第27章相似三角形全章教案(共10份)
- 格式:doc
- 大小:6.74 MB
- 文档页数:24
新人教版九年级数学下册《第二十七章相似》全章教案本文已经没有格式错误和明显有问题的段落了,但是可以对每段话进行小幅度的改写,以增强文章的流畅性和可读性。
第一节课重点讲解了相似图形的概念和运用方法。
通过一些日常生活中的例子,让学生们理解了相似图形的形状和大小可以不同,但是它们的形状相同。
同时,老师还通过线段的长度比例的例子,让学生们理解了相似图形的比例关系。
在例题讲解中,老师通过选择题的形式,让学生们运用相似图形的特征,判断哪个图形与左边的图形相似。
同时,老师还给出了一道关于比例尺的例题,让学生们运用相似图形的知识,计算出实际距离。
第二节课重点讲解了相似多边形的主要特征和识别方法。
老师让学生们了解到相似多边形的对应角相等,对应边的比相等。
通过一些实例,让学生们学会了如何识别相似多边形,并运用其性质进行计算。
总的来说,本章节的教学目标是让学生们掌握相似图形和相似多边形的概念和运用方法。
通过一些生动的例子和实例,让学生们更好地理解和掌握知识点。
在研究第26页的内容时,学生需要了解判别两个多边形是否相似的条件。
这些条件包括对应角是否相等,对应边的比是否相等,这两个条件缺一不可。
如果要说明两个多边形不相似,则必须说明各角无法对应相等或各对应边的比不相等,或者举出合适的反例。
在解决这个问题时,依靠直觉观察是不可靠的。
课堂引入:1.对于图中的两个相似的四边形,它们的对应角和对应边的比是否相等。
2.相似多边形的特征是对应角相等,对应边的比相等。
如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似。
3.相似比是相似多边形对应边的比。
4.当相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形。
例1(补充)(选择题):下列说法正确的是D。
因为任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似。
例(教材P26例题):要求相似多边形中的某些角的度数和某些线段的长,可以根据相似多边形的对应角相等,对应边的比相等来解题。
27.1 图形的相似(1)一、教学目标1.通过对生活中的事物或图形的观察,获得理性认识,从而加以识别相似的图形.2.通过观察、归纳等活动,与他人交流思维的过程和结果,能用所学的知识去解决问题. 3.在获得知识的过程中培养学习的自信心.二、教学难点、难点:1.重点:引导学生观察图形,并从中获取信息,培养他们的观察、分析及归纳能力. 2.难点:应用获得的数学知识解决生活中的实际问题.三、教学过程(一)创设情境,导入新课:观察教材第24页的两组图形,你能发现它们之间有什么关系?(二)师生互动,探索新知:1、观察下列几组几何图形,你能发现它们之间有什么关系?从而得出:具有相同形状的图形叫相似形.2、对1中的3组图形,通过图形的缩小或放大,再利用图形的平移或旋转等变换,使它与另一个图形能够重合,从而加以验证它们是相似的图形。
(三)探究:1、思考教科书第25页观察中的问题,哈哈镜里看到的不同镜像它们相似吗?2、观察下图中的3组图形,它们是不是相似形?为什么?(激发学生的求知欲,为下一节课“相似图形的特征”做好准备)(四)应用练习,巩固新知完成课本第25页练习第1、2题。
四、小结:五、作业:必做题:选做题:六、板书设计七、教学反思:27.1 图形的相似(2)一、 教学目标1.通过对生活中的事物或图形的观察,获得理性认识,从而加以识别相似的图形. 2.经历对相似图形观察、分析、欣赏以及动手操作、画图、测量等过程,能用所学的知识去解决问题;回顾相似图形的性质、定义,得出相似三角形的定义及其基本性质。
3.通过观察、归纳等数学活动,与他人交流思维的过程和结果,在获得知识的过程中培养学习的自信心.发展审美能力,增强对图形欣赏的意识。
二、教学难点、难点:1.重点:引导学生观察图形,并从中获取信息,培养他们的观察、分析及归纳能力. 2.难点:应用获得的数学知识解决生活中的实际问题. 三、教学过程1.情境导入复习相似图形的概念,掌握相似形的基本特征:对应角相等,对应边的比相等. 2.合作深究 (1)整体感知从回顾旧知“相似多边形性质”入手定义相似三角形,认识符号相似于“∽”,会用数学语言表达两个三角形相似——从课本第41页中“习题27.1第5题”,通过测量得到DE ∥BC 时, △ADE ∽△ABC -一给出三角形相似的定义.(1) 四边互动 互动1师:教师展示投影1:课本第38页中图27.1.1-4.这两个图形有何共同特征? 生:回答略.师:这两个图形的不同点在哪里?生:回答略(教师在学生进行议论、交流、评判形成共识后可由学生进行口头归纳.) 明确 图上所展示的两个相似图形中,∠A=∠A ',∠B=∠B',∠C=∠C',''''''AB BC ACA B B C A C ==. 定义相似比:两个相似三角形对应边的比叫相似比.注意:相似比是有顺序的,△ABC 与△A'B'C'的相似比为k ,则△A 'B 'C '与△ABC的相似比为1k.互动2师:展示投影2:课本中第39页图27.1-5.△ABC与△ADE的三个角对应相等吗?为什么?生:略.师:△ABC与△ADE的三边对应成比例吗?量量看.生:动手测量得出结论并与同伴交流.师:△ABC与△ADE相似吗?生:学生分组进进行讨论.明确在同学交流、评判的过程中,老师进一步阐述,平行于三角形一边的直线截其他两边或其延长线所得的三角形与原三角形相似.4.达标反馈课本第40页练习第 l-3 题.注:(1)题中找对应边应考虑长边与长边、中边与中边、短边与短边是否对应成比例及大角与大角、小角与小角、中角与中角是否对应相等.5.学习小结(1)内容总结相似用符号“∽”表示,读作“相似于”.两个相似三角形对应边的比称为相似比,相似比是有顺序的.△ABC与△A'B'C'的相似比为k,则△A'B'C'与△ABC的相似比为1k.平行于三角形一边的直线截三角形的另两边,所得对应线段成比例.(2)方法归纳学会动手画平行线,动手测量、计算、观察、猜想总结规律;重在培养学生的合作、交流与探索的能力.(三)延伸拓展1.链接生活找一些生活中存在的相似变换的实例.2实践探索(1)实践活动画出公路两旁的电线杆(观察远近不同的两根电线杆及其上面的支架和瓷瓶).(2)巩固练习①课本第41页习题27.1第4、7题.(3)补充作业①中心对称的两个图形是相似图形.(V)②所有等边三角形都是相似图形.(V)③线段既是轴对称图形也是中心对称图形.(V)④半径不同的两个圆是相似图形.(V)⑤人的一双眼睛是相似图形.(V)⑥自己选画一如意图形,然后再确定一个对应顶点,再画出一个与它相似的图形.⑦(a)所有正方形是不是相似图形?若是,请说明理由.(b)所有矩形呢?把矩形改为梯形又如何?换成菱形呢?改为等腰梯形或平行四边形?27.2.1相似三角形的判定第一课时教学目标(一)知识与技能1、了解相似比的定义,掌握判定两个三角形相似的方法“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”;2、掌握“如果两个三角形的三组对应边的比相等,那么这两个三角形相似”的判定定理。
相似三角形的判定数学教学教案(10篇)《相似三角形》数学教案篇一教学目标:1、了解相似三角形的概念,会表示两个三角形相似。
2、能运用相似三角形的概念判断两个三角形相似。
3、理解“相似三角形的对应角相等,对应边成比例”的性质。
重点和难点:1、本节教学的重点是相似三角形的概念2、在具体的图形中找出相似三角形的对应边,并写出比例式,需要学生具有一定的分辨能力,是本节教学的难点。
知识要点:1、对应角相等,对应边成比例的两个三角形叫做相似三角形。
2、相似三角形的对应角相等,对应边成比例。
3、相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数)重要方法:1、全等三角形是相似三角形的特殊情况,它的相似比是1。
2、相似三角形中,利用对应角寻找对应边;反过来利用对应边寻找对应角。
3、书写相似三角形时,需要把对应顶点的字母写在对应的位置上。
教学过程一、创设情境,导入新课1、课件出示:①国旗上的☆,②同一底片不同尺寸的照片。
以上图形之间可以通过怎样的图形变换得到?2、经过相似变换后得到的像与原像称为相似图形。
那么将一个三角形作相似变换后所得的像与原像称为相似三角形二、合作学习,探索新知1、合作学习如图1,在方格纸内先任意画一个☆ABC,然后画出☆ABC经某一相似变换(如放大或缩小若干倍)后得到像☆A ′B ′C ′(点A ′、B ′、C ′分别对应点A 、B 、C)。
问题讨论1:☆A ′B ′C ′与☆ABC对应角之间有什么关系?问题讨论2:☆A ′B ′C ′与☆ABC对应边之间有什么关系?学生相互比较得到结论:对应角相等,对应边成比例。
2、由合作学习定义相似三角形的概念(1)相似三角形:一般地,对应角相等,对应边成比例的两个三角形,叫做相似三角形(2)表示:相似用符号“☆”来表示,读作“相似于”如☆A ′B ′C ′与☆ABC相似,记做“☆A ′B ′C ′☆☆ABC ” 。
注意:在表示三角形相似时,一般把对应顶点的字母写在对应的位置上(3)定义的几何语言表述:A B C A ′B ′C ′相似三角形的判定数学教学教案篇二一、教学目标1.使学生了解判定定理2、3的证明方法并会应用。
授课时间:年月日第周星期撰稿:赖庆益审核:李明课时序号一、课前导学:学生自学课本24-27页内容,并完成下列问题.1.观察下图的两个画面,他们的形状、大小有什么关系?象这样,我们把相同的叫做相似图形.【注意】两个图形相似,其中一个图形可以看作由另一个图形得到.2.两个边数相同的多边形,如果它们的角,边成比例,那么这两个多边形叫做相似多边形,相似多边形对应边的比叫做.3.如图,下面右边的四个图形中,与左边的图形相似的是()二、合作、交流、展示:1.相似图形、相似多边形、相似比的意义;相似比为1时,相似的两个图形有什么关系?2.相似多边形有哪些性质?相似多边形的对应角,对应边的比(对应边).3.如何判别两个多边形相似?对应角,且对应边的比的两个多边形的两个多边形相似.4.成比例线段:对于四条线段a,b,c,d,如果其中两条线段的与另两条线段的相等,年级九年级课题27.1图形的相似课型新授教学目标知识技能1.理解并掌握两个图形相似的概念;了解相似比、成比例线段的概念;2.掌握相似多边形的性质;会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行简单的计算.过程方法经历相似性质的探究过程,培养学生的观察、分析的能力.情感态度激发学生学习数学的兴趣,感受成功的喜悦.教学重点相似图形的概念;相似多边形的性质与判别.教学难点相似多边形的性质进行相关的计算,相似多边形的判别.教法导学案学法探究、合作教学媒体多媒体FE HGD CBA如dcb a =(即ad=bc ),我们就说这四条线段是成比例线段,简称比例线段. 【注意】 (1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位; (2)线段的比是一个没有单位的正数;(3)四条线段a,b,c,d 成比例,记作dcb a =或a:b=c:d ; 5.例题: 例题1.下列说法正确的是( )A .所有的平行四边形都相似B .所有的矩形都相似C .所有的菱形都相似D .所有的正方形都相似 例题2例1、如图,四边形ABCD 和EFGH 相似, 求角βα和的大小和EH 的长度.例3.如图矩形草坪长20m,宽10m,沿草坪四周有1m 宽的环形小路,小路内外边缘所成的矩形EFGH 和矩形ABCD 是否相似?三、巩固与应用: 1.课本第25、27页练习2.下列所给的条件中,能确定相似的有( ) (1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形. A .3个 B .4个 C .5个 D .6个3.已知边形ABCD 和四边形A 1B 1C 1D 1相似,四边形ABCD 的最长边和最短边的长分别是10cm 和4cm ,如果四边形A 1B 1C 1D 1的最短边的长是6cm ,那么四边形A 1B 1C 1D 1中最长的边长是多少?4.已知四边形ABCD 与四边形A 1B 1C 1D 1相似,且A 1B 1:B 1C 1:C 1D 1:D 1A 1=7:8:11:14,若四边形ABCD 的周长为40,求四边形ABCD 的各边的长5.如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.6.如图,一个矩形ABCD 的长AD= a cm ,宽AB= b cm ,E 、F 分别是AD 、BC 的中点,连接E 、F ,所得新矩形ABFE 与原矩形ABCD 相似,求a:b 的值.四、小结::1. 相似多边形的意义; 2相似多边形的性质五、作业:必做:P27练习T1、2、3、4、. 选做:《作业精编》相应练习.六、反思:授课时间: 年 月 日 第 周 星 期 撰稿;李明 审稿:赖小华 课时序号一、课前导学:学生自学课本第29-31 页内容,并完成下列问题1.三个角分别对应 ,三条边对应 的两个三角形是相似三角形.A A '∠=∠,B B '∠=∠,C C '∠=∠2. 【实验探究1】:如图1,任意画两条直线1l , 2l ,再画三条与1l , 2l 相交的平行线3l ,4l ,5l 分别量度3l , 4l ,5l 在1l 上截得的两条线段AB, BC 和在2l , 上截得的两条线段DE, EF 的长度, :AB BC 与:DE EF 相等吗?任意平移5l , 再量度AB, BC, DE, EF的长度, :ABBC 与:DE EF 还相等吗?【归纳】平行线分线段成比例定理:两条直线被一组_______线所截,所得的对应..线段 .2. 【实验探究2】如果把图中1l,2l两条直线相交,交点A 刚落到3l ,4l 上,如图2、年级 九年级 课题 27.2.1相似三角形的判定(1) 课型 新授教 学 目 标知识 技能1. 掌握相似三角形的定义,掌握平行线分线段成比例定理和推论,能应用定理及推论解题. 2. 掌握相似三角形判定的预备定理,能运用它判定两个三角形相似. 过程方法经历定理的探索过程,培养观察、分析、探究、归纳能力。
情感态度发展学生的探究能力,渗透类比思想,体会特殊与一般的关系。
教学重点 掌握平行线分线段成比例定理和推论,掌握相似三角形判定的预备定理。
教学难点 熟练应用定理及推论计算与证明。
教法学案导学学法探究、合作教学媒体多 媒 体教 学 过 程 设 计FE D CB A EDC BA E DCBA图1图2图3△ABC ∽△A ′B ′C ′3,所得的对应线段的比会相等吗?【归纳】平行线分线段成比例定理推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应..线段________.3.【实验探究3】在上面的图2,图3中,△ABC和△ADE相似吗?你能用学过的知识说明吗?【点拨】:利用相似三角形的定义,说明△ABC和△ADE的三边对应成比例,三角对应相等.【归纳】相似三角形判定的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形二、合作、交流、展示:1.【交流1】在图1,图2,图3中,你能说出哪些成比例的线段?如何寻找更简捷呢?2.【交流2】如图,在ABCDY中,F是BC上的一点,直线DF与AB的延长线相交于点E,BP∥DF,且与AD相交于点P,请找出图中的相似三角形3.如图4,在△ABC中,DE∥BC,AC=4 ,AB=3,EC=1.求AD和BD.三、巩固与应用:1.如图4,DE∥BC,则下列等式不成立的是()A.BD CE=BA CAB.AD AB=AE ACC. AE AD=BD CED.CE EA=BD DA2.已知:如图5,若DE∥BC,EA2=AC5,则DA=AB,EA=EC.3.如图,△ABC中,DE∥BC,EF∥AB,求证:△ADE ∽△EFC.4.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:25.如图,在ABCDY中EF分别是AD、CD 边上的点,连接BE 、AF,他们相交于G,延长BE交CD的延长线于点H,则图中的相似三角形有()A、2对B、3对C、4对D、5对四、小结:1. 平行线分线段成比例定理和推论;2.相似三角形判定的预备定理..五、作业:必做:课本P42习题T4,5;选做:《作业精编》相应练习.六、课后反思:图4图5授课时间: 年 月 日 第 周 星 期 撰稿;李明 审稿:赖小华 课时序号一、课前导学:学生自学课本第32-34 页内容,并完成下列问题1. 【温故知新】全等三角形的判定方法:三边对应 的两个三角形全等.(简写为“边边边”或“SSS”)两边和它们的夹角对应 的两个三角形全等.(可以简写成“边角边”或“SAS”) 2. 【类比探究】相似三角形的判定方法: 猜想1:三边对应 的两个三角形相似. 猜想2:两边 且夹角相等的两个三角形相似. 3.你能证明猜想1吗?如图,在△ABC 和△A ′B ′C ′中,,求证:△ABC ∽△A ′B ′C ′.4.你能证明猜想2吗?如图,在△ABC 和△A ′B ′C ′中,A A '∠=∠AB ACA B A C ='''',求证:△ABC ∽△A ′B ′C ′.5.【归纳】相似三角形判定定理1: 三边对应 的两个三角形相似.年级 九年级 课题 27.2.1相似三角形的判定(2) 课型 新授教 学 目 标知识 技能 1. 掌握相似三角形的两条判定定理(SSS,SAS). 2. 能运用相似三角形的两条判定理(SSS,SAS)判定两个三角形相似. 过程 方法 类比全等三角形的判定方法SSS,SAS,经历猜想结论、画图及推理验证,探究相似三角形的判定定理,提高逻辑思维能力。
情感 态度 培养学生从特殊到一般地认识事物,用类比的方法展开思维,获得数学猜想的经验,激发学生探索知识的兴趣。
教学重点 掌握相似三角形的两种判定方法(SSS,SAS),能运用它们进行证明。
教学难点 熟练应用相似三角形判定定理及证题。
教法学案导学学法探究、合作教学媒体多 媒 体教 学 过 程 设 计P QDCBAEDCBAOFED CB A 相似三角形判定定理2: 两边 且夹角相等的两个三角形相似. (你能用几何语言描述吗) 二、合作、交流、展示:1.在4×4的正方形方格中,△ABC,△DEF 的顶点都在边长为1的小正方形的顶点上.判断△ABC 与△DEF 是否相似,并证明你的结论.2.如图,已知AB BC CABD BE ED==,则,ABD CBE ∠∠相等吗?为什么?3.如图所示,在正方形ABCD中,已知P是BC上的点,且BP=3PC,Q是CD的中点,求证:AQ⊥PQ.三、巩固与应用:1.如图,在△ABC 中,D 为AB 边上的一点,要使△ABC ~△AED 成立,还需要 添加一个条件为 . 2.△ABC 的三边长分别为2、、10,△A 1B 1C 1的两边长分别为1和5,当△A 1B 1C 1的第三边长为 时,△ABC ~△A 1B 1C 1.2、如图,在大小为4×4的正方形网格中,是相似三角形的是( )① ② ③ ④A.①和②B.②和③C.①和③D.②和④ .3.如图,点O是△ABC内任意一点,连接AO、BO、CO,点E、F、D分别是BO、CO、AO的中点,求证:△DEF∽△ABC.四、小结: 1.相似三角形的判定定理;2.能运用相似三角形的判定方法证明. 五、作业:必做:课本P 42 习题T2,3; 选做:《作业精编》相应练习. 六、课后反思:A B CE D授课时间: 年 月 日 第 周 星 期 撰稿;赖庆益 审稿:赖小华 课时序号一、课前导学:学生自学课本第35-36 页内容,并完成下列问题1. 两个相似三角形的判定方法:(1)三边 的两个三角形相似.如右图,在△ABC 和△A ′B ′C ′中,如果 ,那么△ABC ∽△A ′B ′C ′(2)两边 且它夹角对 的两个三角形相似. 如上图,在△ABC 和△A ′B ′C ′中,如果 ,那么△ABC ∽△A ′B ′C ′ 2.思考一:仔细观察我们文具中常用的含有30°和60°角的直角三角尺中的一大、一小两个直角三角形,它们有什么关系?另一块含有45°角的直角三角尺中的一大、一小两个直角三角形,它们又有什么关系?由此你能猜想到什么结论呢?答: 。