期中模拟考试八年级数学试题
- 格式:doc
- 大小:176.50 KB
- 文档页数:2
2023-2024学年江苏省南京市八年级(上)期中数学模拟试卷一、选择题:本题共7小题,每小题2分,共14分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列体育运动项目图标中,是轴对称图形的是()A. B. C. D.2.下列长度的三条线段能组成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.5,6,73.如图,,,添加下列哪一个条件可以推证≌()A.B.C.D.4.一个等腰三角形的顶角等于,则这个等腰三角形的底角度数是()A. B. C. D.5.如图,,,则下列判断正确的是()A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分6.如图,中,BF、CF分别平分和,过点F作交AB于点D,交AC于点E,那么下列结论:①;②为等腰三角形;③的周长等于的周长;④其中正确的是()A.①②B.①③C.①②④D.①②③④7.如图,AD是的中线,E,F分别是AD和AD延长线上的点,且,连接BF,CE,下列说法:①和的面积相等;②;③;④其中,正确的说法有()A.1个B.2个C.3个D.4个二、填空题:本题共9小题,每小题2分,共18分。
8.如图,是的一个外角,若,,则______.9.已知≌,的周长为24cm,若,,______10.如图,,,请你添加一个条件______只填一个即可,使≌11.如图,在中,CD是斜边AB上的中线,若,则______.12.已知等腰三角形的一个外角是,则它的底角度数为______度.13.如图,在中,,线段AB的垂直平分线交AC于点N,的周长是12cm,则BC的长为______14.如图,在中,,以顶点A为圆心,适当长为半径画弧,分别交边AC,AB于点M、N,再分别以M,N为圆心,大于长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若,,则的面积为______.15.已知如图等腰,,,于点D,点P是BA延长线上一点,点O是线段AD上一点,,下面的结论:①;②;③是等边三角形.其中正确的是______填序号16.如图,透明的圆柱形容器容器厚度忽略不计的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是______三、解答题:本题共10小题,共68分。
2024-2025学年第一学期浙江省宁波市八年级数学期中模拟练习卷考试范围:八上第1-4章 考试时间:120分钟 试卷满分:120分一、选择题:本题共10题,每题3分,共30分.每小题只有一个选项符合题目要求.1. 下列图形中对称轴条数最多的是( )A.B. C. D. 【答案】A【解析】【分析】此题主要考查如何确定轴对称图形的对称轴条数及位置,掌握轴对称图形的概念是本题的解题关键.根据轴对称图形的定义:一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形就是轴对称图形,这条直线就是它的一条对称轴,由此找出各个图形的对称轴条数,再比较即可解答.【详解】解:A 、有5条对称轴;B 、有3条对称轴;C 、有0条对称轴;D 、有4条对称轴.故对称轴最多的有5条.故选:A .2. 若a b < )A. 11a b +<+B. 22a b −<−C. 33a b <D. 4a <4b 【答案】B【解析】【分析】根据不等式的性质逐个判断即可.【详解】解:A .∵a b <,∴11a b +<+,故本选项不符合题意; B .∵a b <,∴a b −>−,∴22a b −>−,故本选项符合题意;C .∵a b <,∴33a b <,故本选项不符合题意;D .∵a b <,∴4a <4b ,故本选项不符合题意; 故选:B .【点睛】本题考查了不等式的性质,能正确根据不等式的性质进行变形是解此题的关键,①不等式的性质1:不等式的两边都加(或减)同一个数或式子,不等号的方向不变,②不等式的性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变,③不等式的性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变.3. 如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了几步路,却踩伤了花草.他们少走的路长为( )A. 2mB. 3mC. 3.5mD. 4m【答案】D【解析】 【分析】本题考查勾股定理的应用,利用勾股定理求出AB 的长,再根据少走的路长为AC BC AB +−,计算即可.明确少走的路长为AC BC AB +−是解题的关键.【详解】解:如图,点C A 和点B 都在长方形的边上且6AC =,8BC =, ∴90C ∠=°,∴10AB ,∴他们少走的路长为:()68104m AC BC AB +−=+−=. 故选:D .4. 下列条件中,可以判定ABC 是等腰三角形的是( )A. 40B ∠=°,80C ∠=°B. 123A B C ∠∠∠=::::C. 2A B C ∠=∠+∠D. 三个角的度数之比是2:2:1【答案】D【解析】【分析】本题考查了等腰三角形的判定,三角形内角和定理,熟练掌握等腰三角形的判定是解题的关键.利用三角形内角和定理,等腰三角形的判定,进行计算并逐一判断即可解答.【详解】解:A .∵40B ∠=°,80C ∠=°,∴18060AC B ∠=°−∠−∠=°, ∴ABC 不是等腰三角形,故选项A 错误;B .∵123A BC ∠∠∠=::::,180A B C ∠+∠+∠=°, ∴118030123A ∠=×°=°++,218060123B ∠=×°=°++,318090123C ∠=×°=°++, ∴ABC 不是等腰三角形,故选项B 错误;C .∵2A B C ∠=∠+∠,180A B C ∠+∠+∠=°,∴2180A A ∠+∠=°,∴60A ∠=°,而无法判断B ∠与C ∠的大小,∴ABC 不是等腰三角形,故选项C 错误;D .∵三个角的度数之比是2:2:1, ∴三个角的度数分别是218072221×°=°++,72°,218072221×°=°++, ∴ABC 是等腰三角形,故选项D 错误;故选:D .5. 某商品进价为700元,出售时标价为1100元,后由于商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可打( )A. 六折B. 七折C. 八折D. 九折 【答案】B【解析】【分析】设最多可打x 折,根据题意,得110070070010%10x ×−≥×,求整数解即可. 本题考查了一元一次不等式的应用,打折问题,正确理解,列出不等式解答是关键.【详解】解:设最多可打x 折, 根据题意,得110070070010%10x ×−≥×, 解得7x ≥.故最多打7折,6. 如图,在ABC 中,AB AC =,120A ∠=°,分别以点A 和C 为圆心,以大于12AC 的长度为半径作弧,两弧相交于点P 和点Q ,作直线PQ 分别交BC ,AC 于点D 和点E .若3CD =,则AB 的长为( )A. 5B.C. 6D. 8【答案】B【解析】 【分析】连接AD ,如图,先根据等腰三角形的性质和三角形内角和定理计算出30B C ∠=∠=°,再由作法得DDDD 垂直平分AC ,所以3DA DC ==, 所以30DAC C ∠=∠=°, 从而得到90BAD ∠=°, 然后根据含30度角的直角三角形三边的关系求BD 的长,进而求出AB 的长.【详解】连接AD , 如图∵,120AB AC A =∠=°,∴30B C ∠=∠=°,由作法得DE 垂直平分AC ,∴3DADC ==, ∴30DAC C ∠=∠=°,∴1203090BAD ∠=°−°=°,在Rt ABD △中,30B ∠=°,∴26BD AD ==,AB ∴=【点睛】本题考查了作图−基本作图,勾股定理,线段垂直平分线的性质和等腰三角形的性质,含30°角直角三角形的性质,解题的关键是掌握以上知识点.7. 在Rt △ABC 中,∠C =90°,AB =15,AC =12,以A 为圆心,适当长为半径画弧,交AC ,AB 于D ,E 两点,再分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧交于点M ,作射线AM 交BC 于点F ,则线段BF 的长为()A. 5B. 4C. 3D. 2.8【答案】A【解析】 【分析】过点F 作FN ⊥AB 于N ,由作图可知,AM 是∠BAC 的平分线,由角增分线的性质可得FN =FC ,则可利用HL 定理证明Rt △ACF ≌Rt △ANF ,得出AN =AC =12,再在Rt △ACB 中,由勾股定理求出BC =9,设BF =x ,则FN =CF =BC -BF =9-x ,由勾股定理列方程求解即可.【详解】解:过点F 作FN ⊥AB 于N ,由作图可知:AM 平分∠BAC ,∵∠C =90°,∴FC ⊥AC ,∵FN ⊥AB ,∴FN =FC ,在Rt △ACF 和Rt △ANF 中,FC FN AF AF = =, ∴Rt △ACF ≌Rt △ANF (HL),∴AN =AC =12,∴BN =AB -AN =15-12=3,在Rt △ACB 中,由勾股定理,得BC ==9,设BF =x ,则FN =CF =BC -BF =9-x ,在Rt △BNF 中,由勾股定理,得x 2=32+(9-x )2,解得:x =5,故选:A .【点睛】本题考查勾股定理,全等三角形的判定与性质,用尺规作角的平分线,角平分线的性质,由作图得出,AM 是∠BAC 的平分线是解题的关键.8. 如图,ABC 是等边三角形,AD 是BC 边上的高,点E 是AC 边的中点,点P 是AD 上的一个动点,当PC PE +最小时,CPE ∠的度数是( ).A. 30°B. 45°C. 60°D. 90°【答案】C【解析】 【分析】本题主要考查了等边三角形的性质,垂直平分线的性质,最短路径问题,掌握等边三角形三线合一的性质是解题关键.连接BP ,由等边三角形的性质,得出PB PC =,进而得到PC PE PB PE BE +=+≥,即当B 、P 、E 三点共线时,PC PE +有最小值,再利用三线合一性质,得到BE AC ⊥,即可得到CPE ∠的度数.【详解】解:如图,连接BP ,ABC 是等边三角形,AD 是BC 边上的高,D ∴是BC 中点,即AD 垂直平分BC ,PB PC ∴=,PC PE PB PE BE ∴+=+≥,即当B 、P 、E 三点共线时,PC PE +有最小值,点E 是AC 边的中点,BE AC ∴⊥,90CEP CEB ∴∠=∠=°,∵等边ABC 中60ABC ACB ∠=∠=°,BE AC ⊥, ∴1302CBE ABC ∠=∠=°, ∵PB PC =,∴此时30PCB PBC ∠=∠=°,∴60CPE PBC PCB ∠=∠+∠=°.故选:C .9. 如图,在平面直角坐标系中,长方形ABCD 的四条边与两条坐标轴平行,已知()1,2A −,()1,1C −.点P 从点A 出发,沿长方形的边顺时针运动,速度为每秒2个单位长度;点Q 从点A 出发,沿长方形的边逆时针运动,速度为每秒3个单位长度.记P Q ,在长方形边上第一次相遇时的点为1M ,第二次相遇时的点为2M ,……,则2024M 的坐标为是( )A. (1,0)B. ()0,1−C. ()1,0−D. ()1,2−【答案】B【解析】 【分析】本题考查了平面直角坐标系上点的坐标规律,求出长方形ABCD 的周长为()23210+×=,设经过t 秒,P Q ,第一次相遇,则点P 走的路程为2t ,点Q 走的路程为3t ,根据题意列出方程,求出相遇各点坐标,得出规律,即可得出答案.【详解】解:∵在平面直角坐标系中,长方形ABCD 的四条边与两条坐标轴平行,已知()1,2A −,()1,1C −.∴()1,1B −−,()1,2D ,∴2AD BC ==,3AB CD ==,∴长方形ABCD 的周长为:()23210+×=, 设经过t 秒,P Q ,第一次相遇,则点P 走的路程为2t ,点Q 走的路程为3t ,由题意得:2310t t +=,解得:2t =,∴当2t =时,P Q ,第一次相遇,此时相遇点1M 的坐标为()1,0,当4t =时,P Q ,第二次相遇,此时相遇点2M 的坐标为()1,0−,当6t =时,P Q ,第三次相遇,此时相遇点3M 的坐标为()1,2,当8t =时,P Q ,第四次相遇,此时相遇点4M 的坐标为()0,1−,当10t =时,P Q ,第五次相遇,此时相遇点5M 的坐标为()1,2−,当12t =时,P Q ,第六次相遇,此时相遇点6M 的坐标为()1,0,…,∴五次相遇为一循环,∵202454044÷=…,∴2024M 的坐标为是()0,1−,故选:B .10. 如图,C 为线段AE 上一动点(不与A ,E 重合),在AE 同侧分别作等边ABC 和等边ECD ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ ,则有以下五个结论:①AD BE =;②PQ AE ∥;③AP BQ =;④DE DP =;⑤60AOB ∠=°.其中正确的有( )A. ①③⑤B. ①③④⑤C. ①②③⑤D. ①②③④⑤【答案】C【解析】 【分析】此题主要考查了全等三角形的判定和性质的应用,等边三角形的判定和性质.①根据全等三角形的判定方法,判断出ACD BCE △△≌,即可判断出AD BE =.②首先根据全等三角形的判定方法,判断出ACP BCQ ≌△△,即可判断出CP CQ =;然后根据60PCQ ∠=°,可得PCQ △为等边三角形,所以60PQC DCE ∠=∠=°,据此判断出PQ AE ∥即可.③根据全等三角形的判定方法,判断出ACP BCQ ≌△△,即可判断出AP BQ =.④首先根据,60DC DE PCQ CPQ =∠=∠=°,可得60DPC ∠>°,然后判断出DP DC ≠,再根据DC DE =,即可判断出DP DE ≠.⑤60AOB DAE AEO DAE ADC DCE ∠=∠+∠=∠+∠=∠=°,据此判断即可.【详解】解:∵ABC 和ECD 都是等边三角形,∴,,60ACBC CD CE ACB DCE ====°∠∠, ∴ACB BCD DCE BCD ∠+∠=∠+∠,∴ACD BCE ∠=∠,在ACD 和BCE 中,∵,,AC BCACD BCE CD CE ∠∠===, ∴ACD BCE △△≌,∴AD BE =,结论①正确.∵ACD BCE △△≌,∴CAD CBE ∠=∠,又∵60ACB DCE °∠=∠=,∴180606060BCD ∠=°−°−°=°,∴60ACP BCQ ∠=∠=°, 在ACP △和BCQ △中,,,ACP BCQ CAP CBQ AC BC ∠=∠∠=∠,∴ACP BCQ ≌△△,∴CP CQ =,又∵60PCQ ∠=°, ∴PCQ △为等边三角形,∴60PQC DCE ∠=∠=°, ∴PQ AE ∥,结论②正确.∵ACP BCQ ≌△△,∴AP BQ =,结论③正确.∵,60DC DE PCQ CPQ =∠=∠=°, ∴60DPC ∠>°,∴DP DC ≠,又∵DC DE =,∴DP DE ≠,结论④不正确.∵60AOB DAE AEO ADC DCE ∠=∠+∠=∠+∠=∠=°,结论⑤正确.综上,可得正确的结论有4个:①②③⑤.故选:C .二、填空题:本大题共6个小题.每小题4分,共24分.把答案填在题中横线上. 11. 若不等式()11m x m −+<的解是1x >,则m 的取值范围是______.【答案】1m <【解析】【分析】先移项得(1)1m x m −<−,结合不等式的解集为1x >,可知10m −<,解之即可.【详解】解:∵()11m x m −+<,∴(1)1m x m −<−,∵不等式的解集为1x >,∴10m −<,则1m <,m<.故答案为:1【点睛】本题考查解一元一次不等式,掌握解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12. 若等腰三角形的两边长分别为4和6,则其周长是____________.【答案】14或16【解析】【分析】根据等腰三角形的性质,分两种情况:①当腰长为6时,②当腰长为4时,解答出即可.【详解】解:根据题意,①当腰长为6时,三边为6,6,4,=++=;符合三角形三边关系,周长66416②当腰长为4时,三边为4,4,6,=++=.符合三角形三边关系,周长44614故答案为:14或16.【点睛】本题主要考查了等腰三角形的性质,注意本题要分两种情况解答.13. 如图,Rt△ABC中,∠ABC=90°,AB=BC,直线l1、l2、l3分别通过A、B、C三点,且l1∥l2∥l3.若l1与l2的距离为4,l2与l3的距离为6,则Rt△ABC的面积为________.【答案】26【解析】【详解】过点B作EF⊥l2,交l1于E,交l3于F,如图,∵EF⊥l2,l1∥l2∥l3,∴EF⊥l1⊥l3,∴∠ABE+∠EAB=90°,∠AEB=∠BFC=90°,又∵∠ABC=90°,∴∠ABE+∠FBC=90°,∴∠EAB=∠FBC,在△ABE和△BCF中,{AEB BFC EAB FCB AB BC∠=∠∠=∠=,∴△ABE≌△BCF,∴BE=CF=4,AE=BF=6,在Rt△ABE中,AB2=BE2+AE2,∴AB2=52,∴S△ABC=12AB⋅BC=12AB2=26.故答案是26.14. 在△ABC中,∠B和∠C的平分线交于点F,过点F作DF∥BC ,交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为________.【答案】9【解析】【详解】∵∠B和∠C的平分线相交于点F,∴∠DBF=∠FBC,∠BCF=∠ECF;∵DE∥BC,∴∠DFB=∠FBC=∠FBD,∠EFC=∠FCB=∠ECF,∴DF=DB,EF=EC,即DE=DF+FE=DB+EC=9.故答案为9.15. 如图,在△ABC中,∠ACB=90°,边BC的垂直平分线EF交AB于点D,连接CD,如果CD=6,那么AB的长为_____.【答案】12【解析】【分析】根据线段的垂直平分线的性质得到DC =DB =6,则∠DCB =∠B ,由∠ACB =∠ACD +∠DCB =90°,得∠A +∠B =90°,从而∠A =∠ACD ,DA =DC =6,则AB =AD +DB 便可求出.【详解】解:∵EF 是线段BC 的垂直平分线,DC =6,∴DC =DB =6,∴∠DCB =∠B ,又∵∠ACB =∠ACD +∠DCB =90°,∴∠A +∠B =90°,∴∠A =∠ACD ,∴DA =DC =6,∴AB =AD +DB =6+6=12,故答案为:12.【点睛】本题考查了线段的垂直平分线的性质,等腰三角形的判定和性质,直角三角形的两锐角互余,熟记性质是解题的关键.16. 如图,Rt BDE △中,90BDE ∠=°,2DB DE ==,A 是DE 的中点,连结AB ,以AB 为直角边作等腰Rt ABC △,其中90ABC ∠=°.①AC 的长为 ______;②连结CE ,则CE 的长为 _____.【答案】 ①. ②.【解析】【分析】①根据勾股定理先计算A BAC ,解答即可;②过E 点分别作AB ,BC 的垂线,垂足分别为G ,F ,根据等面积法可以求得EG FB =的长,再根据勾股定理求得EF 的长,最后计算出CE 的长即可.本题考查勾股定理、等腰直角三角形性质,解答本题的关键是明确题意,求出和的长.【详解】解:①∵90BDE ∠=°,2DB DE ==,A 是DE 的中点, ∴112DA AE DE ===根据勾股定理,得A BAC ,;②过E 点分别作AB ,BC 的垂线,垂足分别为G ,F ,∵90BDE ∠=°,2DB DE ==,A 是DE 的中点, ∴112DA AE DE ===, 四边形EGBF 是矩形,∴EG BF =,根据勾股定理,得A BBE ∴111221222ABE DBE S S ==×××= ,∴112EG =,∴EG =∴BF =,∴EF∴CE的.三、解答题:本大题共8个小题,共66分,解答应写出文字说明、证明过程或演算步骤 17. 解一元一次不等式组,并把解集表示在数轴上.(1)()2112x x −−−<; (2)4261139x x x x >− −+ ≤ 【答案】(1)2x >−,数轴见解析(2)32x −<≤,数轴见解析【解析】分析】(1)先去分母,再去括号,移项,然后合并同类项,并画出数轴,即可作答;(2)由①易得,3x >−,由②去分母,得331x x −≤+,故不等式组得解集为:32x −<≤,并画出数轴,即可作答.【小问1详解】解:去分母得,()()2212x x −−−<,去括号得,2222x x −−+<,移项得,2222x x −<+−,合并同类项得,2x −<,系数化为1得,2x >−,在数轴上表示为:;【小问2详解】 解:4261139x x x x >− −+≤①②,由①得,3x >−,【由②去分母,得331x x −≤+解得,2x ≤.故不等式组得解集为:32x −<≤.在数轴上表示:【点睛】本题考查了解一元一次不等式以及解一元一次不等式组,难度较小,正确掌握相关性质内容是解题的关键.18. 如图,在ABC 中,点D 在BC 上,点E 在AD 上,已知ABE ACE =∠∠,BED CED ∠=∠.试说明BE CE =的理由.【答案】见解析【解析】【分析】因为BED CED ∠=∠,所以AEB AEC ∠=∠,因为ABE ACE =∠∠,得证()AAS AEB AEC ≌,即可作答.【详解】证明:∵180AEB BED ∠=°−∠,180AECCED ∠=°−∠,BED CED ∠=∠ ∴AEB AEC ∠=∠,在AEB 和AEC △中,ABE ACE AEB AEC AE AE ∠=∠ ∠=∠ =, ∴()AAS AEB AEC ≌,∴BE CE =.【点睛】本题考查了全等三角形的判定与性质,难度较小,熟记全等三角形的判定与性质是解题的关键. 19. 如图,有一块凹四边形的绿地ABCD ,4m AD =,3m CD =,90ADC ∠=°,13m AB =,12m BC =,求这块绿地ABCD 的面积.为【答案】这块空地的面积是224m【解析】【分析】本题主要考查了勾股定理及其逆定理的应用,连接AC ,根据勾股定理求出AC ,再根据勾股定理的逆定理说明90ACB ∠=°,最后根据1122ABC ACD S S BC AC DC AD −=⋅−⋅ 得出答案. 【详解】解:连接AC ,∵90ADC ∠=°,4m AD =,3m CD =,∴()5m AC ,∵13m AB =,12m BC =,∴22222251213CB AC AB +=+==,∴90ACB ∠=°,∴四边形ABCD 面积为:1122ABC ACD S S BC AC DC AD −=⋅−⋅ ()2115123424m 22=××−××=. 答:这块空地面积是224m .20. 如图,网格中每个小正方格的边长都为1,点A 、B 、C 在小正方形的格点上.(1)画出与ABC 关于直线l 成轴对称的A B C ′′△;(2)求ABC 的面积;的(3)求BC 边上的高.【答案】(1)见解析 (2)4.5(3)BC 【解析】【分析】(1)利用网格特点和轴对称的性质画出点A 、B 关于直线l 的对称点即可;(2)用一个矩形的面积分别减去三个直角三角形的面积去计算ABC 的面积;(3)先计算出BC 的长,然后利用面积法求BC 边上的高.【小问1详解】解:如图,A B C ′′△为所作; 【小问2详解】解:ABC 的面积11134121433 4.5222=×−××−××−××=; 【小问3详解】解:设BC 边上的高为h ,∵BC,∴1 4.52h ×=,解得h =即BC 【点睛】本题考查了作图-轴对称变换:作轴对称后的图形的依据是轴对称的性质,掌握其基本作法是解决问题的关键(先确定图形的关键点;利用轴对称性质作出关键点的对称点;按原图形中的方式顺次连接对称点).也考查了勾股定理.21. 如图,在四边形ABED 中,90B E ∠=∠=°,点C 是BE 边上一点,AC CD ⊥,CB DE =.(1)求证:ABC CED △≌△.(2)若5AB =,2CB =,求AD 的长.【答案】(1)见解析;(2【解析】【分析】(1)根据“∠B=90°,AC ⊥CD”得出∠2=∠BAC ,即可得出答案;(2)由(1)可得AC=CD ,并根据勾股定理求出AC 的值,再次利用勾股定理求出AD 的值,即可得出答案.【详解】(1)证明:∵90B E ∠=∠=°,∴190BAC ∠+∠=°.∵AC CD ⊥,∴1290∠+∠=°, ∴2BAC ∠=∠.在ABC 和CED △中,2,,,BAC B E CB DE ∠=∠ ∠=∠ =()ABC CED AAS △≌△.(2)解:∵ABC CED △≌△,∴5AB CE ==,AC CD =.∵2BC =,∴在Rt ABC △中,AC∵CD =∴在Rt ACD △中,AD ==【点睛】本题考查的是全等三角形和勾股定理,解题关键是利用两个直角得出2BAC ∠=∠.22. 根据以下素材,探索完成任务.荡秋千问题素材1如图1,小丽与爸妈在公园里荡秋千,开始时小丽坐在秋千的起始位置,且起始位置与地面垂直.素材2 如图2,小丽从秋千的起始位置A 处,两脚在地面上用力一蹬,妈妈在距地面1m 高的B 处接住她后用力一推,爸爸在C 处接住她.若妈妈与爸爸到OA 的水平距离BD 、CE 分别为1.4m和1.8m ,90BOC ∠=°.问题解决任务1OBD 与COE 全等吗?请说明理由;任务2当爸爸在C 处接住小丽时,小丽距离地面有多高?【答案】任务1:OBD 与COE 全等,理由见解析;任务2:1.4m【解析】【分析】本题考查了利用三角形全等测距离的问题,理解题意及熟知全等三角形的性质与判定是解题关键. 任务1:利用AAS ,证得OBD 与COE 全等;任务2:根据全等三角形性质可求出OE 和OD 的值,进而求出OA 的值,最后根据OA OE AE −=,即可求出问题答案.【详解】解:任务1:由题意,得OB OA OC ,1m AD =, 1.4m BD =, 1.8m CE =,90BDO CEO ∠=∠=°,∴90EOC OCE ∠+∠=°,又90BOC BOD COE ∠=∠+∠=°, ∴BOD OCE ∠=∠,在OBD 与COE 中BOD OCE BDO CEO OB OC ∠=∠ ∠=∠ =, ∴()AAS OBD COE ≌ ;任务2:∵OBD COE ≌ ,∴ 1.4m BD OE ==, 1.8m OD CE ==∴1 1.8 1.4 1.4m AE AO OE AD OD OE =−=+−=+−=,即小丽距离地面有1.4m 高.23. 某电器超市销售A B 两种型号的电风扇,A 型号每台进价为200元,B 型号每台进价分别为150元,下表是近两天的销售情况: 销售时段销售数量销售收入A 种型号B 种型号 第一天3台 5台 1620元 第二天 4台 10台 2760元 (进价、售价均保持不变,利润=销售收入-进货成本)(1)求A 、B ;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润不少于1060元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【答案】(1)A 、B 两种型号的电风扇销售单价分别为240元、180元;(2)18;(3)能,方案为A 型号16台,B 型号14台;A 型号17台,B 型号13台;A 型号18台,B 型号12台【解析】【分析】(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,根据3台A 型号5台B 型号的电扇收入1620元,4台A 型号10台B 型号的电扇收入2760元,列方程组求解即可;(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30-a )台,根据金额不多余5400元,列不等式求解即可得出答案;(3)根据利润大于等于1060元,列不等式求出a 的取值范围,结合(2)中a 的取值范围,即可确定方案.【详解】(1)设A. B 两种型号的电风扇的销售价分别为x 、y 元,由题意得3516204102760x y x y += +=解得:240180x y = =答:A 型号电风扇的销售单价为240元,B 型号电风扇的销售单价为180元.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30−a)台则200a+150(30−a)≤5400,解得:a ≤18,答:最多采购A 种型号的电风扇18台.(3)根据题意得:(240−200)a+(180−150)(30−a)≥1060,解得a ≥16,∵在(2)的条件下a ≤18,∴16≤a ≤18∵a 为正整数,∴a 可取16,17,18,∴符合题意的方案为:A 型号16台,B 型号14台;A 型号17台,B 型号13台;A 型号18台,B 型号12台;答:在(2)条件下超市销售完这30台电风扇能实现利润不少于1060元的目标,方案为:A 型号16台,B 型号14台;A 型号17台,B 型号13台;A 型号18台,B 型号12台.【点睛】本题考查二元一次方程组和一元一次不等式的应用,根据售价乘以销量等于销售收入列方程组是解题的关键.24. 等腰Rt ABC △中,=AB AC ,=90BAC °∠.的(1)如图1,D ,E 是等腰Rt ABC △斜边BC 上两动点,且=45DAE ∠°,将ABE 绕点A 逆时针旋转90°后,得到AFC ,连接DF .①求证:AED AFD ≌ .②当3BE =,7CE =时,求DE 的长;(2)如图2,点D 是等腰Rt ABC △斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt ADE ,当=3BD ,=9BC 时,则DE 的长 __________.(直接给出答案). 【答案】(1)①证明见解析;②297(2)或【解析】【分析】(1)①利用全等三角形的判定定理即可求证;②证=90DCF ∠°,进而在Rt DCF 中利用勾股定理即可求解;(2)分情况讨论点E 在线段BC ,点D 在线段CB 的延长线上,即可求解.【小问1详解】 ①证明:如图1中,BAE CAF ≅ ,AE AF ∴=,BAE CAF ∠=∠, =90BAC ∠° ,=45EAD ∠°,+=+=45CAD BAE CAD CAF ∴∠∠∠∠°,DAE DAF ∴∠=∠,在AED △和AFD △中,===AE AF EAD FAD AD AD ∠∠,(SAS)AED AFD ∴≅ .②解:如图1中,设DE x =,则7CD x =−.AB AC = ,=90BAC °∠,==45B ACB ∴∠∠°,==45ABE ACF ∠∠° ,=90DCF ∴∠°,(SAS)AED AFD ≅ ,DE DF x ∴==,在Rt DCF △中,∵222DF CD CF =+,3CFBE ==, ∴()22273x x =−+,解得297x, ∴297DE =. 【小问2详解】解:①当点E 在线段BC 上时,如图2中所示,连接BE :90BAC EAD ∠=∠=°EAB DAC ∴∠=∠,AE AD AB AC ==()EAB ADC SAS ∴ ≌45,6ABE C ABC EB CD ∴∠=∠=∠=°==90EBD ∴∠°=222226345DE BE BD ∴=+=+=DE ∴②当点D 在线段CB 的延长线上,如图3中所示,连接BE :同法可证DBE 是直角三角形12,3EB CD DB ===222222123153DE BE BD ∴=+=+=DE ∴ 【点睛】本题考查了全等三角形的判定与性质、用勾股定理解三角形等知识点.分类讨论的数学思想是解决本题的重要思路.。
2024-2025学年八年级数学上学期期中模拟卷01(人教版)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版八年级上册第十一章~第十三章。
5.难度系数:0.75。
一、选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.未来计算机发展方向是让计算机能看、能听、能说、会思考!下列表示计算机视觉交互应用的图标中,文字上方的图案是轴对称图形的是()A.B.C.D.【答案】A【详解】A. 沿此直线对折,两边能完全重合,是轴对称图形,故此项正确;选项B、C、D均找不到一条直线对折,使得直线两边的图形能完全重合,所以都不是轴对称图形,故此三项均错误;故选:A.2.下列长度的三条线段能组成三角形的是()A.3cm,4cm,5cmB.2cm,2cm,4cm C.1cm,6cm,7cm D.2cm,6cm,9cm【答案】A【详解】解:A 、3+4>5,能组成三角形,符合题意;B 、2+2=4,不能组成三角形,不符合题意;C 、1+6=7,不能组成三角形,不符合题意;D 、2+6<9,不能组成三角形,不符合题意.故选:A .3.下面作三角形最长边上的高正确的是( )A .B .C .D .【答案】C【详解】解:∵三角形为钝角三角形,∴最长边上的高是过最长边所对的角的顶点,作对边的垂线,垂足在最长边上.故选C.4.已知一个多边形的内角和是720°,则该多边形的边数为( )A .4B .6C .8D .105.如图,已知ABC DEF ≌△△,且60,40A B Ð=°Ð=°,则F Ð的度数是( )A .80°B .70°C .60°D .50°【答案】A【详解】解:∵60,40A B Ð=°Ð=°,∴180604080ACB Ð=°-°-°=°,∵ABC DEF ≌△△,∴80A B F C Ð=°Ð=;故选A .6.等腰三角形一腰上的高与另一腰的夹角为54°,则该等腰三角形底角的度数为( )A .72°B .72°或36°C .36°D .72°或18°7.如图,在ABC V 中,DE 是AC 的垂直平分线,3cm AE =,ABD V 的周长为12cm ,则ABC V 的周长为( )A .15cmB .16cmC .17cmD .18cm8.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F .若S △ABC =28,DE =4,AB =8,则AC 长是( )A .8B .7C .6D .5【答案】C 【详解】解:AD Q 是BAC Ð的平分线,且,,4DE AB DF AC DE ^^=,4DF DE \==,9.如图,△ABC 的面积为10cm 2,AP 垂直∠B 的平分线BP 于P ,则△PBC 的面积为( )A .3cm 2B .5cm 2C .6cm 2D .8cm 2,ABP EBP Ð=Ð,90°,10.如图,已知,AB AC AE AF ==,则ABE ACF V V ≌的根据是( )A .ASAB . AASC .SSSD .SAS 【答案】D 【详解】解:在ABE V 与ACF △中,AB AB A A AE AF =ìïÐ=Ðíï=î,∴()SAS ABE ACF ≌△△,故选:D .11.如图,Rt △ABC 中,ÐACB =90°,AC =6,BC =8,AB =10,BD 平分ÐABC ,如果点M ,N 分别为BD ,BC 上的动点,那么CM +MN 的最小值是( )A .4B .4.8C .5D .6【答案】B 【详解】解:如图所示:过点C 作CE ⊥AB 于点E ,交BD 于点M ,过点M 作MN ⊥BC于点N,∵BD 平分∠ABC ,∴ME =MN ,∴CM +MN =CM +ME =CE .∵Rt △ABC 中,∠ACB =90°,AC =6,BC =8,AB =10,CE ⊥AB ,12.如图,已知ABC V 和ADE V 都是等腰三角形,90BAC DAE Ð=Ð=°,BD ,CE 交于点F ,连接AF ,下列结论:①BD CE =;②BF CF ^;③AF 平分CAD Ð;④45AFE Ð=°.其中正确结论的个数有( )A .①②③B .①②④C .②④③D .①③④二、填空题(本题共6小题,每小题2分,共12分.)13.如图,9060ABC ABD D CAD Ð=°Ð=°V V ≌,,,则ABD Ð的度数为 .【答案】60°/60度【详解】∵60ABC ABD CAD Ð=°V V ≌,,∴18060ABD D DAB Ð=°-Ð-Ð=°,故答案为:60°.14.若点()12A a -,与点()21B b -,关于x 轴对称,则a b += .【答案】2【详解】解:∵点()12A a -,与点()21B b -,关于x 轴对称,∴1212a b -=-=-,,解得31,==-a b ,∴312a b +=-=.故答案为:2.15.如图,在Rt △ABC 中,∠C =90°,∠B =30°,AD 平分∠CAB 交BC 于点D ,DE ⊥AB 于E ,若DE =2cm ,则BC = cm .16.如图,△ABC ≌△ADE ,若∠B =70°,∠C =30°,∠DAC =25°,则∠EAC 的度数为 .【答案】55°/55度【详解】解:∵∠B =70°,∠C =30°,∴∠BAC =180°﹣70°﹣30°=80°,∵△ABC ≌△ADE ,∴∠DAE =∠BAC =80°,又∠DAC =25°,∴∠EAC =∠DAE ﹣∠DAC =80°﹣25°=55°.故答案为:55°.17.如图,在四边形ABCD 中,60D Ð=°,若沿图中虚线剪去D Ð,则12Ð+Ð= .18.如图,等边ABC V 的边长为12cm ,M ,N 两点分别从点AB 同时出发,沿ABC V 的边顺时针运动,点M的速度为1cm/s ,点N 的速度为2cm/s ,当点N 第一次到达B 点时,M ,N 两点同时停止运动,则当M ,N 运动时间t = s 时,AMN V 为等腰三角形.【答案】4或16【详解】如图1所示,设点M 、N 运动x 秒后,AN =AM ,由题意可知,AN =12-2x ,AM =x ,∴12-2x =x ,解得x =4,∴点M 、N 运动4秒后,AMN V 是等腰三角形;如图2所示,假设AMN V 是等腰三角形,∴AN =AM ,ÐAMN =ÐANM ∴ÐAMC =ÐANB④ÐC =ÐB =60° ,AC =AB ∴ACM △≌ABN V (AAS ),∴CM =BN设点M 、N 运动y 秒后,AN =AM ,由题意可知,∴CM =y -12,NB =36-2y ,∵CM =BN ,∴y -12=36-2y ,解得y =16,故假设成立,∴当点M 、N 运动4秒或16秒时,AMN V 为等腰三角形.故答案为:4或16.三、解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)已知三角形的三边长分别为a―2,a―1和a+1,求a的取值范围.【详解】解:∵―2<―1<1,(1分)∴a―2<a―1<a+1,(2分)∵三角形的三边长分别为a―2,a―1和a+1,∴a―2+a―1>a+1a―2>0,(4分)∴a>4.(6分)20.(6分)如图,(1)求作一点P,使P至M,N的距离相等,且到AB,BC的距离相等;(2)在BC上求一点Q,使QM+QN最小.(2)解:如图,点Q即为所求.(6分)21.(6分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,ABC V 的顶点均在格点上,点A 的坐标为(6,4)-.(1)作111A B C △,使其与ABC V 关于x 轴对称.(2)在y 轴上画出点P ,使PA PC +的值最小.A 关于y 轴的对称点A ¢,(4分)A C³¢三点共线时,PA PC +有最小值,(6分)如图所示,点P即为所求.22.(10分)如图,在△ABC中,点D在边BC上.(1)若∠1=∠2=35°,∠3=∠4,求∠DAC的度数;(2)若AD为△ABC的中线,△ABD的周长比△ACD的周长大3,AB=9,求AC的长.【详解】(1)解:∵∠1=∠2=35°,∴∠3=∠1+∠2=70°,(2分)∵∠3=∠4,∴∠3=∠4=70°,(4分)∴∠DAC=180°―∠3―∠4=40°;(5分)(2)解:∵AD为△ABC的中线,∴BD=CD,(6分)∵△ABD的周长比△ACD的周长大3,∴AB+AD+BD―(AC+AD+CD)=3,(7分)∴AB+AD+BD―AC―AD―CD=3,(8分)∴AB ―AC =3,∵AB =9,∴AC =6.(10分)23.(10分)如图,点B ,F ,C ,E 在直线l 上,点A ,D 在l 的两侧,,,∥Ð=Ð=AB DE A D AB DE .(1)求证:ABC DEF ≌△△;(2)若10,3BE BF ==,求FC 的长.24.(10分)如图所示,在ABC V 中,DE 是边AB 的垂直平分线,交AB 于E ,交AC 于D ,连接BD .(1)若ABC C Ð=Ð,50A Ð=°,求DBC Ð的度数.(2)若AB AC =,且BCD △的周长为18cm ,ABC V 的周长为30cm ,求BE 的长.25.(12分)【教材呈现】以下是人教版八年级上册数学教材第53页的部分内容.如图1,四边形ABCD 中,AD CD =,AB CB =.我们把这种两组邻边分别相等的四边形叫做“筝形”.【性质探究】(1)如图1,连接筝形ABCD 的对角线AC 、BD 交于点O ,试探究筝形ABCD 的性质,并填空:对角线AC 、BD 的关系是: ;图中ADB Ð、CDB Ð的大小关系是:.【概念理解】(2)如图2,在ABC V 中,AD BC ^,垂足为D ,EAB V 与DAB V 关于AB 所在的直线对称,FAC V 与DAC △关于AC 所在的直线对称,延长EB ,FC 相交于点G .请写出图中所有的“筝形”,并选择其中一个进行证明;【应用拓展】(3)如图3,在(2)的条件下,连接EF ,分别交AB 、AC 于点M 、H .求证:B A C FE G Ð=Ð.【详解】解:(1)∵DA DC =,BA BC =,∴BD 垂直平分AC ,∵AC BD ^,AD CD =,∴ADB CDB Ð=Ð;(2分)(2)图中的“筝形”有:四边形AEBD 、四边形ADCF 、四边形AEGF ;(3分)证明四边形AEBD 是筝形:由轴对称的性质可知AE AD =,BE BD =;\四边形AEBD 是筝形.同理:AF AD =,CD CF =;\四边形ADCF 是筝形.连接EF ,∵AE AD =,AF AD =,∴AE AF =,∴AEF AFE Ð=Ð,∵AD BC ^,∴90AEG AFG ADB ADC Ð=Ð=Ð=Ð=°,∴GEF GFE Ð=Ð,∴EG FG =,∴四边形AEGF 是筝形;(8分)(3)证明:如图3中,由轴对称的性质可知:CAD CAF Ð=Ð,BAD BAE Ð=Ð,90ADB AEB Ð=Ð=°,AD AF AE ==,∴()22EAF EAD DAF BAD DAC BAC Ð=Ð+Ð=Ð+Ð=Ð,AEF AFE Ð=Ð,2180EAF AEF ÐÐ\+=°,22180BAC AEF ÐÐ\+=°,90BAC AEF ÐÐ\+=°,90FEG AEF Ðа+=Q , BAC FEG \Ð=Ð.(12分)26.(12分)等腰Rt ABC △,90ACB Ð=°,AC BC =,点A 、C 分别在x 轴、y 轴的正半轴上.(1)如图1,求证:BCO CAO Ð=Ð;(2)如图2,若5OA =,2OC =,求B 点的坐标;(3)如图3,点(0,3)C ,Q 、A 两点均在x 轴上,且12AQ =.分别以AC 、CQ 为腰,第一、第二象限作等腰Rt CAN V 、等腰Rt QCM V ,连接MN 交y 轴于P 点,OP 的长度是否发生改变?若不变,求出OP 的值;若变化,求OP 的取值范围.【详解】(1)解:如图1,90ACB Ð=°Q ,=90AOC а,90BCO ACO CAO ACO \Ð+Ð=°=Ð+Ð,D ,则90CDB AOC Ð=Ð=°Q 等腰Rt CAN V 、等腰Rt QCM V ,180MCQ ACN \Ð+Ð=°,360180180ACQ MCN \Ð+Ð=°-°=°,CNH ACQ \Ð=Ð,又90HCN ACO QAC ACO Ð+Ð=°=Ð+ÐQ ,HCN QAC \Ð=Ð,在HCN V 和QAC △中,CNH ACQ CN AC HCN QAC Ð=Ðìï=íïÐ=Ðî,(ASA)HCN QAC \△≌△,CH AQ \=,HN QC =,QC MC =Q ,HN CM \=,Q 12AQ =,12CH \=,NH CM ∥Q ,PNH PMC \Ð=Ð,\在PNH △和PMC △中,HPN CPM PNH PMC HN CM Ð=ÐìïÐ=Ðíï=î,。
2024-2025学年八年级数学上学期期中模拟试卷(华东师大版)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:华东师大版第11章数的开方~第13章全等三角形。
5.难度系数:0.68。
第一部分(选择题共30分)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1)2.下列运算正确的是()A.a3+a2=a5B.C.a2_a3=a5D.(a2)4=a6【答案】C【解析】A.a3和a2不是同类项,不能合并,故选项错误,不符合题意;B.,故选项错误,不符合题意;C.a2_a3=a5,故选项正确,符合题意;D.(a2)4=a8,故选项错误,不符合题意;故选C.3.如图AB=DE,∠B=∠E,添加下列条件仍不能判定△ABC≌△DEF的是()A.∠A=∠D B.∠ACB=∠DFE C.D.AC=DF【答案】D【解析】A.AB=DE,∠B=∠E,∠A=∠D,可利用ASA证明△ABC≌△DEF,故该选项不符合题意;B.AB=DE,∠B=∠E,∠ACB=∠DFE,可利用AAS证明△ABC≌△DEF,故该选项不符合题意;C.由可得出∠ACF=∠DFE,再结合AB=DE,∠B=∠E,可利用AAS证明△ABC≌△DEF,故该选项不符合题意;D.用AB=DE,∠B=∠E,AC=DF,SSA无法证明△ABC≌△DEF.故该选项符合题意;故选D.4.设a=a在两个相邻整数之间,则这两个整数是()A.2和3B.3和4C.4和5D.5和65.下列因式分解正确的是()A.2a2―4a=2(a2+a)B.―a2+4=(a+2)(a―2)C.a2―10a+25=a(a―10)+25D.a2―2a+1=(―a+1)2【答案】D【解析】A、2a2―4a=2a(a―2),该选项分解错误,不合题意;B、―a2+4=―(a2―4)=―(a+2)(a―2),该选项分解错误,不合题意;C、a2―10a+25=(a―5)2,该选项分解错误,不合题意;D、a2―2a+1=(1―a)2=(―a+1)2,该选项分解正确,符合题意;故选D.6.如图,点A 在DE 上,AC =EC ,∠1=∠2=∠3,则DE 等于( )A .BCB .ABC .DCD .AE +AC 【答案】B 【解析】令AB 、CD 交于点O ,则∵∠1=∠2,∠AOD =∠BOC,∴∠B =∠D ,∵∠2=∠3,,即∠ACB =∠ECD ,在和中,B =?D ACB =?ECD :cAC =EC,,∴AB =ED .故选B .7.如图,边长为2m +3的正方形纸片剪出一个边长为m +3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m ,则拼成长方形的面积是( )A .4m 2+12m +9B .3m +6C .3m 2+6mD .2m 2+6m +9【解析】根据题意,得:(2m+3)2―(m+3)2=[(2m+3)+(m+3)][(2m+3)―(m+3)]=(3m+6)m=3m2+6m故选C.8.观察下列各式:,…,根据你发现的规律,若式子=a、b为正整数)符合以上规律,则a+b的平方根是().A.B.4C.―4D.∵,的平方根是;9.设a=x―2022,b=x―2024,c=x―2023.若a2+b2=16,则c2的值是( ) A.5B.6C.7D.8【答案】C【解析】,b=x―2024,c=x―2023,,a―b=2,∵a2+b2=16,∴(a―b)2+2ab=16,∴ c 2=(a ―1)(b +1)=ab +a ―b ―1=6+2―1=7,故选C .10.如图,在中,AB =AC ,点D 、F 是射线BC 上两点,且,若AE =AD ,∠BAD =∠CAF =15°,则下列结论中①是等腰直角三角形;②;③;④BC ―12EF =2AD ―CF .正确的有( )A .1个B .2个C .3个D .4个【答案】D【解析】∵,∴,∵∠BAD =∠CAF ,∴,又∵AB =AC ,∴是等腰直角三角形,故结论①正确;∵AB =AC ,,∴∠B =∠ACB =45°,在和中,AB =AC BAD =?CAE ADa =AE,∴,∴,∴,即,故结论②正确;∵,∴,∴,故结论,,∴,∴,第二部分(非选择题共90分)二、填空题:本题共8小题,每小题3分,共24分。
期中考试模拟卷人教版2024—2025学年秋季八年级上册数学期中考试模拟试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。
3.回答第II卷时,将答案写在第II卷答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.下列各选项的图形中,不是轴对称图形的是()A.B.C.D.2.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.5cm,5cm,11cm D.13cm,12cm,20cm3.在直角坐标系中,点P(3,1)关于x轴对称点的坐标是()A.(3,1)B.(﹣3,1)C.(3,﹣1)D.(﹣3,﹣1)4.已知等腰三角形的两边长分别是4和6,则它的周长是()A.14B.16C.18D.14或165.已知△ABC≌△DEF,∠A=50°,∠E=80°,则∠F的度数是()A.30°B.50°C.80°D.100°6.使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等7.尺规作图中蕴含着丰富的数学知识和思想方法.如图,为了得到∠P'O'Q'=∠POQ,在用直尺和圆规作图的过程中,得到△AOB≌△A'O'B'的依据是()A.SAS B.SSS C.ASA D.AAS8.如图,在△ABC中,点D在CB的延长线上,∠A=50°,∠ABD=110°,则∠C的度数为()A.40°B.50°C.60°D.70°9.如图,线段AD与BC相交于O点,∠A=∠B=90°,添加以下的一个条件仍不能判定△ACD≌△BDC的是()A.∠ACD=∠BDC B.AD=BCC.OC=OD D.∠OCA=∠ODB10.如图,在△AOB中,∠OAB=∠AOB=15°,OB=8,OC平分∠AOB,点P在射线OC上,点Q为边OA上一动点,则P A+PQ的最小值是()A.3B.4C.4D.3第8题第9题第10题二、填空题(每小题3分,满分18分)11.已知多边形的内角和为1440°,则这个多边形的边数是.12.等腰三角形的一个角是70°,则等腰三角形的顶角的度数是.13.如图,BD是△ABC的中线,AB=6,BC=4,△ABD和△BCD的周长差为.14.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为.15.如图,AD是△ABC的中线,AB=8,AC=4,则AD的取值范围是.第13题第14题第15题16.如图,已知BO平分∠CBA,CO平分∠ACB,且MN∥BC,设AB=12,BC=24,AC=18,则△AMN的周长是.期中考试模拟卷人教版2024—2025学年秋季八年级上册数学期中考试模拟试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________准考证号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.如图,AD是△ABC的高,AE是△ABD的角平分线,∠C=60°,∠CAE =50°,求∠B的度数.18.如图,△AOB、△COD是等腰直角三角形,点D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=3,BD=1,求CD.19.如图,△ABC是等边三角形,BD是AC边上的高,延长BC至E,使DB=DE.(1)求∠BDE的度数;(2)求证:△CED为等腰三角形.20.已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.(1)求证:△ABE≌△CAD;(2)求∠BPQ的度数;(3)求AD的长.21.已知△ABC的三边长分别为a,b,c.(1)化简式子|a﹣b+c|+|a﹣b﹣c|=;(2)若a=x+8,b=3x﹣2,c=x+2.①x的取值范围是;②当△ABC为等腰三角形时,求a,b,c的值.22.如图,已知△ABC中,AB=AC,∠BAC=90°.直角∠EDF的顶点D是BC 中点,两边DE,DF分别交AB,AC于点E,F.(1)求证:AE=CF;(2)若AB=1cm,求四边形AEDF的面积.23.如图,在平面直角坐标系中有三个点A(2,3),B(1,1),C(4,2).(1)连接A、B、C三点,请在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点C1的坐标并求CC1的长度;(3)求△ABC的面积.24.如图,在平面直角坐标系中,点B与点C关于x轴对称,点D为x轴上一点,点A为射线CE上一动点,∠ABD=∠ACD,过D作DM⊥AB于点M.(1)求证:∠BAC=2∠BDO;(2)求证:AD平分∠BAE;(3)当点A运动时,的值是否发生变化?若不变化,请求出其值;若变化,请说明理由.25.在平面直角坐标系中,已知A(a,0),B(0,b),AB=AC,且AB⊥AC,AC交y轴于点E.(1)如图1,若点C的横坐标为﹣a,求证:AE=CE;(2)如图2,若BE平分∠ABC,点E的坐标为(0,b﹣6),求点C的横坐标;(3)如图3,若a=1,以BC为边在BC的左侧作等边△BCM,当∠BOM=60°时,求OC的长.。
2024-2025学年八年级数学上学期期中模拟卷(湖北省卷专用)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版第11章三角形+第12章全等三角形+第13章轴对称。
5.难度系数:0.65。
第一部分(选择题共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.下列长度的三条线段能首尾相接构成三角形的是( )A.1,2,3B.3,4,C.4,5,10D.6,9,2【解答】解:根据三角形的三边关系,得:A、1+2=3,不能构成三角形,不符合题意;B、3+4>5,能构成三角形,符合题意;C、4+5<10,不能构成三角形,不符合题意;D、2+6<9,不能构成三角形,不符合题意.故选:B.2.第33届夏季奥运会于2024年7月26日至8月11日在法国巴黎举行,中国取得金牌榜第一名的好成绩,如图所示巴黎奥运会项目图标中,是轴对称图形的是( )A.B.C.D.【解答】解:A.该图形不是轴对称图形,故此选项不合题意;B.该图形不是轴对称图形,故此选项不合题意;C.该图形是轴对称称图形,故此选项符合题意;D.该图形不是轴对称图形,故此选项不合题意.故选:C.3.如图,△ACE≌△DBF,若AD=11cm,BC=5cm,则AB长为( )A.6cm B.7cm C.4cm D.3cm【解答】解:∵△ACE≌△DBF,∴AC=BD,∴AC﹣BC=BD﹣BC,即AB=CD,∵AD=11cm,BC=5cm,∴AB=(11﹣5)÷2=3(cm),故选:D.4.如图,将一副三角尺按图中所示位置摆放,点C在FD的延长线上,点C、F分别为直角顶点,且∠A=60°,∠E=45°,若AB∥CF,则∠CBD的度数是( )A.15°B.20°C.25°D.30°【解答】解:∵AB∥CF,∴∠BCD=∠ABC=30°.∵∠BDF是△BCD的外角,∴∠CBD=∠EDF﹣∠BCD=45°﹣30°=15°.故选:A.5.如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,∠ACB=∠DFE,BF=EC,只添加一个条件,不能判定△ABC≌△DEF的是( )A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E【解答】解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,A、由SAS判定△ABC≌△DEF,故A不符合题意;B、∠ACB和∠DFE分别是AB和DE的对角,不能判定△ABC≌△DEF,故B符合题意;C、由AAS判定△ABC≌△DEF,故C不符合题意;D、由ASA判定△ABC≌△DEF,故D不符合题意.故选:B.6.如图,由一个正六边形和正五边形组成的图形中,∠1的度数应是( )A.72°B.84°C.82°D.94°【解答】解:如图,由题意得:∠3=360°÷6=60°,∠4=360°÷5=72°,则∠2=180°﹣60°﹣72°=48°,所以∠1=360°﹣48°﹣120°﹣108°=84°.故选:B.7.下列对△ABC的判断,不正确的是( )A.若AB=AC,∠C=60°,则△ABC是等边三角形B.若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形C.若∠A=50°,∠B=80°,则△ABC是等腰三角形D.若AB=BC,∠C=40°,则∠B=40°【解答】解:A、若AB=AC,∠C=60°,则△ABC是等边三角形,说法正确,不符合题意;B、若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形,说法正确,不符合题意;C、若∠A=50°,∠B=80°,可得∠C=50°,则△ABC是等腰三角形,说法正确,不符合题意;D、若AB=BC,∠C=40°,则∠A=40°∠B= 100°,说法错误,符合题意;故选:D.8.如图,在△ABC中,PM、QN分别是线段AB、AC的垂直平分线,若∠BAC=110°,则∠PAQ的度数是( )A.40°B.50°C.60°D.70°【解答】解:∵∠BAC=110°,∴∠B+∠C=180°﹣∠BAC=70°,∵PM、QN分别是线段AB、AC的垂直平分线,∴AP=BP,CQ=AQ,∴∠BAP=∠B,∠CAQ=∠C,∴∠BAP+∠CAQ=∠B+∠C=70°,∵∠BAC=110°,∴∠PAQ=∠BAC﹣(∠BAP+∠CAQ)=110°﹣70°=40°,故选:A.9.如图,在△ABC中,AB=21cm,AC=12cm,∠A=60°,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t 秒,当△APQ 为直角三角形时,t 的值为( )A .2.5秒B .3秒C .3或214秒D .2.5或3秒【解答】解:根据题意得:AP =AB ﹣BP =21﹣3t ,AQ =2t ,∵△APQ 为直角三角形,∠A =60°,∴当∠AQP =90°,∠APQ =30°时,则AQ =12AP ,∴2t =12(21―3t),解得:t =3,当∠APQ =90°,∠AQP =30°时,则12AQ =AP ,∴12×2t =21―3t ,解得:t =214,综上,当t 的值为3秒或214秒时,△APQ 为直角三角形,故选:C .10.如图,△ABC 中,∠ABC 、∠FCA 的角平分线BP 、CP 交于点P ,延长BA 、BC ,PM ⊥BE 于M ,PN ⊥BF 于N ,则下列结论:①AP 平分∠EAC ;②∠ABC +2∠APC =180°;③∠BAC =2∠BPC ;④S △PAC =S △MAP +S △NCP .其中正确结论的个数是( )A .1个B .2个C .3个D .4个【解答】解:①过点P 作PD ⊥AC 于D ,∵PB 平分∠ABC ,PC 平分∠FCA ,PM ⊥BE ,PN ⊥BF ,PD ⊥AC ,∴PM =PN ,PN =PD ,∴PM =PD ,∵PM ⊥BE ,PD ⊥AC ,∴AP 平分∠EAC ,故①正确;②∵PM ⊥AB ,PN ⊥BC ,∴∠ABC +90°+∠MPN +90°=360°,∴∠ABC +∠MPN =180°,在Rt △PAM 和Rt △PAD 中,PM =PD PA =PA ,∴Rt △PAM ≌Rt △PAD (HL ),∴∠APM =∠APD ,同理:Rt △PCD ≌Rt △PCN (HL ),∴∠CPD =∠CPN ,∴∠MPN =2∠APC ,∴∠ABC +2∠APC =180°,②正确;③∵BP 平分∠ABC ,CP 平分∠FCA ,∴∠ACF =∠ABC +∠BAC =2∠PCF ,∠PCF =12∠ABC +∠BPC ,∴∠BAC =2∠BPC ,③正确;④由②可知Rt △PAM ≌Rt △PAD (HL ),Rt △PCD ≌Rt △PCN (HL ),∴S △APD =S △MAP ,S △CPD =S △NCP ,∴S △PAC =S △MAP +S △NCP ,故④正确,故选:D .第二部分(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,满分15分)11.已知等腰三角形的周长为18,其中一边长为5,则该等腰三角形的底边长为 .【解答】解:当腰为5时,另一腰也为5,则底为18﹣2×5=8,∵5+5>8,符合题意,当底为5时,腰为(18﹣5)÷2=6.5,符合题意,∴该三角形的底边长为8或5.故答案为:8或5.12.如图,在△ABC中,AB=BE,AD=DE.若∠A=70°,∠C=50°,则∠EDC= °.【解答】解:在△ABD和△EBD中,AB=EB AD=DE BD=BD,∴△ABD≌△EBD(SSS)∴∠DEB=∠A=70°,∵∠C=50°,∠BED=∠C+∠EDC,∴∠EDC=70°﹣50°=20°故答案为:20°13.如图,BC、AE是锐角△ABF的高,相交于点D,若AD=BF,AF=7,CF=2,则BD的长为 .【解答】解:∵BC、AE是锐角△ABF的高,∴∠DCA=∠BCF=∠AEF=90°,∵∠DAC+∠ADC=90°,∠EAF+∠F=90°∴∠ADC=∠F,在△ADC和△BFC中,∠ACD=∠BCF ∠ADC=∠FAD=BF,∴△ADC≌△BFC(AAS),∴CD=CF=2,BC=AC=AF﹣CF=7﹣2=5∴BD=BC﹣CD=5﹣2=3,故答案为:3.14.将△ABC按如图所示翻折,DE为折痕,若∠A+∠B=130°,则∠1+∠2= °.【解答】解:在△ABC中,∠A+∠B+∠C=180°,在△CDE中,∠CDE+∠CED+∠C=180°,∴∠A+∠B=∠CDE+∠CED,∵∠A+∠B=130°,∴∠CDE+∠CED=130°,∴∠BED+∠ADE=360°﹣130°=230°,由折叠的性质得,∠BED=∠B'ED,∠ADE=∠A'DE,∴∠B'ED+∠A'DE=230°,即∠1+∠CDE+∠2+∠CED=230°,∴∠1+∠2=230°﹣130°=100°,故答案为:100.15.如图,等腰三角形ABC的面积为24,底边BC=6,腰AC的垂直平分线EF分别交边AC、AB于E、F 两点,点M为线段EF上一动点,点D为BC的中点,连接CM、DM.在点M的运动过程中,△CDM 的周长存在最小值为 .【解答】解:连接AD ,AM ,∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,CD =12BC =3,∴S △ABC =12BC ⋅AD =12×6AD =24,解得AD =8,∵EF 是线段AC 的垂直平分线,∴MA =MC ,∴MC +DM =MA +DM ≥AD ,∴AD 的长为CM +MD 的最小值,∴△CDM 的周长最短为:CM +MD +CD =AD +CD =8+3=11,故答案为:11.三、解答题(本大题共9小题,满分75分.解答应写出文字说明,证明过程或演算步骤)16.(6分)如图,已知AE ∥CF ,AB =CD ,∠ADF =∠CBE .求证:△ABE ≌△CDA .【解答】证明:∵AE ∥CF ,∴∠BAE =∠C ,∵∠ADF =∠CBE ,∴180°﹣∠ADF =180°﹣∠CBE ,即∠ADC =∠EBA ,又∵AB =CD ,在△ABE 和△CDA 中,∠BAE =∠C AB =CD ∠ADC =∠EBA,∴△ABE ≌△CDA (ASA ).17.(7分)如图,在△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠C =70°.(1)求∠AOB 的度数;(2)若∠ABC =50°,求∠DAE 的度数.【解答】解:(1)∵AE 、BF 是∠BAC 、∠ABC 的角平分线,∴∠OAB +∠OBA =12(∠BAC +∠ABC),在△ABC 中,∠C =70°,∴∠BAC +∠ABC =180°﹣∠C =110°,∴∠AOB =180°―∠OAB ―∠OBA =180°―12(∠BAC +∠ABC)=125°;(2)∵在△ABC 中,AD 是高,∠C =70°,∠ABC =50°,∴∠DAC =90°﹣∠C =90°﹣70°=20°,∠BAC =180°﹣∠ABC ﹣∠C =60°∵AE是∠BAC的角平分线,∴∠CAE=12∠CAB=30°,∴∠DAE=∠CAE﹣∠CAD=30°﹣20°=10°,∴∠DAE=10°.18.(8分)△ABC在平面直角坐标系中的位置如图所示.(1)作出与△ABC关于y轴对称的△A1B1C1;(2)写出点A、B、C关于x轴的对称点的坐标;(3)求出△ABC的面积.【解答】解:(1)如图所示,△A1B1C1即为所求.……………………2分(2)如图所示,A2(﹣2,﹣3),B2(﹣3,﹣2),C2(﹣1,﹣1);……………………5分(3)△ABC的面积为2×2―12×1×2―12×1×2―12×1×1=32.……………………8分19.(8分)如图,在四边形ABCD中,AD∥BC,∠A=90°,BE=AD,CE⊥BD,垂足为E.(1)求证:△ABD≌△ECB;(2)若∠DBC=50°,求∠DCE的度数.【解答】(1)证明:∵AD∥BC,∴∠ADB=∠EBC.∵CE⊥BD,∠A=90°,∴∠A=∠CEB,在△ABD和△ECB中,∠ADB=∠EBC BE=AD∠A=∠CEB∴△ABD≌△ECB(ASA);……………………4分(2)解:∵△ABD≌△ECB,∴BC=BD,∵∠DBC=50°,∴∠EDC=12(180°﹣50°)=65°,又∵CE⊥BD,∴∠CED=90°,∴∠DCE=90°﹣∠EDC=90°﹣65°=25°.……………………8分20.(8分)如图,在△ABC中,AB=AC,点D为BC的中点,连接AD,AB的垂直平分线EF交AB于点E,交AD于点O,交AC于点F,连接OB,OC.(1)求证:△AOC为等腰三角形;(2)若∠BAD=20°,求∠COF的度数.【解答】(1)证明:∵EF是AB的中垂线,∴OA=OB,∵AB=AC,D为BC中点,∴AD⊥BC,∴AD是BC的中垂线,∴OB=OC,∴OA=OC,∴△OAC是等腰三角形.……………………4分(2)解:∵AB=AC,D为BC中点,∴∠DAC=∠BAD=20°,∴∠BAC=40°,∵EF是AB的中垂线,∴EF⊥AB,∴∠AFE=50°,∵OA=OC,∴∠OCA=∠OAC=20°,∵∠AFE=∠OCA+∠COF,∴50°=20°+∠COF,∴∠COF=30°.……………………8分21.(8分)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BD=DF.(1)求证:CF=EB;(2)试判断AB与AF,EB之间存在的数量关系.并说明理由.【解答】(1)证明:∵AD是∠BAC的平分线,DE⊥AB,∠C=90°,∴DC=DE,在Rt△FCD和Rt△BED中,DC=DE DF=DB,∴Rt△FCD≌Rt△BED(HL),∴CF=EB;……………………4分(2)解:AB=AF+2BE,……………………5分理由如下:在Rt△ACD和Rt△AED中,DC=DE AD=AD,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∴AB=AE+BE=AF+FC+BE=AF+2BE.……………………8分22.(8分)在等边三角形ABC中,点E在AB边上,点D在CB的延长线上,且DE=EC.(1)如图1,当E为AB中点时,求证:CB=2BD;(2)如图2,若AB=12,AE=2,求CD的长.【解答】解:(1)∵△ABC为等边三角形,∴∠ABC=∠A=∠ACB=60°,∵EB=AE,∴CE⊥AB,CE是∠ACB的角平分线,∴∠BEC=90°,∠BCE=30°,∴2EB=BC,∵ED=EC,∴∠EDC=∠ECD=30°,∴∠DEB=60°﹣30°=30°,∴BD=BE,∴BC=2BD;……………………4分(2)如图2,过点E作EF∥BC,交AC于点F,∵△ABC为等边三角形,∴∠AFE=∠ACB=∠ABC=60°,△AEF为等边三角形,∴∠EFC=∠EBD=120°,EF=AE,∵ED=EC,∴∠EDB=∠ECB,∠ECB=∠FEC,∴∠EDB=∠FEC,在△BDE和△FEC中,∠EBD=∠EFC ∠EDB=∠FEC ED=EC,∴△BDE≌△FEC(AAS),∴BD=EF,∴AE=BD,∴CD=BC+BD=12+2=14.……………………8分23.(10分)小明在学习过程中,对教材中的一个有趣问题做如图探究:(1)【习题回顾】已知:如图1,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD相交于点F.求证:∠CFE=∠CEF;(2)【变式思考】如图2,在△ABC中,∠ACB=90°,CD是AB边上的高,若△ABC的外角∠BAG的平分线交CD的延长线于点F,其反向延长线与BC边的延长线交于点E,若∠B=40°,求∠CEF和∠CFE的度数;(3)【探究延伸】如图3,在△ABC中,在AB上存在一点D,使得∠ACD=∠B,角平分线AE交CD 于点F.△ABC的外角∠BAG的平分线所在直线MN与BC的延长线交于点M,若∠M=35°,求∠CFE 的度数.【解答】(1)证明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分线,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;……………………3分(2)解:∵∠B=40°,∠ACB=90°,∴∠GAB=∠B+∠ACB=40°+90°=130°,∵AF为∠BAG的角平分线,∴∠GAF=∠DAF=12×130°=65°,∵CD为AB边上的高,∴∠ADF=∠ACE=90°,∴∠CFE=90°﹣∠GAF=90°﹣65°=25°,……………………5分又∵∠CAE=∠GAF=65°,∠ACB=90°,∴∠CEF=90°﹣∠CAE=90°﹣65°=25°;……………………7分(3)证明:∵C、A、G三点共线,AE、AN为角平分线,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF =∠CFE ,∴∠M +∠CFE =90°.∴∠CFE =90°﹣∠M =90°﹣35°=55°. ……………………10分24.(12分)如图,△ABC 是等腰直角三角形,AB =BC ,直角顶点B 在x 轴上,一锐角顶点C 在y 轴上.(1)如图1,若点B 的坐标是(﹣2,0),点A 的坐标是(3,2),求点C 的坐标.(2)如图2,若y 轴恰好平分∠ACB ,AB 与y 轴交于点D ,过点A 作AE ⊥y 轴于点E ,问CD 与AE 有怎样的数量关系?并说明理由.(3)如图3,直角边BC 的两个端点在两坐标轴上滑动,使点A 在第二象限内,过点A 作AF ⊥y 轴于点F ,在滑动的过程中,OB―AF OC为定值,求出这个定值.【解答】解:(1)如图1,过点A 作AN ⊥x 轴于点N ,则∠ANB =∠BOC =90°,∴∠ABN +∠BAN =90°,∵△ABC 是等腰直角三角形,AB =BC ,∴∠ABN +∠CBO =∠ABC =90°,∴∠BAN =∠CBO ,在△BAN 和△CBO 中,∠ANB =∠BOC ∠BAN =∠CBO AB =BC,∴△BAN ≌△CBO (AAS ),∴BN =CO ,∵点B 的坐标是(﹣2,0),点A 的坐标是(3,2),∴BN =2+3=5,∴CO =5,∴点C 的坐标为(0,﹣5),……………………4分(2)CD 与AE 的数量关系为:CD =2AE ,理由如下: ……………………5分如图2,延长AE 交CB 的延长线于点G ,∵y 轴平分∠ACB ,AE ⊥y ,∴△ACG 是等腰三角形,∠AED =90°,∴AE =GE =12AG ,∠GAB +∠ADE =90°,∵△ABC 是等腰直角三角形,=BC ,∴∠CBD =∠ABG =90°,∴∠DCB +∠CDB =90°,∵∠ADE =∠CDB ,∴∠GAB =∠DCB ,在△GAB 和△DCB 中,∠ABG =∠CBDAB =BC ∠GAB =∠DCB ,∴△GAB ≌△DCB (ASA ),∴AG =CD ,∴AE =12CD ,∴CD =2AE ; ……………………8分(3)如图3,过点A 作AH ⊥OB 于点H ,则∠AHB =∠AHO =90°,∵AF ⊥y 轴,∴四边形AHOF 是矩形,∴OH =AF ,∵∠ABH +∠CBO =90°,∠CBO +∠BCO =90°,∴∠ABH =∠BCO ,在△ABH 和△BCO 中,∠AHB =∠BOC =90°∠ABH =∠BCO AB =BC ,∴△ABH ≌△BCO (AAS ),∴HB =OC ,∵HB =OB ﹣OH =OB ﹣AF ,∴OC =OB ﹣AF ,∴OB―AF OC =1. ……………………12分。
第3题图第8题图A.75°B 9.定义:对于实数a,符号第10题图A .12B .14C .16D .18二、填空题:本题共6小题,每小题3分,共18分.11.若一个正数x 的平方根是与,则x 的值为______.1a +3a -12.已知关于x 的方程的解是非负数,则k 的最小值为______.349k x -=-13.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A ,C ,D 的面积依次为4、6、18,则正方形B 的面积为______.第13题图14.如图,数轴上点A 所表示的数为1,点B ,C ,D 是4×4的正方形网格上的格点,以点A 为圆心,AD 长为半径画圆交数轴于M ,N 两点,则M 点所表示的数为______.第14题图15.关于x 的不等式组有且只有三个整数解,则a 的取值范围是______.23x xx a <-+⎧⎨<⎩16.如图,以△ABC 的三边为边在BC 上方分别作等边△ACD ,△ABE ,△BCF ,且点A 在△BCF 内部.给出以下结论:①四边形ADFE 是平行四边形;②当时,四边形ADFE 是菱形;AB AC =③当时,四边形ADFE 是矩形;90BAC ∠=︒④当AB =AC ,且时,四边形ADFE 是正方形.其中正确结论有______(填上90BAC ∠=︒第16题图第18题图第19题图第21题图22.(本题满分9分)某仓库放置若干个第23题图24.(本题满分12分)综合与实践【问题情境】数学综合与实践活动课上,老师提出如下问题:一个三级台阶,它每一级的长、宽、高分别为20、3、2,A和B是一个台阶两个相对的端点.【探究实践】老师让同学们探究:如图①,若A点处有一只蚂蚁要到B点去吃可口的食物,那么蚂蚁沿着台阶爬到B点的最短路程是多少?(1)同学们经过思考得到如下解题方法:如图②,将三级台阶展开成平面图形,可得到长为20,宽为15的长方形,连接AB,经过计算得到AB长度为______,就是最短路程.【变式探究】(2)如图③,是一只圆柱形玻璃杯,该玻璃杯的底面周长是30 cm,高是8 cm,若蚂蚁从点A出发沿着玻璃杯的侧面到点B,则蚂蚁爬行的最短距离为______.【拓展应用】(3)如图④,圆柱形玻璃杯的高9 cm,底面周长为16 cm,在杯内壁离杯底4 cm的点A处有一滴蜂蜜,此时,一只蚂蚁正好在外壁上,离杯上沿1 cm,且与蜂蜜相对的点B处,则蚂蚁从外壁B处到内壁A处所爬行的最短路程是多少?(杯壁厚度不计);x+1≥①∵AB=AD=13m,证明:∵四边形ABCD是菱形,∴又∵∠B=60°,∴△ABC∵E是BC的中点,∴AE⊥∵DB=DC,∴AF=CD.∵,AF =BD ,AF BD ∥作B 关于EF 的对称点B 在Rt △ABD 中,AD AE =22B A B D AD ''=+=所以B 处到内壁A 处所爬行的最短路程是。
2024-2025学年八年级数学上学期期中模拟卷(青岛版)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:青岛版八年级上册第1章~第3章。
5.难度系数:0.85。
一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列图案中,是轴对称图形的是()A.B.C.D.【答案】A【详解】A.是轴对称图形,符合题意;B.不是轴对称图形,不符合题意;C. 不是轴对称图形,不符合题意;D. 不是轴对称图形,不符合题意;故选:A.2.已知等腰三角形的一个内角等于110°,则它的两个底角是()A.55°,55°B.35°,35°C.55°,35°D.30°,50°【答案】B【详解】解:∵等腰三角形的一个内角等于110°,且三角形内角和为180°,∴这个等腰三角形的顶角为110°,3.如图,已知AE=CF,AD∥BC,添加一个条件后,仍无法判定△ADF≌△CBE的是()A.DF=BE B.AD=CB C.∠B=∠D D.BE∥DF【答案】A【详解】解:∵AE=CF,∴AE+EF=CF+EF.∴AF=CE.∵AD∥BC,∴∠A=∠C,根据∠A=∠C,DF=BE,AF=CE不能推出△ADF≌△CBE,故本选项符合题意;B.∵AD=CB,∠A=∠C,AF=CE,∴△ADF≌△CBE(SAS),故本选项不符合题意;C.∵∠D=∠B,∠A=∠C,AF=CE,∴△ADF≌△CBE(AAS),故本选项不符合题意;D.∵BE∥DF,∴∠BEC=∠DFA,又∵AF=CE,∠A=∠C,∴△ADF≌△CBE(ASA),故本选项不符合题意;故选:A.4.化简x―2x÷x)A.x+2x B.x―2xC.1x―2D.1x+25.如图,在△ABC 中,AC =5,AB =7,AD 平分∠BAC ,DE ⊥AC ,DE =2,则△ABD 的面积为( )A .14B .12C .10D .7∵AD 平分∠BAC ,DE ⊥AC ,∴DF =DE =2,∴S △ABD =12AB·DF =12×7×6.如图,把长方形纸片ABCD 沿EF 对折,若∠1=52°,则∠AEF 的度数为( )A .114°B .115°C .116°D .117°∴∠AEF=180°―∠BFE=116°,故选:C.7.光明家具厂生产一批学生课椅,计划在30天内完成并交付使用.若每天多生产100把,则23天完成且还多生产200把.设原计划每天生产x把,根据题意,可列分式方程为()A.30x+200x+100=23B.30x―200x+100=23C.30x+200x―100=23D.30x―200x―100=238.已知关于x的方程2x+mx―2=3的解是正数,则m的取值范围为()A.m<-6B.m>-6C.m>-6且m≠-4D.m≠-49.如图1,四边形ABCD是长方形纸带,其中AD∥BC,∠DEF=20°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中∠CFE的度数是()图1图2图3A.110°B.120°C.140°D.150°【答案】B【详解】解:在图(1)中,∵AD∥BC,∴∠DEF=∠EFB=20°,在图(2)中∠GFC=180°―2∠EFG=140°,在图(3)中∠CFE=∠GFC―∠EFG=120°,故选:B.10.如图,在ΔABC中,AD是BC边上的高,∠BAF=∠CAG=90°,AB=AF,AC=AG.连接FG,交DA的延长线于点E,连接BG,CF.则下列结论:①BG=CF;②BG⊥CF;③EF=EG;④BC=2AE;⑤SΔABC=SΔFAG,其中正确的有( )A.①②③B.①②③④C.①②③⑤D.①②③④⑤【答案】D【详解】解:∵∠BAF=∠CAG=90°,∴∠BAF+∠BAC=∠CAG+∠BAC,即∠CAF=∠GAB,又∵AB=AF,AC=AG,∴ΔCAF≌ΔGAB(SAS),∴BG=CF,故①正确;∵ΔCAF≌ΔGAB,∴∠FCA=∠BGA,又∵BG与AC所交的对顶角相等,∴BG与FC所交角等于∠GAC,即等于90°,∴BG⊥CF,故②正确;过点F作FM⊥AE于点M,过点G作GN⊥AE交AE的延长线于点N,∵∠FMA=∠FAB=∠ADB=90°,∴∠FAM+∠BAD=90°,∠FAM+∠AFM=90°,∴∠BAD=∠AFM,又∵AF=AB,∴ΔAFM≌ΔBAD(AAS),∴AM=BD,同理ΔANG≌ΔCDA,∴NG=AD,AN=CD,∴FM=NG,∵FM⊥AE,GN⊥AE,∴∠FME=∠ENG=90°,∵∠AEF=∠NEG,∴ΔFME≌ΔGNE(AAS),∴EM=EN,∴BC=CD+BD=AN+AM=AE+EN+AE―EM=2AE.故④正确,∵ΔFME≌ΔGNE,∴EF=EG.故③正确.∵ΔAFM≌ΔBAD,ΔANG≌ΔCDA,ΔFME≌ΔGNE,∴SΔABC=SΔFAG,故⑤正确.故选:D.二、填空题(本题共6小题,每小题3分,共18分.)11.若分式4x―2有意义,则x的取值范围是.12.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=28°,∠2=30°,则∠3=.【答案】58°/58度【详解】∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,AB=AC∠BAD=∠EACAD=AE,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=28°,∴∠3=∠1+∠ABD=28°+30°=58°,故答案为:58°.13.在平面直角坐标系中,已知点M (m ―1,2m +4)在x 轴上,则点M 的坐标为 .【答案】(―3,0)【详解】解:由题意得,2m +4=0,解得m =―2,∴m ―1=―3,∴M (―3,0),故答案为:(―3,0).14.如图,平面上有△ACD 与△BCE ,其中AD 与BE 相交于点P ,若AC =BC ,AD =BE ,CD =CE ,∠ACE =55°,∠BCD =155°,则∠ACB 的度数为 .15.如图,已知等边三角形ABC 的边长为3,过AB 边上一点P 作PE ⊥AC 于点E ,Q 为BC 延长线上一点,取PA =CQ ,连接PQ ,交AC 于点M ,则ME 的长为 .60°,∠AFP=∠ACB=60°.16.如图所示,在四边形ABCD中,AD=2,∠A=∠D=90°,∠B=60°,BC=2DC,在AD上找一点P,使PC+PB 的值最小,则PC+PB的最小值为.【答案】4【详解】解:作C关于AD的对称点C1,连接C1D、PC1、BC1,∴CD=C1D,∵∠ADC=90°,∴PC=PC1,∴PB+PC=PB+PC1,如图,∵PB+PC1≥BC1,∴当C1、P、B三点共线时,PB+PC1最小,即PB+PC最小,此时PB+PC=BC1过C1作C1E⊥AB交BA的延长线于E,过C作CF⊥AB交AB于F,∴∠E=∠AFC=∠BFC=90°,∴CC1=2CD,∵BC=2DC,∴CC1=BC,∴∠ADC=∠DAF=90°,三.解答题(本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)解方程:(1)1x =2x+1;(2)x -2x+2-16x 2-4=1.∴x=―2是原方程的增根,∴原方程无解.(10分)18.(8÷x,再从―3<x<2的范围内选取一个合适的整数代入求值.x―119.(10分)如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)△ABC的面积为;(2)在图中作出△ABC关于直线MN的对称图形△A′B′C′.(3)利用网格纸,在MN上找一点P,使得PB+PC的距离最短.(保留痕迹)(2)如图,△A ′B ′C ′即为所求;(7分)(3)如图,点P 即为所求.(10分)20.(10分)如图,在△ABC 中,AB =AC ,点D ,E ,F 分别在AB,BC,AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)求证:∠B =∠DEF ;21.(10分)某校组织学生去郭永怀纪念馆进行研学活动.纪念馆距学校120千米,部分学生乘坐大型客车先行,出发12分钟后,另一部分学生乘坐小型客车前往,结果同时到达.已知小型客车的速度是大型客车速度的1.2倍,求大型客车的速度.22.(12分)阅读材料,并解决问题:我们知道,分子比分母小的分数叫做“真分数”,分子大于或等于分母的分数,叫做“假分数”.类似的,我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于字母的次数时,我们称之为“真分式”.如x―1x+1,x 2x+1这样的分式就是假分式;再如3x+1,2x x 2+1这样的分式就是真分式,假分数74可以化成1+34(即134)带分数的形式,类似的,假分式也可以化为带分式(整式与真分式的和或差)的形式,如:x+1x―1=x―1+2x―1=x―1x―1+2x―1=1+2x―1,再如:3x 2+4x―1x+1=3x (x+1)+x―1x+1=3x (x+1)+x+1―2x+1=3x (x+1)x+1+x+1x+1―2x+1=3x +1―2x+1,这样,分式就被拆分成了带分式(即一个整式3x +1与一个分式2x+1的差)的形式.解决问题:(1)判断:x+2x+1是真分式还是假分式: (填“真分式”或“假分式”);如果是,化成带分式的形式: ;(2)思考:当x 取什么整数时,分式5x 4+9x 2+6x 2+2的值为整数?(3)探索:当a 为何值时,分式3a 2―12a+17a 2―4a+5有最大值?最大值是多少?23.(12分)(1)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC,CD上的点且∠EAF=60°,探究图中线段BE、EF、FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;(2)探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上∠BAD,上述结论是否仍然成立?说明理由;的点,且∠EAF=12(3)实际应用:如图③,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以80海里/小时的速度前进,舰艇乙沿北偏东50°的方向以100海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处,且两舰艇之间的夹角为70°(即:∠EOF=70°),试直接写出此时两舰艇之间的距离.相交于点C,。
2023-2024学年江苏省苏州市工业园区八年级上学期期中数学模拟试题注意事项:1.本试卷满分100分,考试时间100分钟;2.所有的答案均应书写在答题卷上,按照题号顺序答在相应的位置,超出答题区域书写的答案无效;书写在试题卷上、草稿纸上的答案无效;3.字体工整,笔迹清楚。
保持答题纸卷面清洁。
一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项前的字母填在答题卡相应位置上.1.2023亚运会在中国杭州举行,下列图形中是轴对称图形的是A.B.C.D.2.下列二次根式中是最简二次根式的是A.0.1B.30C.12D.183.下列四个数中,无理数是()A.B.0.3227- C.5D.04.“一座姑苏城,半卷江南诗。
”2023年苏州市文旅行业势头强劲,经综合测算,国庆长假期间,我市累计接待游客1781.5万人次,按可比口径较2019年增长43.3%近似数1781.5万精确到A.十分位B.百位C.千位D.千分位5.等腰三角形的周长是11,其中一边长为3,则该三角形的底为A.3或4B.5C.3或5D.36.一技术人员用刻度尺(单位:)cm测量某三角形部件的尺寸.如图所示,已知90ACB∠=︒,点D 为边AB的中点,点A、B对应的刻度为1、7,则(CD=A.3.5cm B.3cm C.4.5cm D.6cm7.实数a,b在数轴上的位置如图所示,化简222(1)(1)()a b a b++---的结果是A.0B.2-C.2a-D.2b8.如图,BD 是△ABC 的角平分线,DE AB ⊥,垂足为E .ABC ∆的面积为70,16AB =,12BC =.求DE 的长为A .4B .5C .10D .28第8题第9题第10题9.如图,AC AB BD ==,90ABD ∠=︒,8BC =,则△BCD 的面积为A .8B .12C .14D .1610.如图,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.连接四条线段得到如图2的新的图案.如果图1中的直角三角形的长直角边为9,短直角边为4,图2中的阴影部分的面积为S ,那么S 的值为A .56B .60C .65D .75二、填空题:本大题共8小题,每小题2分,共16分.把答案直接填在答题卡相应位置上.11.23x -有意义,则x 的取值范围是.12.在ABC ∆中,AB BC =,且80A ∠=︒,则B ∠大小为.13.1713.(填“>”、“<”或“=”号)14.如图,在△ABC 中,AC 的垂直平分线与AC 、BC 分别交于点E 、D ,4CE =,ABC ∆的周长是25,则△ABD 的周长为.第14题第15题第16题第6题第7题15.“江南水乡琉璃瓦,白墙墨瓦凌霄开。
2016年春季学期渔峡口镇中心学校期中模拟考试
八年级数学试题
(全卷四大题24小题 满分:120分 时限:120分钟)
一.选择题(每题3分,共45分)
1. 若使二次根式1-a 在实数范围内有意义,则x 的取值范围是( )
A .1>a
B .1≥a
C .1<a
D .1≤a
2. 下列各式计算正确的是( )
A .
B .
C .
D .
3.下列各组数中,能构成直角三角形的是( )
A .4,5,6
B .1,1
C .6,8,11
D .5,12,23
4
.函数y = )
5. 矩形具有而菱形不具有的性质是( )
A .两组对边分别平行
B .对角线相等
C .对角线互相平分
D .两组对角分别相等
6. 一艘轮船以16海里∕小时的速度从港口A 出发向东北方向航行,同时另一轮船以12海里∕小时从港口A 出发向东南方向航行,离开港口3小时后,则两船相距( )
A .36 海里
B .48 海里
C .60海里
D .84海里
7.等边三角形的边长为2,则该三角形的面积为( )
A
. B
C
.D .3
8. 如图,将△ABC 沿BC 方向平移得到△DCE ,连接AD ,下列条件中能够判定四边形ACED 为菱形的是( )
A .A
B =BC
B .A
C =BC
C .∠B =60°
D .∠ACB =60° 9.如图,4×4的方格中每个小正方形的边长都是1,则S 四边形ABDC 与S 四边形ECDF 的大小关系是( ) A .S 四边形ABDC =S 四边形ECDF B .S 四边形ABDC < S 四边形ECDF C .S 四边形ABDC =S 四边形ECDF +1 D .S 四边形ABDC =S 四边形ECDF +2 10.如图,菱形ABCD 中,∠B =60°,AB =4,则以AC 为边长的正方形ACEF 的周长为( ) A .14 B .15 C .16 D .17 11.若正比例函数y =kx 的图象经过点(1,2),则k 的值为 A
B .-2 C
D .2 12.如图,表示某加工厂今年前5个月每月生产某种产品的产量c (件)与时间t (月)之间的关系,则对这种产品来说,该厂( ) A.1月至3月每月产量逐月增加,4、5两月产量逐月减小 B.1月至3月每月产量逐月增加,4、5两月产量与3月持平 C.1月至3月每月产量逐月增加,4、5两月产量均停止生产 D.1月至3月每月产量不变, 4、5两月均停止生产 13.小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s (米)与小文出发时间t (分)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480.其中正确的是 A .①②③ B .①②④ C .①③④ D .①②③④ 14.平行四边形的两个邻角的平分线所成的角是( ) A .60° B .90° C .120° D .150° 15.已知菱形ABCD 的周长为20cm, 两对角线的长度之比为3:4,那么两条对角线的长分别为( ) A .3cm ,4cm B . 6cm. 8cm C .12cm, 16cm D .24cm, 32cm
二、解答题(本大题有9题,共75分)
16.计算(6分) (1) )22(28+- (2) 327
12+
17.计算(6分) (1)35)(53(-+) (2)7002871
7-+
18.(7分)如图(18),在△ABC 中,∠B =90°,AB =6 cm ,BC =8 cm.将△ABC 沿射线BC 方向平移10 cm ,得到△DEF ,A ,B ,C 的对应点分别是D ,E ,F ,连接AD .
求证:四边形ACFD 是菱形.
19.(7分)我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x 吨,应交水费y 元.
(1)若0<x ≤6,请写出y 与x 的函数关系式.
(2)若x >6,请写出y 与x 的函数关系式.
(3)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?
20.(8分)如图(20)所示,正方形ABCD 及等腰Rt △AEF 有公共顶点A ,∠EAF =90°,连接BE 、DF , BE 、DF 具有怎样的数量关系和位置关系?证明你的结论.
21. (8分)如图(21),在△ABC 中,AD ⊥BC ,垂足为D ,∠B =60°,∠C =45°.
(1)求∠BAC 的度数.
(2)若AC =2,求AB 的长.
22.(10分) 国家推行“节能减排,低碳经济”的政策后,某企业推出一种叫“CNG”的改烧汽油为天然气的装置,每辆车改装费为b 元.据市场调查知:每辆车改装前、后的燃料费(含改装费)0y 、1y (单位:元)与正常运营时间x (单位:天)之间分别满足关系式:ax y =0、x b y 501+=,如图所示.试根据图像解决下列问题: (1)每辆车改装前每天的燃料费a = 元,每辆车的改装费 b = 元.正常运营 天后,就可以从节省燃料费中 收回改装成本. (2)某出租汽车公司一次性改装了100辆车,正常运营多少天后 收回成本并节省燃料费40万元? 23.(11分) 如图(23),在Rt △ABC 中,∠B =90°,AC =60 cm ,∠A =60°,点D 从点C 出发沿CA 方向以4 cm/s 的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2 cm/s 的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D ,E 运动的时间是 t s(0 < t ≤ 15).过点D 作DF ⊥BC 于点F ,连接DE ,EF . (1)求证:AE =DF ; (2)四边形AEFD 能够成为菱形吗? 如果能,求出相应的t 值;如果不能,请说明理由; (3)当t 为何值时,△DEF 为直角三角形?请说明理由. 24.(12分)矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在矩形ABCD 内部.延长BG 交DC 于点F . (1)求证:GF =DF . (2)若DC =2DF ,求AB AD 的值; (3)若DC =n 。
DF ,求AB AD 的值.
图(24) D B A E
C
F
图(20)
图(23)
图(21)
图(18)。