必达法则,先考虑210sin lim()t t t t→. 22011sin lim ln 0sin lim()t ttt t t t e t→→=.其中2223220000011sin 1sin sin cos 112lim ln lim (1)lim lim lim 336t t t t t t t t t t t t t t t t t t →→→→→---=-====-. 所以 2221111016sin sin lim()lim()lim()nnxxn n x n n x nnx x x x x xe+→∞→∞→-===.6:41lim(cos 22sin )xx x x x →+解:(方法1)14441ln(cos22sin )limln(cos22sin )0lim(cos 22sin )lim xx x x x x x x xx x x x x x ee→++→→+==而42042040sin 2sin 2lim )sin 2sin 21ln(lim )sin 22ln(cos lim x xx x x x x x x x x x x x x +-=+-=+→→→121612lim 2sin 2lim 33030=⋅=+-=→→x x x x x x x ,所以原式31e =. (方法2)44121)sin 2sin 21(lim )sin 22(cos lim x x x x x x x x x x +-=+→→31sin 2sin 2sin 2sin 212422)sin 2sin 21(lim e x x x x xx x x x x x =+-=+-⋅+-→.7:1402sin lim ||1x x x e x x e →⎛⎫+ ⎪+ ⎪ ⎪+⎝⎭解:1144002sin 2sin 2lim lim 11111x xx x x x e x e x x x e e --→→⎛⎫⎛⎫++ ⎪ ⎪+=-=-= ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭; 1144002sin 2sin lim lim 01111x x x x x x e x e x x x e e ++→→⎛⎫⎛⎫++ ⎪ ⎪+=+=+= ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭; 左右极限存在且相等,所以1402sin lim 1.1x x x e x x e →⎛⎫+ ⎪+= ⎪ ⎪+⎝⎭8:22411limsin x x x x x x→-∞++++=+ .解:分子分母同时除以x (注意x 趋于负无穷大),可得2222411411limlimsin sin x x x x x x x x x x x xx x x→-∞→-∞++++++++=++ 22222241111141lim lim 1sin sin 1x x x x x x x x x x x x x x x →-∞→-∞+++-+-++++===+-+-.9:求221()lim 1n n n x f x x x →∞⎡⎤⎛⎫-=-⎢⎥ ⎪+⎝⎭⎣⎦的间断点,并判别类型. 解:当||1x <时,20nx→,则()1f x x =--,当||1x =时,则()f x x =-, 当||1x >时,2nx→∞,则()1f x x =-,1,||1(), ||11, ||1x x f x x x x x --<⎧⎪∴=-=⎨⎪->⎩.分段点为1x =±(1)1,(10)2,(10)0f f f =--=-+= (1)1,(10)2,(10)0f f f -=--=-+=则1x =±都为跳跃间断点.10:设)(x f 在[0,1]]连续,(1)0f =,212()1lim112x f x x →-=⎛⎫- ⎪⎝⎭,证明:(1)存在1,12ξ⎛⎫∈ ⎪⎝⎭,使()f ξξ=; (2))(x f 在[0,1]上最大值大于1.证明:(1)由212()1lim112x f x x →-=⎛⎫- ⎪⎝⎭及)(x f 在[0,1]连续,得121=⎪⎭⎫⎝⎛f .令()()x f x x φ=-,111102222f φ⎛⎫⎛⎫=-=>⎪ ⎪⎝⎭⎝⎭,(1)(1)110f φ=-=-<,由连续函数介值定理知存在1(,1)2ξ∈使()0φξ=,即()f ξξ=.(2)由于01211)(lim221>=⎪⎭⎫ ⎝⎛--→x x f x ,由保号性定理知1111(,)(,)2222x δδ∀∈-+时,有()1f x >,故)(x f 在[0,1]上最大值大于1.。
第一章 函数、极限、连续重点:1、求函数的极限(最重要的方法是L ’P 法则)2、无穷小的比较3、考察分段函数在分段点的连续性4、间断点的判定及分类5、介值定理 一、函数1、函数的定义及表示法【理解函数的概念,掌握函数的表示法,会建立简单应用问题的函数关系式】 函数概念 ()y f x =函数的两要素 ⎧⎨⎩定义域对应规则函数的表示方法 ① 显函数: ()y f x =② 隐函数:由方程(,)0F x y =确定的函数()y y x =.例:1yy xe +=确定了()y y x =⇒01x y==.③ 参数方程表示的函数:由方程()()x x t y y t =⎧⎨=⎩确定的函数()y y x =.例:2ln(1)arctan x t y t ⎧=+⎨=⎩确定了()y f x =.④ 积分上限函数: ()()xax f t dt Φ=⎰.例:2311()(1)3xx t dt x Φ==-⎰⑤ 概率表示的函数:()()F x P X x =≤, 其中X 为随机变量,x 为实数.⑥ 分段函数:自变量不同范围内用不同式子表示的一个函数.【例】 ,0()sin ,0a x x f x x x x +≥⎧⎪=⎨<⎪⎩ ; 1sin ,0()0,0x x f x x x ⎧≠⎪=⎨⎪=⎩ . 如 A. 绝对值表示的函数 11111x x y x xx -≥⎧=-=⎨-<⎩ ;B. 极限表示的函数 2211()lim 0111n nn xx x f x x x x x x →∞⎧<-⎪=⋅==⎨+⎪->⎩; C. 其他形式 2022101()max{1,}12x x f x x xx ≤≤≤≤⎧==⎨<≤⎩ .10sgn()0010x y x x x >⎧⎪===⎨⎪-<⎩-------符号函数[]y x =--取整函数.2、函数的性质 【了解函数的有界性,单调性,周期性,奇偶性】①.有界性:()f x 在某区间I 内有定义,若存在0M >,对任意x I ∈,总有()f x M ≤, 则称()f x 在某区间I 内有界.否则称()f x 在某区间I 内无界.例:2111sin1,(0);arctan ,();,1,()2121xx x x x R x R xx eπ≤≠≤∈≤<∈++. ②.单调性:()f x 在某区间I 内有定义,若12,x x I ∀∈,当12x x <时12()()f x f x ≤,就称()f x 单调上升;当12x x <时,12()()f x f x ≥,就称()f x 单调下降. 不含等号时称严格单增(或单减).③.奇偶性:若()()f x f x -=, 则称()f x 为偶函数,偶函数的图形关于y 轴对称; 若()()f x f x -=-,则称()f x 为奇函数,奇函数的图形关于原点对称.④.周期性:()()(0)f x T f x T +=≠. (主要是三角函数)【例1】讨论()ln(f x x =的奇偶性. 【奇函数】 【例2】 设sin ()tan xf x x x e=⋅⋅,则()f x 是( ).A. 偶函数B. 无界函数C. 周期函数D. 单调函数. 【解】 因为 2x k ππ→+时, ()f x →∞,所以()f x 非有界即为无界函数.3、 基本初等函数 【掌握基本初等函数的性质及图形】 (反、对、幂、三、指)① 常数函数---y C =② 幂函数---y x μ= (μ为常数)例:21,y x y y x===③ 指数函数---x y a = (0,1a a >≠) ,xy e =④ 对数函数---log a y x = (0,1a a >≠) , ln y x =, lg y x = ⑤ 三角函数---sin ,cos ,tan y x y x y x===⑥ 反三角函数---arcsin ,arctan y x y x==4、 复合函数、反函数、初等函数 【了解反函数和隐函数的概念,理解复合函数及分段函数的概 念,了解初等函数的概念】① 复合函数 (),()[()y f uu x y f x ϕϕ==⇒=;f 为外层函数,ϕ称为内层函数.② 反函数 ()y y x =的反函数为1()x fy -=或1()y fx -=.【例】3y x x y =⇒=⇒3y x =的反函数.【例】 sin xy e= 看作是由 ,sin uy e u x == 复合而成的复合函数.③ 初等函数:由六类基本初等函数经过有限次四则运算及有限次复合运算而得的用一个数学式子 表示的函数. 注意:分段函数一般不是初等函数。