九年级上册数学北师大版期中、期末检测卷
- 格式:docx
- 大小:385.44 KB
- 文档页数:13
第三章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.事件A :打开电视,它正在播广告;事件B :抛掷一个均匀的骰子,朝上的点数小于7;事件C :在标准大气压下,温度低于0 ℃时冰融化.3个事件的概率分别记为P(A),P(B),P(C),则P(A),P(B),P(C)的大小关系正确的是( B )A .P (C )<P (A )=P (B ) B .P (C )<P (A )<P (B )C .P (C )<P (B )<P (A )D .P (A )<P (B )<P (C ) 2.(2016·贵港)从-5,0,4,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是( B )A.15B.25C.35D.453.如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的概率是( D )A.12B.25C.37D.474.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,问抽取的两个球数字之和大于6的概率是( C )A.12B.712C.58D.345.掷两枚普通正六面体骰子,所得点数之和为11的概率为( A )A.118B.136C.112D.1156.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( D )A.14B.34C.13D.12,第6题图) ,第7题图)7.如图所示的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( C )A.1925B.1025C.625D.5258.有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为a 的值,然后再从剩余的两张卡片中随机抽取一张,以其正面的数字作为b 的值,则点(a ,b)在第二象限的概率是( B )A.16B.13C.12D.239.从长为10 cm ,7 cm ,5 cm ,3 cm 的四条线段中任选三条能够组成三角形的概率是( C ) A.14 B.13 C.12 D.3410.如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角形,所作三角形是等腰三角形的概率是( D )A.34B.13C.23D.12二、填空题(每小题3分,共18分)11.一个布袋中装有3个红球和4个白球,这些球除颜色外其他都相同.从袋子中随机摸出一个球,这个球是白球的概率为__47__. 12.在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为40%,估计袋中白球有__4__个.13.有两把不同的锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意一把锁,一次能打开锁的概率是__12__. 14.(2016·哈尔滨)一个不透明的袋子中装有黑、白小球各两个,这些球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率是__14__. 15.(2016·长沙)若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是__56__. 16.(2016·杭州)已知一包糖果共有五种颜色(糖果仅有颜色差别),如图是这包糖果颜色分布百分比的统计图.在这包糖果中任取一粒糖果,则取出的糖果的颜色为绿色或棕色的概率是__12__. 三、解答题(共72分)17.(10分)小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率.画树状图:P (都是蓝色)=26=1318.(10分)在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取一张纸牌记下数字然后放回,再随机摸取一张纸牌.(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两人进行游戏,如果两次摸取纸牌上数字之和为奇数,则甲胜;如果两次摸取纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.(1)14 (2)这个游戏公平,理由如下 :两次摸取纸牌上数字之和为奇数(记为事件B )有8个,P (B )=816=12,∴P (和为偶数)=1-12=12,两次摸取纸牌上数字之和为奇数与和为偶数的概率相同,所以这个游戏公平19.(10分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3.乙袋中的三张卡片所标的数值为-2,1,6.先从甲袋中随机取出一张卡片,用x 表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y 表示取出卡片上的数值,把x ,y 分别作为点A 的横坐标和纵坐标.(1)用适当的方法写出点A(x ,y)的所有情况;(2)求点A 落在第三象限的概率.(1) -7 -1 3-2 (-7,-2) (-1,-2) (3,-2)1(-7,1) (-1,1) (3,1) 6(-7,6) (-1,6) (3,6) 可知,点,点A 落在第三象限(事件A )共有(-7,-2),(-1,-2)两种情况,∴P (A )=2920.(10分)分别把带有指针的圆形转盘A ,B 分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.(1)画树状图如图:可知,共有12种情况,积为奇数的情况有6种,所以欢欢胜的概率是612=12(2)由(1)得乐乐胜的概率为1-12=12,两人获胜的概率相同,所以游戏公平21.(10分)(2016·宜昌)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样).食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是________事件;(可能,必然,不可能)(2)请用列表或画树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.(1)不可能 (2)方法1:画树状图如图,∴小张同学该天早晨刚好得到猪肉包和油饼的概率为212=1622.(10分)(2016·南京)某景区7月1日~7月7日一周天气预报如图,小丽打算选择这期间一天或两天去该景区旅游.求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.(1)随机选择一天,天气预报可能出现的结果有7种,即7月1日晴、7月2日晴、7月3日雨、7月4日阴、7月5日晴、7月6日晴、7月7日阴,并且它们出现的可能性相等.恰好天气预报是晴(记为事件A )的结果有4种,即7月1日晴、7月2日晴、7月5日晴、7月6日晴,所以P (A )=47(2)随机选择连续的两天,天气预报可能出现的结果有6种,即(7月1日晴,7月2日晴)、(7月2日晴,7月3日雨)、(7月3日雨,7月4日阴)、(7月4日阴,7月5日晴)、(7月5日晴,7月6日晴)、(7月6日晴,7月7日阴),并且它们出现的可能性相等.恰好天气预报都是晴(记为事件B )的结果有2种,即(7月1日晴,7月2日晴)、(7月5日晴,7月6日晴),所以P (B )=26=1323.(12分)有四张正面分别标有数字2,1,-3,-4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m ,再随机地摸取一张,将卡片上的数字记为n.(1)请画出树状图并写出(m ,n)所有可能的结果;(2)求所选出的m ,n 能使一次函数y =mx +n 的图象经过第二、三、四象限的概率.(1)①画树状图得:则(m ,n )共有12种等可能的结果:(2,1),(2,-3),(2,-4),(1,2),(1,-3),(1,-4),(-3,2),(-3,1),(-3,-4),(-4,2),(-4,1),(-4,-3) (2)∵所选出的m ,n 能使一次函数y =mx +n 的图象经过第二、三、四象限的有:(-3,-4),(-4,-3),∴所选出的m ,n 能使一次函数y =mx +n 的图象经过第二、三、四象限的概率为212=16期末检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.若反比例函数y =-2x 的图象上有两点A(-1,m),B(-23,n),则m ,n 的关系是( B ) A .m >n B .m <n C .m =n D .无法确定2.一元二次方程x(x -3)=4的解是( C )A .1B .4C .-1或4D .1或-43.(2016·安徽)如图,一个放置在水平桌面上的圆柱体,它的主(正)视图是( C )4.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB ,CD 于点E ,F ,矩形ABCD内的一个动点P 落在阴影部分的概率是( B )A.15B.14C.13D.3105.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是( B )A.13B.23C.16D.566.小明在测量楼高时,先测出楼房落在地面上的影长BA 为15米(如图),然后在A 处树立一根高2米的标杆,测得标杆的影长AC 为3米,则楼高为( A )A .10米B .12米C .15米D .22.5米7.已知关于x 的一元二次方程(k -1)x 2-2x +1=0有两个不相等的实数根,则k 的取值范围是( D )A .k <-2B .k <2C .k >2D .k <2且k ≠18.如图,已知矩形ABCD 的周长为20 cm ,两条对角线AC ,BD 相交于点O ,过点O 作AC 的垂线EF ,分别交两边AD ,BC 于点E ,F(不与顶点重合),则以下关于△CDE 与△ABF 判断完全正确的一项为( B )A .△CDE 与△ABF 的周长都等于10 cm ,但面积不一定相等B .△CDE 与△ABF 全等,且周长都为10 cmC .△CDE 与△ABF 全等,且周长都为5 cmD .△CDE 与△ABF 全等,但它们的周长和面积都不能确定,第6题图) ,第8题图),第9题图) ,第10题图)9.如图,两个反比例函数y =1x 和y =-2x 的图象分别是l 1和l 2.设点P 在l 1上,PC ⊥x 轴,垂足为点C ,交l 2于点A ,PD ⊥y 轴,垂足为点D ,交l 2于点B ,则三角形PAB 的面积为( C )A .3B .4 C.92D .5 10.如图,正方形ABCD 中,AB =3,点E 在边CD 上,且CD =3DE ,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG ,CF ,下列结论:①点G 是BC 的中点;②FG =FC ;③S △FGC =910.其中正确的是( B ) A .①② B .①③ C .②③ D .①②③二、填空题(每小题3分,共18分)11.写出一个两实根之和为-5的一元二次方程,它可以是__x 2+5x -1=0__.12.如图,小明在打网球时,使球恰好能打过网,且落在离网4米的位置上,则球拍击球的高度h 为__1.5_m __.13.如图,矩形ABCD 中,AB =3,BC =5.过对角线交点O 作OE ⊥AC 交AD 于点E ,则AE 的长是__3.4__.,第12题图) ,第13题图),第14题图) ,第15题图)14.如图,在Rt △ABC 中,∠ACB =90°,直线EF ∥BD 交AB 于点E ,交AC 于点G ,交AD 于点F.若S △AEG =13S 四边形EBCG ,则CF AD =__12__. 15.如图,已知一次函数y =kx -4的图象与x 轴、y 轴分别交于A ,B 两点,与反比例函数y =8x在第一象限内的图象交于点C ,且A 为BC 的中点,则k =__4__. 16.如图,在矩形ABCD 中,AB =3,AD =4,点P 是AD 上的动点,PE ⊥AC 于点E ,PF ⊥BD 于点F ,则PE +PF 的值为__2.4__.三、解答题(共72分)17.(8分)如图,画出下图中物体的三视图.18.(10分)如图,直线y =-x +2与反比例函数y =k x 的图象只有一个交点,求反比例函数的表达式.∵直线y =-x +2与y =k x 只有一个交点,∴k x=-x +2,其中Δ=0,解得k =1.∴反比例函数的表达式为y =1x19.(10分)春秋旅行社为吸引市民组团去玉龙雪山风景区旅游,推出了如下的收费标准:某单位组织员工去玉龙雪山风景区旅游,共支付给春秋旅行社旅游费用27 000元,请问该单位这次共有多少员工去玉龙雪山风景区旅游?设该单位这次共有x 名员工去玉龙雪山风景区旅游.因为1 000×25=25 000<27 000,所以员工人数一定超过25人,可得方程[1 000-20(x -25)]x =27 000,整理得x 2-75x +1 350=0,解得x 1=45,x 2=30.当x 1=45时,1 000-20(x -25)=600<700,故舍去x 1;当x 2=30时,1 000-20(x -25)=900>700,符合题意.答:该单位这次共有30名员工去玉龙雪山风景区旅游20.(10分)如图,在四边形ABFC 中,∠ACB =90°,BC 的垂直平分线EF 交BC 于点D ,交AB 于点E ,且CF =AE.(1)求证:四边形BECF 是菱形;(2)若四边形BECF 为正方形,求∠A 的度数.(1)∵EF 垂直平分BC ,∴CF =BF ,BE =CE ,∠BDE =90°,BD =CD ,又∵∠ACB=90°,∴EF ∥AC ,∴BE ∶AB =DB ∶BC =1∶2,∴点E 为AB 的中点,即BE =AE.∵CF =AE ,∴CF =BE.∴CF =FB =BE =CE ,∴四边形BECF 是菱形 (2)∵四边形BECF 是正方形,∴∠CBA =45°.∵∠ACB =90°,∴∠A =45°21.(10分)如图,在平面直角坐标系中,点A ,B 分别在x 轴、y 轴的正半轴上,OA=4,AB =5.点D 在反比例函数y =k x(k>0)的图象上,DA ⊥OA ,点P 在y 轴负半轴上,OP =7.(1)求点B 的坐标和线段PB 的长;(2)当∠PDB =90°时,求反比例函数的表达式.(1)在Rt △OAB 中,OA =4,AB =5,∴OB =AB 2-OA 2=52-42=3,∴点B 的坐标是(0,3).∵OP =7,∴PB =OB +OP =3+7=10(2)过点D 作DE ⊥OB ,垂足为点E ,由DA ⊥OA 可得矩形OADE ,∴DE =OA =4,∠BED =90°,∴∠BDE +∠EBD =90°,又∵∠BDP =90°,∴∠BDE +∠EDP =90°,∴∠EBD =∠EDP ,∴△BED ∽△DEP ,∴BE DE =DE EP,设D 的坐标是(4,m ),由k >0,得m>0,则有OE =AD =m ,BE =3-m ,EP =m +7,∴3-m 4=4m +7,解得m 1=1,m 2=-5(不合题意,舍去).∴m =1,点D 的坐标为(4,1),∴k =4,反比例函数的表达式为y =4x22.(12分)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x ,小红在剩下的3个小球中随机取出一个小球,记下数字为y.(1)计算由x ,y 确定的点(x ,y)在函数y =-x +5的图象上的概率;(2)小明和小红约定做一个游戏,其规则为:若x ,y 满足xy>6,则小明胜;若x ,y 满足xy<6,则小红胜,这个游戏公平吗?请说明理由;若不公平,请写出公平的游戏规则.(1)画树状图:∵共有12种等可能的结果,在函数y =-x +5的图象上的有:(1,4),(2,3),(3,2),(4,1),∴点(x ,y )在函数y =-x +5的图象上的概率为412=13(2)∵x ,y 满足xy>6有:(2,4),(3,4),(4,2),(4,3)共4种情况;x ,y 满足xy<6有:(1,2),(1,3),(1,4),(2,1),(3,1),(4,1)共6种情况,∴P (小明胜)=412=13,P (小红胜)=612=12.∵13≠12,∴游戏不公平.公平的游戏规则为:若x ,y 满足xy ≥6,则小明胜,若x ,y 满足xy<6,则小红胜23.(12分)如图,在Rt △ABC 中,∠ACB =90°,AC =6 cm ,BC =8 cm ,动点P 从点B 出发,在BA 边上以每秒5 cm 的速度向点A 匀速运动,同时动点Q 从点C 出发,在CB 边上以每秒4 cm 的速度向点B 匀速运动,运动时间为t 秒(0<t<2),连接PQ.(1)若△BPQ 和△ABC 相似,求t 的值;(2)连接AQ ,CP ,若AQ ⊥CP ,求t 的值.(1)由题知,BP =5t ,CQ =4t ,∴BQ =8-4t ,在Rt △ABC 中,由勾股定理得AB =10,当△ABC ∽△PBQ 时,有BP AB =BQ BC ,∴5t 10=8-4t 8,解得t =1;当△ABC ∽△QBP 时,有BQ AB =BP BC ,8-4t 10=5t 8,解得t =3241,∴若△ABC 与△PBQ 相似,t =1秒或3241秒 (2)如图,过点P 作PD ⊥BC 于点D ,∵∠ACB =90°,∴PD ∥AC ,∴△BPD ≌△BAC ,∴BP BA =PD AC ,即5t 10=PD 6,∴PD =3t ,∴BD =4t ,∴CD =8-4t ,∵AQ ⊥CP ,∠ACB =90°,∴∠CAQ =∠DCP ,∴△CPD ∽△AQC ,∴CD AC =PD CQ ,∴8-4t 6=3t 4t,∴t =错误! 第四章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列说法正确的是( C )A .对应边都成比例的多边形相似B .对应角都相等的多边形相似C .边数相同的正多边形相似D .矩形都相似2.已知△ABC ∽△DEF ,相似比为3∶1,且△ABC 的周长为18,则△DEF 的周长为( C )A .2B .3C .6D .543.如图,已知BC ∥DE ,则下列说法不正确的是( C )A .两个三角形是位似图形B .点A 是两个三角形的位似中心C .AE ∶AD 是相似比 D .点B 与点E ,点C 与点D 是对应位似点4.如图,身高为1.6 m 的小红想测量学校旗杆的高度,当她站在C 处时,她头顶端的影子正好与旗杆顶端的影子重合,并测得AC =2.0 m ,BC =8.0 m ,则旗杆的高度是( C )A .6.4 mB .7.0 mC .8.0 mD .9.0 m,第3题图) ,第4题图) ,第5题图) ,第6题图)5.如图,为估算某河的宽度,在河对岸选定一个目标点,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上.若测得BE =20 m ,CE =10 m ,CD =20 m ,则河的宽度AB 等于( B )A .60 mB .40 mC .30 mD .20 m6.如图,矩形ABCD 的面积是72,AE =12DC ,BF =12AD ,那么矩形EBFG 的面积是( B ) A .24 B .18 C .12 D .97.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以点C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( B )A .(6,0)B .(6,3)C .(6,5)D .(4,2),第7题图) ,第8题图) ,第9题图) ,第10题图)8.(2016·咸宁)如图,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:①DE BC =12;②S △DOE S △COB =12;③AD AB =OE OB ;④S △ODE S △ADC =13.其中正确的个数有( B ) A .1个 B .2个 C .3个 D .4个9.如图,在△ABC 中,∠A =36°,AB =AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD.下列结论错误的是( C )A .∠C =2∠AB .BD 平分∠ABCC .S △BCD =S △BOD D .点D 为线段AC 的黄金分割点10.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =8,AD =3,BC =4,点P 为AB 边上一动点,若△PAD 与△PBC 是相似三角形,则满足条件的点P 的个数是( C )A .1个B .2个C .3个D .4个二、填空题(每小题3分,共18分)11.若x y =m n =45(y ≠n),则x -m y -n=__45__. 12.如图是两个形状相同的红绿灯图案,则根据图中给出的部分数值,得到x 的值是__16__.13.如图,在△ABC 中,点P 是AC 上一点,连接BP.要使△ABP ∽△ACB ,则必须有∠ABP =__∠C __或∠APB =__∠ABC __或AB AP =__AC AB__. ,第12题图) ,第13题图),第14题图) ,第15题图)14.如图,在矩形ABCD 中,AB =2,BC =3,点E 是AD 的中点,CF ⊥BE 于点F ,则CF =__125__. 15.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆,小丽站在离南岸边15米的点P 处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为__22.5__米.16.(2016·十堰)如图,以点O 为位似中心,将△ABC 缩小后得△A′B′C′,已知OB =3OB′,则△A′B′C′与△ABC 的面积之比为__1∶9__.三、解答题(共72分)17.(10分)如图,点D 是△ABC 的边AC 上的一点,连接BD ,已知∠ABD =∠C ,AB =6,AD =4,求线段CD 的长.在△ABD 和△ACB 中,∠ABD =∠C ,∠A =∠A ,∴△ABD ∽△ACB ,∴AB AC =ADAB,∵AB =6,AD =4,∴AC =AB 2AD =364=9,则CD =AC -AD =9-4=518.(10分)一个钢筋三角架三边长分别是20厘米、50厘米、60厘米,现在再做一个与其相似的钢筋三角架,而只有长为30厘米和50厘米的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,则不同的截法有多少种?写出你的设计方案,并说明理由.两种截法:①30厘米与60厘米的两根钢筋为对应边,把50厘米的钢筋按10厘米与25厘米两部分截,则有1020=2550=3060=12,从而两个三角形相似;②30厘米与50厘米的两根钢筋为对应边,把50厘米的钢筋截出12厘米和36厘米两部分,则有2012=5030=6036=53,从而两个三角形相似19.(10分)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A(-1,2),B(-3,4),C(-2,6).(1)画出△ABC 绕点A 顺时针旋转90°后得到的△A 1B 1C 1;(2)在网格内以原点O 为位似中心,画出将△A 1B 1C 1三条边放大为原来的2倍后的△A 2B 2C 2.20.(10分)如图,矩形ABCD 为台球桌面.AD =260 cm ,AB =130 cm .球目前在E 点位置,AE =60 cm .如果小丁瞄准了BC 边上的点F 将球打进去,经过反弹后,球刚好弹到D 点位置.(1)求证:△BEF ∽△CDF ;(2)求CF 的长.(1)∵FG ⊥BC ,∠EFG =∠DFG ,∴∠BFE =∠CFD ,又∵∠B =∠C =90°,∴△BEF ∽△CDF(2)设CF =x ,则BF =260-x ,∵AB =130,AE =60,BE =70,由(1)得,△BEF ∽△CDF ,∴BE CD =BF CF ,即70130=260-xx ,∴x =169,即CF =169 cm21.(10分)如图,在△ABC 中,AD 是中线,且CD 2=BE·BA.求证:ED·AB =AD·BD.∵AD 是中线,∴BD =CD ,又CD 2=BE ·BA ,∴BD 2=BE ·BA ,即BE BD =BDAB,又∠B =∠B ,∴△BED ∽△BDA ,∴ED AD =BDAB,∴ED ·AB =AD·BD22.(10分)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为点E ,连接DE ,点F 为线段DE 上一点,且∠AFE =∠B.(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求AE 的长.(1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,∴∠C +∠B =180°,∠ADF =∠DEC.∵∠AFD +∠AFE =180°,∠AFE =∠B ,∴∠AFD =∠C ,∴△ADF ∽△DEC (2)∵四边形ABCD 是平行四边形,∴CD =AB =8.由(1)知△ADF ∽△DEC ,∴ADDE=AF CD ,∴DE =AD·CD AF =63×843=12.在Rt △ADE 中,由勾股定理得AE =DE 2-AD 2=122-(63)2=623.(12分)将一副三角尺如图①摆放(在Rt △ABC 中,∠ACB =90°,∠B =60°;在Rt △DEF 中,∠EDF =90°,∠E =45°),点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C.(1)求∠ADE 的度数;(2)如图②,将△DEF 绕点D 顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE ′交AC 于点M ,DF ′交BC 于点N ,试判断PMCN的值是否随着α的变化而变化?如果不变,请求出PMCN的值;反之,请说明理由.(1)由题意知,CD 是Rt △ABC 斜边AB 上的中线,∴AD =BD =CD ,∵在△BCD 中,BD =CD 且∠B =60°,∴△BCD 是等边三角形,∴∠BCD =∠BDC =60°,∴∠ADE =180°-∠BDC -∠EDF =180°-60°-90°=30° (2)PMCN的值不会随着α的变化而变化,理由如下:∵△APD 的外角∠MPD =∠A +∠ADE =30°+30°=60°,∴∠MPD =∠BCD =60°,∵在△MPD 和△NCD 中,∠MPD =∠NCD =60°,∠PDM =∠CDN =α,∴△MPD ∽△NCD ,PM CN =PDCD,∵∠ACB =90°,∠BCD =60°,∴∠PCD =30°.在Rt△PCD 中,∠PCD =30°,∴PD CD =13=33,∴PM CN =PD CD =33第五章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.将一包卷筒卫生纸按如图所示的方式摆放在桌面上,它的俯视图是( D )2.如图是由4个相同的正方体组成的几何体,则这个几何体的俯视图是( A )3.如图是一个几何体的实物图,则其主视图是( C )4.如图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度,则它的三视图是( A )5.木棒的长为1.2 m,则它的正投影的长一定( D )A.大于1.2 m B.小于1.2 m C.等于1.2 m D.小于或等于1.2 m6.下列四个几何体中,俯视图为四边形的是( D )7.如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( A )8.小琳过14周岁生日,父母为她预定的生日蛋糕如图所示,当投影线由生日蛋糕的前方射到后方时,它的正投影应该是( B )9.(2016·江西)有两个完全相同的长方体,按如图所示方式摆放,其主视图是( C )10.如图,小轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现他身后影子的顶部刚好接触到路灯AC的底部,当他向前再步行20 m到达Q点时,发现他身前影子的顶部刚好接触到路灯BD的底部,已知小轩同学的身高是1.5 m,两个路灯的高度都是9 m,则两路灯这间的距离是( D )A.24 m B.25 m C.28 m D.30 m二、填空题(每小题3分,共18分)11.太阳光形成的投影是__平行投影__,电动车灯所发出的光线形成的投影是__中心投影__.12.如图,在常见的几何体圆锥、圆柱、球、长方体中,主视图与它的左视图一定完全相同的几何体有__①②③__.(填编号)13.如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图,则这个几何体可能是由__6或7或8__个小正方体搭成的.,第13题图),第15题图),第16题图)14.小刚和小明在太阳光下行走,小刚身高1.5 m,他的影长为2.0 m,小刚比小明矮9 cm,此刻小明的影长是__2.12_m__.15.一个长方体的主视图和左视图如图(单位:cm),则其俯视图的面积是__6_cm2__.16.如图是一束平行的光线从教室窗户射入教室的平面示意图,测得光线与地面所成的角∠AMC=30°,窗户的高在教室地面上的影长MN=23米,窗户的下沿到教室地面的距离BC=1米(点M,N,C在同一直线上),则窗户的高AB为__2米__.三、解答题(共72分)17.(10分)根据下列主视图和俯视图,指出其对应的物体.a —D ,b —A ,c —B ,d —C18.(10分)如图,是一个小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的个数.请你画出它从正面和从左面看得到的平面图形.19.(10分)小亮在某一时刻测得小树高为1.5 m ,其影长为1.2 m ,当他测量教学楼旁的一棵大树影长时,因大树靠近教学楼,它的一部分影子便落在了教学楼的墙上,经测量,地面部分影长为6.4 m ,墙上影长为2 m ,那么这棵大树高为多少米?设大树影长为x 米,大树高为y 米,则x -6.42=1.21.5,解得x =8.∵y 8=1.51.2∴y =10,答:这棵大树高为10米20.(10分)在长、宽都为4 m ,高为3 m 的房间的正中央的天花板上悬挂一只白炽灯泡,为了集中光线,加上了灯罩,如图所示,已知灯罩深8 cm ,灯泡离地面2 m ,为了使光线恰好照在墙脚,问灯罩的直径应为多少?(结果精确到0.01米)如图,由题意知,DE 为地面上墙脚的对角线连线.过点A 作AM ⊥DE 交DE 于点M ,交BC 于点N.∵DE ∥BC ,∴△ABC ∽△ADE ,∴AN AM =BCDE.∵AN =0.08,AM =2,DE =42,∴BC=42×0.082≈0.23 m21.(10分)如图,某居民小区内A,B两楼之间的距离MN=30 m,两楼的高度都是20 m,A楼在B楼正南,B楼窗户朝南.B楼内一楼住户的窗台离小区地面的距离DN=2 m,窗户高CD=1.8 m.当正午时刻太阳光线与地面成30°角时,A楼的影子是否影响B楼的一楼住户采光?若影响,挡住该住户窗户多高?若不影响,请说明理由.(参考数据:2=1.414,3=1.732,5=2.236)如图,设光线FE影响到B楼的E处,作GE⊥FM于点G,EG=MN=30,∠FEG=30°,FG=103,MG=FM-GF=20-103≈2.68.又DN=2,CD=1.8,∴DE=2.68-2=0.68<1.8.∴A楼的影子影响到B楼一楼采光,挡住该住户窗户0.68 m22.(10分)如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的表面积.(结果保留根号)根据该密封纸盒的三视图知道它是一个六棱柱.∵其高为12 cm,底面边长为5 cm,∴其侧面积为6×5×12=360(cm2),密封纸盒的上、下底面的面积和为:12×5×32×5×12=753(cm2),∴其表面积为(753+360)cm223.(12分)如图,王乐同学在晚上由路灯A走向路灯B,当他行到P处时发现,他在路灯B下的影长为2 m,且恰好位于路灯A的正下方,接着他又走了6.5 m到Q处,此时他在路灯A下的影子恰好位于路灯B的正下方(已知王乐身高1.8 m,路灯B高9 m).(1)标出王乐站在P处时,在路灯B下的影子;(2)计算王乐站在Q处时,在路灯A下的影长;(3)计算路灯A 的高度.(1)线段CP 为王乐在路灯B 下的影子. (2)由题意得Rt △CEP ∽Rt △CBD.∴EP BD =CPCD,∴1.89=22+6.5+QD,解得QD =1.5 m .所以王乐站在Q 处时,在路灯A 下的影长为1.5 m (3)路灯A 的高度为12 m第六章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.反比例函数的图象经过点(-2,3),则此函数的图象也经过点( A )A .(2,-3)B .(-3,-3)C .(2,3)D .(-4,6)2.如图,是我们学过的反比例函数的图象,它的函数表达式可能是( B )A .y =x 2B .y =4xC .y =-3xD .y =12x3.为了更好的保护水资源,造福人类,某工厂计划建一个容积V(m 3)一定的污水处理池,池的底面积S(m 2)与其深度h(m )满足关系式:V =Sh(V ≠0),则S 关于h 的函数图象大致是( C )4.反比例函数y =k x 的图象经过点(-2,32),则它的图象位于( B )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限5.若在同一直角坐标系中,直线y =k 1x 与双曲线y =k 2x有两个交点,则有( C )A .k 1+k 2>0B .k 1+k 2<0C .k 1k 2>0D .k 1k 2<06.反比例函数y =2x的图象上有两个点为(x 1,y 1),(x 2,y 2),且x 1<x 2,则下列关系成立的是( D )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .不能确定7.在反比例函数y =4x的图象上,阴影部分的面积不等于4的是( B )8.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数y =kx(x>0)的图象经过顶点B ,则k 的值为( D )A .12B .20C .24D .32,第8题图) ,第9题图),第10题图)9.如图,函数y =-x 与函数y =-4x的图象相交于A ,B 两点,过A ,B 两点分别作y轴的垂线,垂足分别为点C ,D ,则四边形ACBD 的面积为( D )A .2B .4C .6D .810.反比例函数y =mx 的图象如图所示,以下结论:①常数m<-1;②在每个象限内,y 随x 的增大而增大;③若A(-1,h),B(2,k)在图象上,则h<k ;④若P(x ,y)在图象上,则P′(-x ,-y)也在图象上.其中正确的是( C )A .①②B .②③C .③④D .①④ 二、填空题(每小题3分,共18分)11.反比例函数y =kx的图象经过点(1,-2),则k 的值为__-2__.12.已知正比例函数y =-2x 与反比例函数y =kx的图象的一个交点坐标为(-1,2),则另一个交点的坐标为__(1,-2)__.13.(2016·潍坊)已知反比例函数y =kx(k ≠0)的图象经过点(3,-1),则当1<y <3时,自变量x 的取值范围是__-3<x <-1__.14.在某一电路中,保持电压不变,电流I(安)与电阻R(欧)成反比例,其图象如图所示,则这一电路的电压为__12__伏.,第14题图) ,第15题图),第16题图) 15.如图,直线x =2与反比例函数y =2x ,y =-1x 的图象分别交于A ,B 两点,若点P是y 轴上任意一点,则△PAB 的面积是__32__.16.如图,在直角坐标系中,正方形OABC 的顶点O 与原点重合,顶点A ,C 分别在x 轴、y 轴上,反比例函数的图象与正方形的两边AB ,BC 分别交于点M ,N ,ND ⊥x 轴,垂足为D ,连接OM ,ON ,MN.下列结论:①△OCN ≌△OAM ;②ON =MN; ③四边形DAMN 与△MON 面积相等;④若∠MON =45°,MN =2,则点C 的坐标为(0,2+1).其中正确结论的序号是__①③④__.三、解答题(共72分)。
北师大版九年级上册数学期末考试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是( )A .2019B .-2019C .12019D .12019- 2.用配方法将二次函数y=x 2﹣8x ﹣9化为y=a (x ﹣h )2+k 的形式为( )A .y=(x ﹣4)2+7B .y=(x+4)2+7C .y=(x ﹣4)2﹣25D .y=(x+4)2﹣253.若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .()3,6--B .()3,0-C .()3,5--D .()3,1--4.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 6.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根7.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244∠=,则1∠的大小为( )A.14B.16C.90α-D.44α-8.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.29.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是()A.14°B.15°C.16°D.17°10.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.分解因式:x3﹣16x=_____________.3.函数132y x x =--+中自变量x 的取值范围是__________. 4.(2017启正单元考)如图,在△ABC 中,ED ∥BC ,∠ABC 和∠ACB 的平分线分别交ED 于点G 、F ,若FG =4,ED =8,求EB +DC =________.5.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=__________度.6.如图,菱形ABCD 顶点A 在例函数y =3x (x >0)的图象上,函数 y =k x(k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠DAB =30°,则k 的值为______.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.4.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE ⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.5.某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为,图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、C5、B6、A7、A8、B9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、-22、x (x +4)(x –4).3、23x -<≤4、125、360°.6、三、解答题(本大题共6小题,共72分)1、x=32、3x3、(1)略(2)64、(1)DE 与⊙O 相切,理由略;(2)阴影部分的面积为25、(1)25;28;(2)平均数:18.6;众数:21;中位数:18.6、(1)120件;(2)150元.。
北 师 大 版 数 学 九 年 级 上 学 期期 末 测 试 卷学校________ 班级________ 姓名________ 成绩________满分150分 时间120分钟A 卷(共100分)一.选择题(共10小题,满分30分,每小题3分)1.(2020•新宾县四模)在△ABC 中,∠A ,∠B 都是锐角,tan A =1,sin B =√22,你认为△ABC 最确切的判断是()A .等腰三角形B .等腰直角三角形C .直角三角形D .锐角三角形2.(2020•成都模拟)如图所示的四棱柱的主视图为( )A .B .C .D .3.(2019•桓台县二模)已知a b =25,则a+b b 的值为( )A .25B .35C .23D .754.(2020•临沂模拟)已知x 1,x 2是方程x 2−√5x +1=0的两根,则x 12+x 22的值为( )A .3B .5C .7D .45.将二次函数y =x 2﹣2x +3配方为y =(x ﹣h )2+k 的形式为( )A .y =(x ﹣1)2+1B .y =(x ﹣1)2+2C .y =(x ﹣2)2﹣3D .y =(x ﹣2)2﹣16.(2020•南山区校级二模)下列命题中,真命题的个数是( )①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等;⑤相等的角是对顶角;⑥垂线段最短A .3B .2C .1D .07.(2019秋•毕节市期末)已知AB =2,点P 是线段AB 上的黄金分割点,且AP >BP ,则AP 的长为( )A .√5−12B .√5−1C .3−√52D .3−√58.(2020•武昌区模拟)函数y =−a 2−1x(a 为常数)的图象上有三点(﹣4,y 1),(﹣1,y 2),(2,y 3),则函数值y 1,y 2,y 3的大小关系是( )A .y 3<y 1<y 2B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 2<y 3<y 19.如图,EF ∥AC ,GH ∥AB ,MN ∥BC ,EF 、GH 、MN 、交于点P ,则图中与△PGF 相似的三角形的个数是( )个.A .4B .5C .6D .710.(2020•立山区二模)如图,⊙O 的半径是2,直线l 与⊙O 相交于A 、B 两点,M 、N 是⊙O 上的两个动点,且在直线l 的异侧,若∠AMB =45°,则四边形MANB 面积的最大值是( )A.2√2B.4C.4√2D.8√2二.填空题(共3小题,满分12分,每小题4分)11.(2019秋•仪征市期末)已知四条线段a,2,6,a+1成比例,则a的值为.12.(2019秋•深圳期末)元旦到了,九(2)班每个同学都与全班同学交换一件自制的小礼物,结果全班交换小礼物共1560件,该班有个同学.13.(2020•无锡)如图,在Rt△ABC中,∠ACB=90°,AB=4,点D,E分别在边AB,AC上,且DB=2AD,AE=3EC,连接BE,CD,相交于点O,则△ABO面积最大值为.三.解答题(共6小题,满分54分)14.(12分)(2018秋•新都区期末)计算(1)计算:(π﹣3)0+(﹣1)﹣3﹣3×tan30°+√27(2)解方程:x(x﹣3)=2x15.(6分)(2019•花都区一模)已知:A=(m+1)(m﹣1)﹣(m+2)(m﹣3)(1)化简A;(2)若关于x的一元二次方程x2+(m+2)x+14m2=0有两个相等的实数根,求A的值.16.(8分)(2020•陕西一模)小明想利用所学知识测量一公园门前热气球直径的大小,如图,当热气球升到某一位置时,小明在点A处测得热气球底部点C、中部点D的仰角分别为50°和60°,已知点O为热气球中心,EA⊥AB,OB⊥AB,OB⊥OD,点C在OB上,AB=30m,且点E、A、B、O、D在同一平面内,根据以上提供的信息,求热气球的直径约为多少米?(精确到0.1m)(参考数据:sin50°≈0.7660,cos50°≈0.6428,tan50°=1.192)17.(8分)(2019秋•仪征市期末)从甲、乙、丙、丁4名同学中随机抽取同学参加学校的座谈会.(1)抽取一名同学,恰好是甲的概率为;(2)抽取两名同学,求甲在其中的概率.18.(10分)(2020•宿州模拟)如图,已知反比例函数y=kx的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.19.(10分)(2020•烟台二模)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O 的切线BC 于点C ,过点E 作ED ⊥AF ,交AF 的延长线于点D .(1)求证:DE 是⊙O 的切线;(2)若DE =3,CE =2,①求BC AE 的值;②若点G 为AE 上一点,求OG +12EG 最小值.B 卷(共50分)四.填空题(共5小题,满分20分,每小题4分)20.(2019•宿豫区模拟)若2m ﹣n +1=0,则代数式5﹣6m +3n 的值是 .21.(2019•大邑县模拟)有五张正面分别写有数字﹣4,﹣3,0,2,3的卡片,五张卡片除了数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为n ,则抽取的n 既能使关于x 的方程(n +3)x 2+(n +1)x +12=0有实数根,又能使以x 为自变量的反比例函数y =n 2−16x 的图象在每个象限内y 随x 的增大而增大的概率为 .22.(2019秋•滦州市期中)计算:1x(x+1)+1(x+1)(x+2)+1(x+2)(x+3)+⋯+1(x+2018)(x+2019)= . 23.(2019•南充)在平面直角坐标系xOy 中,点A (3m ,2n )在直线y =﹣x +1上,点B (m ,n )在双曲线y =k x 上,则k 的取值范围为 .24.(2020•青白江区模拟)如图,矩形ABCD 中,AB =3,BC =4,点E 是AB 边上一点,且AE =2,点F 是边BC 上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G ,连接AG ,CG ,则四边形AGCD 的面积的最小值为 .五.解答题(共3小题,满分30分)25.(8分)某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y (千克)与销售单价x (元)之间的函数关系如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?26.(10分)(2020•衢州模拟)(1)模型探究:如图1,D 、E 、F 分别为△ABC 三边BC 、AB 、AC 上的点,且∠B =∠C =∠EDF =a .△BDE 与△CFD 相似吗?请说明理由;(2)模型应用:△ABC 为等边三角形,其边长为8,E 为AB 边上一点,F 为射线AC 上一点,将△AEF 沿EF 翻折,使A 点落在射线CB 上的点D 处,且BD =2.①如图2,当点D 在线段BC 上时,求AE AF 的值;②如图3,当点D 落在线段CB 的延长线上时,求△BDE 与△CFD 的周长之比.27.(12分)(2020•铁岭四模)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=−49x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=−49x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.答案与解析A 卷(共100分)一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2020•新宾县四模)在△ABC 中,∠A ,∠B 都是锐角,tan A =1,sin B =√22,你认为△ABC 最确切的判断是( )A .等腰三角形B .等腰直角三角形C .直角三角形D .锐角三角形 [解析]解:由题意,得∠A =45°,∠B =45°.∠C =180°﹣∠A ﹣∠B =90°,故选:B .2.(3分)(2020•成都模拟)如图所示的四棱柱的主视图为( )A .B .C .D .[解析]解:由图可得,几何体的主视图是:故选:B . 3.(3分)(2019•桓台县二模)已知a b =25,则a+b b 的值为( ) A .25B .35C .23D .75 [解析]解:由a b =25,得a+b b =2+55=75.故选:D .4.(3分)(2020•临沂模拟)已知x 1,x 2是方程x 2−√5x +1=0的两根,则x 12+x 22的值为( )A .3B .5C .7D .4[解析]解:∵x 1,x 2是方程x 2−√5x +1=0的两根,∴x 1+x 2=√5,x 1•x 2=1,∴x 12+x 22=(x 1+x 2)2﹣2x 1•x 2=5﹣2=3.故选:A .5.(3分)将二次函数y =x 2﹣2x +3配方为y =(x ﹣h )2+k 的形式为( )A .y =(x ﹣1)2+1B .y =(x ﹣1)2+2C .y =(x ﹣2)2﹣3D .y =(x ﹣2)2﹣1[解析]解:y =x 2﹣2x +3=x 2﹣2x +1+2=(x ﹣1)2+2,故选:B .6.(3分)(2020•南山区校级二模)下列命题中,真命题的个数是( )①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等;⑤相等的角是对顶角;⑥垂线段最短A .3B .2C .1D .0[解析]解:过直线外一点有且只有一条直线与已知直线平行,①是假命题;在同一平面内,过一点有且只有一条直线与已知直线垂直,②是假命题;图形平移的方向不一定是水平的,③是假命题;两直线平行,内错角相等,④是假命题;相等的角不一定是对顶角,⑤是假命题;垂线段最短,⑥是真命题,故选:C .7.(3分)(2019秋•毕节市期末)已知AB =2,点P 是线段AB 上的黄金分割点,且AP >BP ,则AP 的长为( )A .√5−12B .√5−1C .3−√52D .3−√5[解析]解:由于P 为线段AB =2的黄金分割点,且AP >BP ,则AP =√5−12×2=√5−1.故选:B.8.(3分)(2020•武昌区模拟)函数y=−a2−1x(a为常数)的图象上有三点(﹣4,y1),(﹣1,y2),(2,y3),则函数值y1,y2,y3的大小关系是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y3<y1[解析]解:∵a2≥0,∴﹣a2≤0,﹣a2﹣1<0,∴反比例函数y=−a2−1x的图象在二、四象限,∵点(2,y3)的横坐标为2>0,∴此点在第四象限,y3<0;∵(﹣4,y1),(﹣1,y2)的横坐标﹣4<﹣1<0,∴两点均在第二象限y1>0,y2>0,∵在第二象限内y随x的增大而增大,∴y2>y1,∴y2>y1>y3.故选:A.9.(3分)如图,EF∥AC,GH∥AB,MN∥BC,EF、GH、MN、交于点P,则图中与△PGF相似的三角形的个数是()个.A.4B.5C.6D.7[解析]解:∵EF∥AC,GH∥AB,MN∥BC,∴△PGF∽△EBF,△PGF∽△HGC,△AMN∽△ABC,△EMP∽△ENF,△HPN∽△HGC,△EBF∽△ABC,故选:C.10.(3分)(2020•立山区二模)如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是()A .2√2B .4C .4√2D .8√2[解析]解:过点O 作OC ⊥AB 于C ,交⊙O 于D 、E 两点,连结OA 、OB 、DA 、DB 、EA 、EB ,如图, ∵∠AMB =45°,∴∠AOB =2∠AMB =90°,∴△OAB 为等腰直角三角形,∴AB =√2OA =2√2,∵S 四边形MANB =S △MAB +S △NAB ,∴当M 点到AB 的距离最大,△MAB 的面积最大;当N 点到AB 的距离最大时,△NAB 的面积最大,即M 点运动到D 点,N 点运动到E 点,此时四边形MANB 面积的最大值=S 四边形DAEB =S △DAB +S △EAB =12AB •CD +12AB •CE =12AB (CD +CE )=12AB •DE =12×2√2×4=4√2.故选:C .二.填空题(共3小题,满分12分,每小题4分)11.(4分)(2019秋•仪征市期末)已知四条线段a ,2,6,a +1成比例,则a 的值为 3 .[解析]解:∵四条线段a ,2,6,a +1成比例,∴a 2=6a+1,解得:a 1=3,a 2=﹣4(舍去),所以a =3,故答案为:312.(4分)(2019秋•深圳期末)元旦到了,九(2)班每个同学都与全班同学交换一件自制的小礼物,结果全班交换小礼物共1560件,该班有 40 个同学.[解析]解:设该班有x 个同学,则每个同学需交换(x ﹣1)件小礼物,依题意,得:x (x ﹣1)=1560, 解得:x 1=40,x 2=﹣39(不合题意,舍去).故答案为:40.13.(4分)(2020•无锡)如图,在Rt △ABC 中,∠ACB =90°,AB =4,点D ,E 分别在边AB ,AC 上,且DB =2AD ,AE =3EC ,连接BE ,CD ,相交于点O ,则△ABO 面积最大值为83.[解析]解:如图,过点D 作DF ∥AE ,则DF AE=BD BA =23,∵ECAE=13,∴DF =2EC ,∴DO =2OC ,∴DO =23DC ,∴S △ADO =23S △ADC ,S △BDO =23S △BDC ,∴S △ABO =23S △ABC ,∵∠ACB =90°,∴C 在以AB 为直径的圆上,设圆心为G ,当CG ⊥AB 时,△ABC 的面积最大为:12×4×2=4,此时△ABO 的面积最大为:23×4=83.故答案为:83.三.解答题(共6小题,满分54分) 14.(12分)计算(1)计算:(π﹣3)0+(﹣1)﹣3﹣3×tan30°+√27(2)解方程:x (x ﹣3)=2x[解析]解:(1)原式=1﹣1﹣3×√33+3√3=1﹣1−√3+3√3=2√3; (2)x (x ﹣3)﹣2x =0,x (x ﹣3﹣2)=0,x =0或x ﹣3﹣2=0,所以x 1=0,x 2=5. 15.(6分)(2019•花都区一模)已知:A =(m +1)(m ﹣1)﹣(m +2)(m ﹣3) (1)化简A ;(2)若关于x的一元二次方程x2+(m+2)x+14m2=0有两个相等的实数根,求A的值.[解析]解:(1)A=(m+1)(m﹣1)﹣(m+2)(m﹣3)=m2﹣1﹣(m2﹣m﹣6),=m2﹣1﹣m2+m+6,=m+5,(2)∵一元二次方程x2+(m+2)x+14m2=0有两个相等的实数根,∴△=0,即△=(m+2)2﹣4×14m2=0,解得m=﹣1.当m=﹣1时,A=m+5=﹣1+5=4.16.(8分)(2020•陕西一模)小明想利用所学知识测量一公园门前热气球直径的大小,如图,当热气球升到某一位置时,小明在点A处测得热气球底部点C、中部点D的仰角分别为50°和60°,已知点O为热气球中心,EA⊥AB,OB⊥AB,OB⊥OD,点C在OB上,AB=30m,且点E、A、B、O、D在同一平面内,根据以上提供的信息,求热气球的直径约为多少米?(精确到0.1m)(参考数据:sin50°≈0.7660,cos50°≈0.6428,tan50°=1.192)[解析]解:如图,过E点作EF⊥OB于F,过D点作DG⊥EF于G.在Rt△CEF中,CF=EF•tan50°=AB•tan50°=35.76m,在Rt△DEG中,DG=EG•tan60°=√3EG,设热气球的直径为x米,则35.76+12x=√3(30−12x),解得x≈11.9.故热气球的直径约为11.9米.17.(8分)(2019秋•仪征市期末)从甲、乙、丙、丁4名同学中随机抽取同学参加学校的座谈会.(1)抽取一名同学,恰好是甲的概率为 14;(2)抽取两名同学,求甲在其中的概率.[解析]解:(1)随机抽取1名学生,可能出现的结果有4种,即甲、乙、丙、丁,并且它们出现的可能性相等.恰好抽取1名恰好是甲的结果有1种,所以抽取一名同学,恰好是甲的概率为14,故答案为:14.(2)随机抽取2名学生,可能出现的结果有6种,即甲乙、甲丙、甲丁、乙丙、乙丁、丙丁,并且它们出现的可能性相等.恰好抽取2名甲在其中的结果有3种,即甲乙、甲丙、甲丁,故抽取两名同学,甲在其中的概率为36=12.18.(10分)(2020•宿州模拟)如图,已知反比例函数y =kx的图象与一次函数y =x +b 的图象交于点A (1,4),点B (﹣4,n ).(1)求n 和b 的值; (2)求△OAB 的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.[解析]解:(1)把A 点(1,4)分别代入反比例函数y =kx ,一次函数y =x +b ,得k =1×4,1+b =4, 解得k =4,b =3,∵点B (﹣4,n )也在反比例函数y =4x 的图象上,∴n =4−4=−1;(2)如图,设直线y =x +3与y 轴的交点为C ,∵当x =0时,y =3,∴C (0,3),∴S △AOB =S △AOC +S △BOC =12×3×1+12×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.19.(10分)(2020•烟台二模)如图,已知AB 是圆O 的直径,F 是圆O 上一点,∠BAF 的平分线交⊙O 于点E ,交⊙O 的切线BC 于点C ,过点E 作ED ⊥AF ,交AF 的延长线于点D . (1)求证:DE 是⊙O 的切线; (2)若DE =3,CE =2,①求BC AE的值;②若点G 为AE 上一点,求OG +12EG 最小值.[解析](1)证明:连接OE ∵OA =OE ∴∠OAE =∠OEA ∵AE 平分∠BAF ∴∠OAE =∠EAF ∴∠OEA =∠EAF ∴OE ∥AD ∵ED ⊥AF ∴∠D =90°∴∠OED =180°﹣∠D =90°∴OE ⊥DE ∴DE 是⊙O 的切线(2)解:①连接BE ∵AB 是⊙O 直径∴∠AEB =90°∴∠BEA =∠D =90°,∠BAE +∠ABE =90° ∵BC 是⊙O 的切线∴∠ABC =∠ABE +∠CBE =90°∴∠BAE =∠CBE ∵∠DAE =∠BAE ∴∠DAE =∠CBE ∴△ADE ∽△BEC ∴AE BC=DE CE∵DE =3,CE =2∴BC AE=23②过点E 作EH ⊥AB 于H ,过点G 作GP ∥AB 交EH 于P ,过点P 作PQ ∥OG 交AB 于Q∴EP ⊥PG ,四边形OGPQ 是平行四边形∴∠EPG =90°,PQ =OG ∵BC AE=23∴设BC =2x ,AE =3x ∴AC =AE +CE =3x +2∵∠BEC =∠ABC =90°,∠C =∠C ∴△BEC ∽△ABC∴BC AC=CE BC∴BC 2=AC •CE 即(2x )2=2(3x +2)解得:x 1=2,x 2=−12(舍去)∴BC =4,AE =6,AC =8∴sin ∠BAC =BC AC =12,∴∠BAC =30°∴∠EGP =∠BAC =30°∴PE =12EG ∴OG +12EG =PQ +PE ∴当E 、P 、Q 在同一直线上(即H 、Q 重合)时,PQ +PE =EH 最短 ∵EH =12AE =3∴OG +12EG 的最小值为3B 卷(共50分)四.填空题(共5小题,满分20分,每小题4分)20.(4分)(2019•宿豫区模拟)若2m ﹣n +1=0,则代数式5﹣6m +3n 的值是 8 . [解析]解:∵2m ﹣n +1=0,∴2m ﹣n =﹣1,则原式=5﹣3(2m ﹣n )=5+3=8,故答案为:821.(4分)(2019•大邑县模拟)有五张正面分别写有数字﹣4,﹣3,0,2,3的卡片,五张卡片除了数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为n ,则抽取的n 既能使关于x 的方程(n +3)x 2+(n +1)x +12=0有实数根,又能使以x 为自变量的反比例函数y =n 2−16x 的图象在每个象限内y 随x 的增大而增大的概率为15.[解析]解:∵关于x 的方程(n +3)x 2+(n +1)x +12=0有实数根,∴当n =﹣3时,关于x 的方程(n +3)x 2+(n +1)x +12=0有实数根,当n ≠﹣3时,(n +1)2﹣4(n +3)×12=n 2﹣5≥0,∴n 2≥5, ∵反比例函数y =n 2−16x的图象在每个象限内y 随x 的增大而增大,∴n 2﹣16<0,∴n 2<16,∴5≤n 2≤16,∴n =3,∴概率为,15,故答案为:15.22.(4分)(2019秋•滦州市期中)计算:1x(x+1)+1(x+1)(x+2)+1(x+2)(x+3)+⋯+1(x+2018)(x+2019)=2019x(x+2019).[解析]解:1x(x+1)+1(x+1)(x+2)+1(x+2)(x+3)+⋯+1(x+2018)(x+2019)=1x−1x+1+1x+1−1x+2+1x−2−1x+3+⋯+1x+2018−1x+2019=1x−1x+2019=2019x(x+2019)故答案为:2019x(x+2019).23.(4分)(2019•南充)在平面直角坐标系xOy 中,点A (3m ,2n )在直线y =﹣x +1上,点B (m ,n )在双曲线y =k x上,则k 的取值范围为 k ≤124且k ≠0 .[解析]解:∵点A (3m ,2n )在直线y =﹣x +1上,∴2n =﹣3m +1,即n =−3m+12, ∴B (m ,−3m+12),∵点B 在双曲线y =kx 上,∴k =m •−3m+12=−32(m −16)2+124,∵−32<0,∴k 有最大值为124,∴k 的取值范围为k ≤124,∵k ≠0,故答案为k ≤124且k ≠0.24.(4分)(2020•青白江区模拟)如图,矩形ABCD 中,AB =3,BC =4,点E 是AB 边上一点,且AE =2,点F 是边BC 上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G ,连接AG ,CG ,则四边形AGCD 的面积的最小值为152.[解析]解:∵四边形ABCD 是矩形,∴CD =AB =3,AD =BC =4,∠ABC =∠D =90°,根据勾股定理得,AC =5,∵AB =3,AE =2, ∴点F 在BC 上的任何位置时,点G 始终在AC 的下方,设点G到AC的距离为h,∵S四边形AGCD=S△ACD+S△ACG=12AD×CD+12AC×h=12×4×3+12×5×h=52h+6,∴要四边形AGCD的面积最小,即:h最小,∵点G是以点E为圆心,BE=1为半径的圆上在矩形ABCD内部的一部分点,∴EG⊥AC时,h最小,即点E,点G,点H共线.由折叠知∠EGF=∠ABC=90°,延长EG交AC于H,则EH⊥AC,在Rt△ABC中,sin∠BAC=BCAC=45,在Rt△AEH中,AE=2,sin∠BAC=EHAE=45,∴EH=45AE=85,∴h=EH﹣EG=85−1=35,∴S四边形AGCD最小=52h+6=52×35+6=152.故答案为:152.五.解答题(共3小题,满分30分)25.(8分)某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y(千克)与销售单价x(元)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?[解析]解:(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 得:{200=15k +b300=10k +b ,解得:{k =−20b =500,即:函数的表达式为:y =﹣20x +500,(25>x ≥6);(2)设:该品种蜜柚定价为x 元时,每天销售获得的利润w 最大,则:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6),∵﹣20<0,故w 有最大值,当x =−b 2a =312=15.5时,w 的最大值为1805元; (3)当x =15.5时,y =190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完; 设:应定销售价为x 元时,既能销售完又能获得最大利润w ,由题意得:50(500﹣20x )≥12000,解得:x ≤13,w =﹣20(x ﹣25)(x ﹣6),当x =13时,w =1680, 此时,既能销售完又能获得最大利润.26.(10分)(2020•衢州模拟)(1)模型探究:如图1,D 、E 、F 分别为△ABC 三边BC 、AB 、AC 上的点,且∠B =∠C =∠EDF =a .△BDE 与△CFD 相似吗?请说明理由;(2)模型应用:△ABC 为等边三角形,其边长为8,E 为AB 边上一点,F 为射线AC 上一点,将△AEF 沿EF 翻折,使A 点落在射线CB 上的点D 处,且BD =2.①如图2,当点D 在线段BC 上时,求AE AF的值;②如图3,当点D 落在线段CB 的延长线上时,求△BDE 与△CFD 的周长之比.[解析]解:(1)△BDE ∽△CFD ,理由:∠B =∠C =∠EDF =a ,在△BDE 中,∠B +∠BDE +∠BED =180°,∴∠BDE +∠BED =180°﹣∠B =180°﹣α,∵∠BDE +∠EDF +∠CDF =180°,∴∠BDE +∠CDF =180°﹣∠EDF =180°﹣α,∴∠BED =∠CDF ,∵∠B =∠C ,∴△BDE ∽△CFD ;(2)①设AE =x ,AF =y ,∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,AB =BC =AC =8, 由折叠知,DE =AE =x ,DF =AF =y ,∠EDF =∠A =60°,在△BDE 中,∠B +∠BDE +∠BED =180°, ∴∠BDE +∠BED =180°﹣∠B =120°,∵∠BDE +∠EDF +∠CDF =180°,∴∠BDE +∠CDF =180°﹣∠EDF =120°,∴∠BED =∠CDF ,∵∠B =∠C =60°,∴△BDE ∽△CFD ,∴BD CF=BE CD =DE FD∵BE =AB ﹣AE =8﹣x ,CF =AC ﹣AF =8﹣y ,CD =BC ﹣BD =6,∴28−y=8−x 6=xy,∴{2y =x(8−y)6x =y(8−x),∴xy =1014=57,∴AE AF =57; ②设AE =x ,AF =y ,∵△ABC 是等边三角形,∴∠A =∠ABC =∠ACB =60°,AB =BC =AC =8,由折叠知,DE =AE =x ,DF =AF =y ,∠EDF =∠A =60°,在△BDE 中,∠ABC +∠BDE +∠BED =180°,∴∠BDE +∠BED =180°﹣∠ABC =120°,∵∠BDE +∠EDF +∠CDF =180°,∴∠BDE +∠CDF =180°﹣∠EDF =120°,∴∠BED =∠CDF ,∵∠ABC =∠ACB =60°,∴∠DBE =∠DCF =120°,∴△BDE ∽△CFD ,∴BD CF=BE CD=DE FD∵BE =AB ﹣AE =8﹣x ,CF =AF ﹣AC =y ﹣8,CD =BC +BD =10,∴2y−8=8−x 10=x y ,∴{2y =x(y −8)10x =y(8−x),∴x y =13.∵△BDE ∽△CFD ,∴△BDE 与△CFD 的周长之比为DE DF=x y=13.27.(12分)(2020•铁岭四模)如图,在矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线y =−49x 2+bx +c 经过点A 、C ,与AB 交于点D . (1)求抛物线的函数解析式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ =CP ,连接PQ ,设CP =m ,△CPQ 的面积为S .①求S 关于m 的函数表达式;②当S 最大时,在抛物线y =−49x 2+bx +c 的对称轴l 上,若存在点F ,使△DFQ 为直角三角形,请直接写出所有符合条件的点F 的坐标;若不存在,请说明理由.[解析]解:(1)将A 、C 两点坐标代入抛物线,得{c =8−49×36+6b +c =0,解得:{b =43c =8,∴抛物线的解析式为y =−49x 2+43x +8;(2)①∵OA =8,OC =6,∴AC =√OA 2+OC 2=10,过点Q 作QE ⊥BC 与E 点,则sin ∠ACB =QE QC =AB AC =35, ∴QE 10−m=35,∴QE =35(10﹣m ),∴S =12•CP •QE =12m ×35(10﹣m )=−310m 2+3m ; ②∵S =12•CP •QE =12m ×35(10﹣m )=−310m 2+3m =−310(m ﹣5)2+152, ∴当m =5时,S 取最大值;在抛物线对称轴l 上存在点F ,使△FDQ 为直角三角形,∵抛物线的解析式为y =−49x 2+43x +8的对称轴为x =32,D 的坐标为(3,8),Q (3,4),当∠FDQ =90°时,F 1(32,8),当∠FQD =90°时,则F 2(32,4),当∠DFQ =90°时,设F (32,n ),则FD 2+FQ 2=DQ 2,即94+(8﹣n )2+94+(n ﹣4)2=16,解得:n =6±√72,∴F 3(32,6+√72),F 4(32,6−√72),满足条件的点F 共有四个,坐标分别为F 1(32,8),F 2(32,4),F 3(32,6+√72),F 4(32,6−√72).。
北师大版2022~2023学年九年级数学第一学期期末质量检测试卷说明:本试卷为闭卷笔答,不允许携带计算器,答题时间90分钟满分100分一、选择题(本大题含10个小题,每小题3分,共30分)1.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A. B. C. D.2.如图,一次函数y=kx+b与反比例函数y= 6x(x>0)的图象交于A(m,6),B(3,n)两点,与x轴交于点C,与y轴交于点D,下列结论:①一次函数解析式为y=﹣2x+8;②AD=BC;③kx+b﹣6x<0的解集为0<x<1或x>3;④△AOB的面积是8,其中正确结论的个数是()A.4个B.3个C.2个D.1个3.某反比例函数的图象经过点(-1,6),则此函数图象也经过点( ).A.(2,−3)B.(−3,−3)C.(2,3)D.(−4,6)4.小明和小颖做“剪刀、石头、布”的游戏,假设他们每次出这三种手势的可能性相同,则在一次游戏中两人手势相同的概率是()A1 3B16C19D235.如图,△ABC中,点D,E分别在AB,AC边上,DE//BC,若AD=2DB,则△ADE与△ABC的面积比为()A2 3B49C25D356.下列四个表格表示的变量关系中,变量y是x的反比例函数的是()7.如果ab=cd ,且abcd ≠0,则下列比例式不正确的是( ) A.d c b a = B.b d c a = C.a c d b = D.ca b d = 8.已知一次函数b kx y +=的图象经过第一、三、四象限,则反比例函数xkby =的图象在( )A .一、二象限B .一、三象限C .三、四象限D .二、四象限 9.关于x 的一元二次方程0242=-+x kx 有实数根,则k 的取值范围是( ) A .2-≥k B .0k 2≠->且k C .02≠-≥k k 且 D .2-≤k 10.书画经装后更便于收藏,如图,画心ABCD 为长90cm 、宽30cm 的矩形,装裱后整幅画为矩形A B C D '''',两矩形的对应边互相平行,且AB 与A'B 的距离、CD 与C D ''的距离都等于4cm.当AD 与A D ''的距离、BC 与B'C'距离都等于acm,且矩形ABCD ∽矩形A B C D ''''时,整幅书画最美观,此时,a 的值为( )A.4B.6C.12D.24 二、填空题(本大题含5个小题,每小题2分,共10分)11.如图,已知 l 1∥l 2∥l 3 ,如果AB : BC =2 :3, DE =4 ,则EF 的长是________ .12.关于x 的一元二次方程x 2﹣2kx+k 2﹣k=0的两个实数根分别是x 1、x 2 , 且x 12+x 22=4,则x 12﹣x 1x 2+x 22的值是________.13.如图,现有一张矩形纸片ABCD ,其中AB=4cm ,BC=6cm ,点E 是BC 的中点.将纸片沿直线AE 折叠,使点B 落在梯形AECD 内,记为点B′,那么B′、C 两点之间的距离是________cm .14新年期间,某游乐场准备推出幸运玩家抽奖活动,其规则是:在一个不透明的袋子里装有若干个红球和白球(每个球除颜色外都完全相同),参加抽奖的人随机摸一个球,若摸到红球,则可获赠游乐场通票一张.游乐场预估有300人参加抽奖活动,计划发放游乐场通票60张,则袋中红、白两种颜色小球的数量比应为______________ 15.如图,点A,C 分别在反比例函数4-y x= (x<0)与9y x = (x>0)的图象上,若四边形OABC 是矩形,且点B 恰好在y 轴上,则点B 的坐标为______________三、解答题(本大题含8个小题,共60分) 16.解下列方程:(每题4分,共8分) (1)x 2-8x+1=0;(2)x(x-2)+x-2=017.(本题6分)已知矩形ABCD,AE 平分∠DAB 交DC 的延长线于点E,过点E 作EF ⊥AB,垂足F 在边AB 的延长线上,求证:四边形ADEF 是正方形.18.(本题9分)花园的护栏由木杆组成,小明以其中三根等高的木杆为观测对象,研究它们影子的规律图1,图2中的点A,B,C 均为这三根木杆的俯视图(点A,B,C在同一直线上).(1)图1中线段AD是点A处的木杆在阳光下的影子,请在图1中画出表示另外两根木杆同一时刻阳光下的影子的线段;(2)图2中线段AD,BE分别是点A,B处的木杆在路灯照射下的影子,其中DE∥AB,点O是路灯的俯视图,请在图2中画出表示点C处木杆在同一灯光下影子的线段;(3)在(2)中,若O,A的距离为2m,AD=2.4m,OB=1.5m,则点B处木杆的影子线段BE的长为___________m19.(本题6分)王叔叔计划购买一套商品房,首付30万元后,剩余部分用贷款并按“等额本金”的形式偿还,即贷款金额按月分期还款,每月所还贷款本金数相同,设王叔叔每月偿还贷款本金y万元,x个月还清,且y是x的反比例函数,其图象如图所示(1)求y与x的函数关系式;(2)王叔叔购买的商品房的总价是__________万元;(3)若王叔叔计划每月偿还贷款本金不超过2000元,则至少需要多少个月还清?20.(本题6分)新年联欢会,班里组织同学们进行才艺展示,如图所示的转盘被等分成四个扇形,每个扇形区域代表一项才艺:1-唱歌;2-舞蹈;3-朗诵;4-演奏.每名同学要随机转动转盘两次,转盘停止后,根据指针指向的区域确定要展示的两项内容(若两次转到同一区域或分割线上,则重新转动,直至得出不同结果).求小明恰好展示“唱歌”和“演奏”两项才艺的概率.21.(本题6分)为了弘扬山西地方文化,我省举办了“第三届山西文化博览会”,博览会上一种文化商品的进价为30元/件,售价为40元/件,平均每天能售出600件.调查发现,售价在40元至60元范围内,这种商品的售价每上涨1元,其每天的销售量就减少10件,为使这种商品平均每天的销售利润为10000元,这种商品的售价应定为多少元?22.(本题12分)综合与实践: 问题情境:如图1,矩形ABCD 中,BD 为对角线,ADk AB,且k>1.将△ABD 以B 为旋转中心,按顺时针方向旋转,得到△FBE(点D 的对应点为GEFD CB点E,点A的对应点为点F),直线EF交直线AD于点G(1)在图1中连接AF,DE,可以发现在旋转过程中存在一个三角形始终与△ABF相似,这个三角形是_______,它与△ABF的相似比为______(用含k的式子表示);数学思考:(2)如图2,当点E落在DC边的延长线上时,点F恰好落在矩形ABCD的对角线BD上,此时k的值为______实践探究(3)如图3,当点E恰好落在BC边的延长线上时,求证:CE=FG;(4)当k=43时,在△ABD绕点B旋转的过程中,探究下面的问题:请从A,B两题中任选一题作答:A:当AB的对应边FB与AB垂直时,直接写出DGAB 的值.ABB:当AB 的对应边FB 在直线BD 上时,直接写出DGAB的值23.(本题12分)如图1,平面直角坐标系中,△OAB 的顶点A,B 的坐标分别为(-2,4)、(-5,0).将△OAB 沿OA 翻折,点B 的对应点C 恰好落在反比例函数ky x=(k ≠0)的图象上(1)判断四边形OBAC 的形状,并证明.(2)直接写出反比例函数ky x=(k ≠0)的表达式.(3)如图2,将△OAB 沿y 轴向下平移得到△OA'B',设平移的距离为m(0<m<4),平移过程中△O'A'B'与△OAB 重叠部分的面积为S.探究下列问题 请从A,B 两题中任选一题作答,我选择___________ A:若点B 的对应点B ’恰好落在反比例函数ky x= (k ≠0)的图象上,求m 的值,并直接写出此时S 的值 B:若S=12OAB S ∆,求m 的值;(4)如图3,连接BC,交AO于点D,点P是反比例函数ky(k≠0)的图象上的一点,x请从A,B两题中任选一题作答,我选择____________A:在x轴上是否存在点Q,使得以点O,D,P,Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的平行四边形的顶点P,Q的坐标;若不存在,说明理由;B:在坐标平面内是否存在点Q,使得以点A,O,P,Q为顶点的四边形是矩形?若存在,直接写出所有满足条件的点Q的坐标;若不存在,说明理由。
九年级数学(上)(北师大版期末检测题(本检测题满分:120分,时间:120分钟)一、选择题(每小题3分,共30分) 1.(兰州中考)下列命题中正确的是( ) A .有一组邻边相等的四边形是菱形 B .有一个角是直角的平行四边形是矩形 C .对角线垂直的平行四边形是正方形 D .一组对边平行的四边形是平行四边形2.如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 为( ) A .45︒B .55︒C .60︒D .75︒第2题图 第3题图3.(2021·浙江温州中考)如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限.若反比例函数xky =的图象经过点B ,则k 的值是( ) A. 1 B. 2C. 3D. 324.若2-=x 是关于x 的一元二次方程02522=+-a ax x 的一个根,则a 的值为( ) A.1或4B.-1或-4C.-1或4D.1或-45. 将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变.当∠B =90°时,如图①,测得AC =2.当∠B =60°时,如图②,AC =( )第5题图 A .2B .2C .6D .226.(2021·天津中考)要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )A .12x (x +1)=28B .12x (x -1)=28C .x (x +1)=28D .x (x -1)=287.(2021·山东青岛中考)如图,正比例函数x k y 11=的图象与反比例函数xk y 22=的图象相交于A 、B 两点,其中点A 的横坐标为2,当21y y >时,x 的取值范围是( ) A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >2第7题图第8题图8.(2021·贵州安顺中考)如图,平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF∶FC等于()A.3∶2B.3∶1C.1∶1D.1∶29.在一个不透明的布袋中,有大小、形状完全相同,颜色不同的15个球,从中摸出红球的概率为,则袋中红球的个数为()A.10B.15C.5 D.210.(2021·浙江温州中考)将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A. B. C. D.mm第10题图第11题图二、填空题(每小题3分,共24分)11.(2021·兰州中考)如图,在一块长为22m,宽为17m 的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路分别与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300 m 2. 设道路宽为x m ,根据题意可列出的方程为 .12.已知方程3x 2-19x +m =0的一个根是1,那么它的另一个根是_________,m =_________.13. (2021·天津中考)如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =3,DB =2,BC =6,则DE 的长为 .第13题图14.一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有 个. 15.反比例函数k y x=(k >0)的图象与经过原点的直线相交于A 、B 两点,已知A 点的坐标为(2,1),那么B 点的坐标为 . 16.设函数2y x=与1y x =-的图象的交点坐标为(a ,b ),则11ab -的值为_________.17.已知AD是△ABC的角平分线,E、F分别是边AB、AC的中点,连接DE、DF,在不再连接其他线段的前提下,要使四边形AEDF成为菱形,还需添加一个条件,这个条件可以是______.18.一池塘里有鲤鱼、鲫鱼、鲢鱼共10000尾,一渔民通过多次捕捞试验后发现,鲤鱼、鲫鱼出现的频率是31%和42%,则这个池塘里大约有鲢鱼___ __ 尾.三、解答题(共66分)19.(8分)(2021·福州中考)已知关于x的方程+(2m1)x+4=0有两个相等的实数根,求m的值.20.(8分)(2021·呼和浩特中考)如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC的交点为O,连接DE.(1)求证:△ADE≌△CED;(2)求证:DE∥AC.第20题图21(8分)(2021·长沙中考)为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行.某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造.已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?22.(6分)画出如图所示实物的三视图.第23题图23.(8分)(2021·安徽中考) 如图,管中放置着三根同样的绳子111AA BB CC 、、.(1)小明从这三根绳子中随机选一根,恰好选中绳子1AA 的概率是多少?(2)小明先从左端A B C 、、三个绳头中随机选两个打一个结,再从右端111A B C 、、三个绳头中随机选两个打一个结,求这三根绳子能连接成一根长绳的概率.24.(8分)某池塘里养了鱼苗1万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间后准备打捞出售,第一网捞出40条,称得平均每条鱼重2.5 kg ,第二网捞出25条,称得平均每条鱼重2.2 kg ,第三网捞出35条,称得平均每条鱼重2.8 kg ,试估计这池塘中鱼的质量.25.(10分)如图,在矩形ABCD 中,AD =5,AB =7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D '落在∠ABC 的角平分线上时,求DE 的长.第25题图第26题图26.(10分)如图,一次函数y =kx +b 与反比例函数xmy =的图象交于A(2,3),B (-3,n )两点.(1)求一次函数与反比例函数的表达式;(2)根据所给条件,请直接写出不等式kx +b >xm的解集______________;(3)过点B 作BC ⊥x 轴,垂足为C ,求S △ABC .期末检测题参考答案1.B 解析:有一组邻边相等的四边形的四条边不一定都相等,该四边形不一定是菱形,故A 错误;有一个角是直角的平行四边形的四个角都是直角,该四边形一定是矩形,故B 正确;对角线垂直的平行四边形是菱形,该四边形不一定是正方形,故C 错误;一组对边平行的四边形有可能是梯形,故D 错误.2.C 解析:∵ AC 是正方形ABCD 的对角线,∴ ∠BAC =45°. 又∵ △ADE 是等边三角形,∴ ∠DAE =60°.∵ AB =AD =AE ,∠BAE =∠BAD +∠DAE =90°+60°=150°, ∴ ∠ABE =∠AEB =12(180°-150°)=15°.∵ ∠BFC 是△ABF 的一个外角,∴ ∠BFC =∠BAF +∠ABF =45°+15°=60°.3.C 解析:如图,设点B 的坐标为(x ,y ), 过点B 作x BC ⊥轴于点C.在等边△ABO 中, OC =121=OA ,3=BC ,即x =1,y =3, 所以点B (1,).又因为反比例函数y =的图象经过点B (1,),所以k =xy =3. 第3题答图4.B 解析:把x =-2代入方程,得()225(2)202a a --⨯-+=,解得a =-1或a =-4.5.A 解析:当∠B =90°时,四边形ABCD 是正方形,由正方形的对角线长为2可知正方形的边长为2.转动四边形ABCD ,使它形状改变,但是它的边长不变,且是边长为2的菱形.当∠B =60°时,△ABC是等边三角形,所以AC =AB =2.6.B 解析:因为每个队都要和剩下的()1x -个队各赛1场,所以每个队各赛()1x -场,x 个队共赛()1x x -场.因为每场比赛都是两个队参加,这样每个队的比赛场数都重复计算了一次,所以这x 个队共比赛()112x x -场,所以列方程为()11282x x -=.7. D 解析:x k y 11=与xk y 22=的图象均为中心对称图形,则A 、B 两点关于原点对称,所以B 点的横坐标为-2,观察图象发现:在y 轴左侧,当-2<x <0时,正比例函数x k y 11=的图象上的点比反比例函数xk y 22=的图象上的点高;在y 轴右侧,当x >2时,正比例函数x k y 11=的图象上的点比反比例函数x ky 22=的图象上的点高.所以当21y y >时,x 的取值范围是-2<x <0或x >2.8.D 解析:因为四边形ABCD 是平行四边形,所以AD ∥BC ,AD =BC ,所以△EFD ∽△CFB ,所以=.又点E 是AD 的中点,所以DE =BC ,所以==. 9.C 解析:红球的个数为15×=5(个).10. A 解析: 主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,所以A 项为主视图,B 项为左视图,C 项为俯视图,故A 选项正确.11. ()()2217300x x --=(或239740x x -+=,只要方程合理正确均可得分) 解析:如图所示,把小路平移后,草坪的面积等于图中阴影矩形的面积,即()()2217300x x --=,也可整理为239740x x -+=.第11题答图12.316,16 解析:将x =1代入方程可得m =16,解方程可得另一个根为316.13.518 解析:∵ AD =3,DB =2,∴ AB =AD +DB =5.∵ DE ∥BC ,∴ △ADE ∽△ABC , ∴ =,即=,解得DE =518,故答案为518.14.5 解析:当组成这个几何体的小正方体个数最少时,其俯视图对应如图所示,其中每个小正方形中的数字代表该位置处小正方体的个数.15.(-2,-1) 解析:设直线l 的表达式为y =ax ,因为直线l 和反比例函数的图象都经过A (2,1),将A 点坐标代入可得a =21,k =2,故直线l 的表达式为y =21x ,反比例函数的表达式为x y 2=,联立可解得B 点的坐标为(-2,-1).16.12- 解析:将(a ,b )分别代入表达式2y x =与1y x =-中,得ab 2=,1-=a b ,故12-=a a,022=--a a ,解得12-==a a 或,当2=a 时,1=b ,2111-=-b a ;当1-=a 时,2-=b ,2111-=-b a .17. BD =DC 解析:答案不唯一,只要能使结论成立即可.18.2 700 解析:池塘里鲢鱼的数量为10 000×(1-31%-42%)=10 000×27%=2 700.19.解:∵ 关于x 的方程+(2m 1)x +4=0有两个相等的实数根, ∴ Δ=4×1×4=0.∴ 2m 1=±4. ∴ m =或m =.20.证明:(1)∵ 四边形ABCD 是矩形, ∴ AD =BC ,AB =CD . 又∵ AC 是折痕,∴ BC = CE = AD ,AB = AE = CD . 又DE = ED ,∴ △ADE ≌△CED .(2)∵ △ADE ≌△CED ,∴ ∠EDC =∠DEA . 又△ACE 与△ACB 关于AC 所在直线对称, ∴ ∠OAC =∠CAB .而∠OCA =∠CAB ,∴ ∠OAC =∠OCA ,∴ 2∠OAC = 2∠DEA ,∴ ∠OAC =∠DEA ,∴ DE ∥AC . 21. 解: (1)设需购买甲种树苗x 棵,购买乙种树苗y 棵,根据题意,得{400,20030090 000,x y x y +=+=解得{300,100.x y == 答:需购买甲种树苗300棵,购买乙种树苗100棵.(2)设应购买甲种树苗a 棵,根据题意,得200a ≥300(400-a ),解得a ≥240.答:至少应购买甲种树苗240棵. 22.解:物体的三视图如图所示:第22题答图俯视图左视图主视图23. 解:(1)小明可选择的情况有三种,每种发生的可能性相等,恰好选中绳子AA 1的情况为一种,所以小明恰好选中绳子AA 1的概率13P. (2)依题意,分别在两端随机任选两个绳头打结,总共有三类9种情况,列表或画树状图表示如下,每种情况发生的可能性相等.A 1B 1 B 1C 1 A 1C 1AB (AB ,A 1B 1) (AB ,B 1C 1)(AB ,A 1C 1) BC (BC ,A 1B 1)(BC,B 1C 1) (BC ,A 1C 1) AC(AC ,A 1B 1)(AC ,B 1C 1)(AC ,A 1C 1)右端左 端第23题答图其中左、右打结是相同字母(不考虑下标)的情况,不可能连接成为一根长绳,所以能连接成为一根长绳的情况有6种:①左端连AB ,右端连A 1C 1或B 1C 1;②左端连BC ,右端连A 1B 1或A 1C 1;③左端连AC ,右端连A 1B 1或B 1C 1. 故P (这三根绳子连接成为一根长绳)=6293=.24.解:由题意可知三次共捕鱼40+25+35=100(条), 捕得鱼的总质量为40×2.5+25×2.2+35×2.8=253(千克), 所以可以估计每条鱼的质量约为253÷100=2.53(千克). 池塘中鱼的总质量为10 000×95%×2.53=24 035(千克).25.解:如图,过点D '作直线MN AB ⊥于点M ,交CD 于点N ,连接.BD '第25题答图 ∵BD '平分,ABC ∠∴45,ABD '∠=︒∴ 45MD B MBD ''==︒,∠∠∴ .MB MD '= 在Rt BD M '△中,设BM D M x '==,则7AM x =-. ∵ 5AD AD '==,在Rt AMD '△中,90AMD '=︒∠, ∴222AD AM D M ''=+,即2225(7)x x =-+,解得123, 4.x x ==∵ 90,90,NED ND E ND E MD A ''''+=︒+=︒∠∠∠∠∴ .NED MD A ''=∠∠ ∵ 90,END D MA ''==︒∠∠∴,AD M D EN ''△∽△∴ ,AD AMD E D N '=''∴ 5(5)7AD D N x D E AM x''⋅⨯-'==-.∵,DE D E '=∴ 2557xDE x -=-,故当3x =时,52DE =;当4x =时,5.3DE = 26.解:(1)∵ 点A (2,3)在xmy =的图象上,∴ m =6, ∴ 反比例函数的表达式为xy 6=, ∴ n =36﹣=-2. ∵ 点A (2,3),B (-3,-2)在y =kx +b 的图象上, ∴⎩⎨⎧+-=-+=,32,23b k b k 解得⎩⎨⎧==,1,1b k∴ 一次函数的表达式为y =x +1. (2)-3<x <0或x >2.(3)方法1:设AB 交x 轴于点D ,则D 的坐标为(-1,0),∴ CD =2,∴ S △ABC =S △BCD +S △ACD =21×2×2+21×2×3=5.方法2:以BC 为底,则BC 边上的高为3+2=5,∴ S △ABC =21×2×5=5.。
北师大版九年级上册数学期末考试试题一、单选题1.若25x y =,则xy的值是()A .52B .25C .32D .232.如图所示的几何体的左视图是()A .B .C .D .3.下列关于矩形的说法,正确的是()A .对角线相等的四边形是矩形B .对角线互相平分的四边形是矩形C .矩形的对角线互相垂直且平分D .矩形的对角线相等且互相平分4.连续两次掷一枚质地均匀的硬币,两次都是正面朝上的概率是()A .16B .14C .12D .135.两个相似多边形的相似比是3:4,其中小多边形的面积为18cm 2,则较大多边形的面积为()A .16cm 2B .54cm 2C .32cm 2D .48cm 26.如图,////AB CD EF ,若3BF DF =,则ACCE的值是()A .2B .12C .13D .37.点A (﹣3,y 1)、B (﹣1,y 2)、C (2,y 3)都在反比例函数y =6x-的图象上,则y 1、y 2、y 3的大小关系是()A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 38.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是()A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根9.如图,有一张矩形纸片,长10cm ,宽6cm ,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm 2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm ,根据题意可列方程为()A .10×6﹣4×6x=32B .(10﹣2x )(6﹣2x )=32C .(10﹣x )(6﹣x )=32D .10×6﹣4x 2=3210.函数y=x+m 与my x=(m≠0)在同一坐标系内的图象可以是()A .B .C .D .11.如图,在平面直角坐标系中,已知点A (﹣3,6)、B (﹣9,﹣3),以原点O 为位似中心,相似比为13,把△ABO 缩小,则点B 的对应点B′的坐标是()A .(﹣3,﹣1)B .(﹣1,2)C .(﹣9,1)或(9,﹣1)D .(﹣3,﹣1)或(3,1)12.如图,在矩形ABCD 中,对角线AC 、BD 交于O ,2,BC AE BD =⊥,垂足为E ,30BAE ∠=︒,那么ECO ∆的面积是()A B C D 二、填空题13.在某一时刻,测得一根长为1.5m 的标杆的影长为3m ,同时测得一根旗杆的影长为16m ,那么这根旗杆的高度为_______m .14.一个不透明袋中装有若干个红球,为估计袋中红球的个数,小文在袋中放入10个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到白球的频率是27,则袋中红球约为________个.15.若一元二次方程ax 2﹣bx ﹣2021=0有一根为x=﹣1,则a+b=______.16.如图,点O 是菱形ABCD 对角线的交点,DE //AC ,CE //BD ,连接OE ,设AC =12,BD =16,则OE 的长为_____.17.如图,矩形ABCD 的顶点A 和对称中心均在反比例函数y =kx(k≠0,x >0)上,若矩形ABCD 的面积为8,则k 的值为___.三、解答题18.已知关于x 的方程x 2+ax+a ﹣2=0.(1)若该方程的一个根为1,求a 的值;(2)若a的值为3时,请解这个方程.19.某数学小组为调查实验学校周五放学时学生的回家方式,随机抽取了部分学生进行调查,所有被调查的学生都需从“A:乘坐电动车,B:乘坐普通公交车或地铁,C:乘坐学校的定制公交车,D:乘坐家庭汽车,E:步行或其他”这五种方式中选择最常用的一种,随后该数学小组将所有调查结果整理后绘制成如图不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中一共调查了名学生;扇形统计图中,E选项对应的扇形圆心角是度;(2)请补全条形统计图;(3)若甲、乙两名学生放学时从A、B、C三种方式中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两名学生恰好选择同一种交通工具上班的概率.20.某商场销售某女款上衣,刚上市时每件可盈利100元,销售一段时间后开始滞销,经过连续两次降价后,每件盈利为81元,平均每天可售出20件.(1)求平均每次降价盈利的百分率;(2)为扩大销售量,尽快减少库存,在“双十一”期间该商场决定再次采取适当的降价措施,经调查发现,一件女款上衣每降价1元,每天可多售出2件.若商场每天要盈利2940元,每件应降价多少元?21.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,垂足为F,交直线MN于E,连接CD,BE.(1)求证:CE=AD;(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)在满足(2)的条件下,当△ABC满足什么条件时,四边形BECD是正方形?(不必说明理由)22.如图1,一次函数y =kx ﹣3(k≠0)的图象与y 轴交于点B ,与反比例函数y =mx(x >0)的图象交于点A (8,1).(1)求出一次函数与反比例函数的解析式;(2)点C 是线段AB 上一点(不与A ,B 重合),过点C 作y 轴的平行线与该反比例函数的图象交于点D ,连接OC ,OD ,AD ,当CD 等于6时,求点C 的坐标和△ACD 的面积;(3)在(2)的前提下,将△OCD 沿射线BA 方向平移一定的距离后,得到△O'CD',若点O 的对应点O'恰好落在该反比例函数图象上(如图2),求出点O',D'的坐标.23.如图,在四边形ABCD 中,BD 为一条对角线,//AD BC ,2AD BC =,90ABD ∠=︒,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分BAD ∠,1BC =,求AC 的长.24.如图,已知Rt △ABO ,点B 在x轴上,∠ABO=90°,∠AOB=30°,OB=函数()0ky x x=>的图象经过OA 的中点C ,交AB 于点D .(1)求反比例函数ky x=的表达式;(2)求△OCD 的面积;(3)点P 是x 轴上的一个动点,请直接写出使△OCP 为直角三角形的点P 坐标.25.如图,在Rt △ABC 中,∠ACB=90°,点D 是斜边AB 的中点,过点B 、点C 分别作BE ∥CD ,CE ∥BD .(1)求证:四边形BECD 是菱形;(2)若∠A=60°,BECD 的面积.26.如图(1),在四边形ABCD 中,AB ∥DC ,CB ⊥AB ,AB =16cm ,BC =6cm ,CD =8cm ,动点P 从点D 开始沿DA 边匀速运动,动点Q 从点A 开始沿AB 边匀速运动,它们的运动速度均为2cm/s .点P 和点Q 同时出发,设运动的时间为t (s ),0<t <5(1)用含t 的代数式表示AP ;(2)当以点A 、P 、Q 为顶点的三角形与△ABD 相似时,求t 的值;(3)如图(2),延长QP 、BD ,两延长线相交于点M ,当△QMB 为直角三角形时,求t 的值.参考答案1.A【分析】利用比例的基本性质计算即可.【详解】∵2x=5y,∴xy=52,故选A.【点睛】本题考查了比例的基本性质,熟练掌握比例的性质并能进行灵活变形是解题的关键.2.D【分析】根据简单组合体的三视图的画法可知,其左视图是中间有一道横虚线的长方形,即可求解.【详解】解:根据简单组合体的三视图的画法可知,其左视图是中间有一道横虚线的长方形,因此选项D的图形比较符合题意,故选:D.【点睛】考查三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.3.D【详解】分析:根据定义有一个角是直角的平行四边形叫做矩形.矩形的性质:1.矩形的四个角都是直角2.矩形的对角线相等3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线).5.对边平行且相等6.对角线互相平分,对各个选项进行分析即可.解答:解:A、因为对角线相等的平行四边形是矩形,所以本选项错误;B、因为对角线互相平分且相等的四边形是矩形,所以本选项错误;C、因为矩形的对角线相等且互相平分,所以本选项错误;D、因为矩形的对角线相等且互相平分,所以本选项正确.故选D.4.B【分析】利用树状图法列出连续两次掷一枚质地均匀的硬币会出现的所有情况,看两次都正面朝上的情况占总情况的多少即为所求.【详解】解:画树状图如图所示:共有4种情况,两次都正面朝上的情况只有一种,所以两次都是正面朝上的概率是1 4.故答案选:B.【点睛】本题考查了求概率的方法,熟练应用树状图法或列表法求出所求情况数和总情况数是解题的关键.5.C【分析】设较大多边形的面积为S,由相似比与面积相似比的关系得18916S=,计算求解即可.【详解】解:设较大多边形的面积为S由两个相似多边形的相似比是3:4,可知两个相似多边形面积的相似比是9:16∴18916 S=解得32S=故选C.【点睛】本题考查了相似三角形的性质.解题的关键在于明确相似多边形的面积比与相似比的关系.6.A【分析】由BF=3DF,得BD=2DF,使用平行线分线段成比例定理计算即可.【详解】∵BF=3DF,∴BD=2DF,∵////AB CD EF,∴ACCE=BDDF,∴ACCE=2DFDF=2,故选A.【点睛】本题考查了平行线分线段成比例定理,熟练掌握定理,特别是定理的对应关系是解题的关键.7.C【分析】分别把A、B、C各点坐标代入反比例函数y=6x-求出y1、y2、y3的值,再比较大小即可.【详解】解:∵点A(﹣3,y1),B(﹣1,y2),C(2,y3)都在反比例函数y=6x-的图象上,∴y1=63--=2,y2=61--=6,y3=62-=﹣3,∵﹣3<2<6,∴y3<y1<y2,故选:C.【点睛】本题考查了反比例函数图像上点的特征,熟练掌握反比例函数的性质是解题的关键8.A【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x ﹣3=0有两个不相等的实数根.【详解】∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有两个不相等的实数根,故选A.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.9.B【分析】设剪去的小正方形边长是xcm,则纸盒底面的长为(10−2x)cm,宽为(6−2x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是32cm2,即可得出关于x的一元二次方程,此题得解.【详解】解:设剪去的小正方形边长是xcm,则纸盒底面的长为(10−2x)cm,宽为(6−2x)cm,根据题意得:(10−2x)(6−2x)=32.故选B.【点睛】本题考查由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10.B【分析】先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m 的取值,二者一致的即为正确答案.【详解】A.由函数y=x+m的图象可知m<0,由函数ymx=的图象可知m>0,相矛盾,故错误;B.由函数y=x+m的图象可知m>0,由函数ymx=的图象可知m>0,正确;C.由函数y=x+m的图象可知m>0,由函数ymx=的图象可知m<0,相矛盾,故错误;D.由函数y=x+m的图象可知m=0,由函数ymx=的图象可知m<0,相矛盾,故错误.故选:B.【点睛】此题考查了反比例函数的图象性质和一次函数的图象性质,解题关键在于掌握它们的性质才能灵活解题.11.D【分析】利用以原点为位似中心,相似比为k,位似图形对应点的坐标的比等于k或-k,把B点的横纵坐标分别乘以13或-13即可得到点B′的坐标.【详解】解:∵以原点O为位似中心,相似比为13,把△ABO缩小,∴点B(-9,-3)的对应点B′的坐标是(-3,-1)或(3,1).故选:D.【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.12.B【分析】过点C作CF⊥BD于F.根据矩形的性质得到∠ABE=∠CDF=60°,AB=CD,AD=BC=2,∠AEB=∠CFD=90°.根据全等三角形的性质得到AE=CF.解直角三角形得到OE【详解】解:如图:过点C作CF⊥BD于F.∵矩形ABCD 中,BC =2,AE ⊥BD ,∴∠ABE =∠CDF =60°,AB =CD ,AD =BC =2,∠AEB =∠CFD =90°.∴△ABE ≌△CDF ,(AAS ),∴AE =CF .∵∠ABE =∠CDF =60°,∴∠ADE =∠CBF =30°,∴CF =AE =12AD =1,∴BE =tan AE ABE ∠3333∵∠ABE =60°,AO=BO ,∴△ABO 是等边三角形,∴OE =33∴S △ECO =12OE•CF =1331236=故选B .13.8【分析】根据同时同地物高与影长成比相等,列式计算即可得解.【详解】设旗杆高度为x 米,由题意得:1.5316x =解得8x =.故答案为8.14.25【详解】试题分析:根据实验结果估计袋中小球总数是10÷27=35个,所以袋中红球约为35-10=25个.考点:简单事件的频率.15.2021【分析】将1x =-代入原方程即可得出答案.【详解】解:将1x =-代入一元二次方程ax 2﹣bx ﹣2021=0中,得:20210a b +-=,∴2021a b +=,故答案为:2021.16.10【分析】由菱形的性质和勾股定理求出CD =20,证出平行四边形OCED 为矩形,得OE =CD =10即可.【详解】解:∵DE //AC ,CE //BD ,∴四边形OCED 为平行四边形,∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =OC =12AC =6,OB =OD =12BD =8,∴∠DOC =90︒,CD =10,∴平行四边形OCED 为矩形,∴OE =CD =10,故答案为:10.17.4.【分析】设A 点的坐标为(m ,n )则根据矩形的性质得出矩形中心的纵坐标为2n ,根据中心在反比例函数y =k x 上,求出中心的横坐标为2k n ,进而可得出BC 的长度,根据矩形ABCD 的面积即可求得.【详解】如图,延长DA 交y 轴于点E ,∵四边形ABCD 是矩形,设A 点的坐标为(m ,n )则根据矩形的性质得出矩形中心的纵坐标为2n ,∵矩形ABCD 的中心都在反比例函数y =k x 上,∴x =2k n,∴矩形ABCD 中心的坐标为(2k n ,2n )∴BC =2(2k n ﹣m )=4k n﹣2m ,∵S 矩形ABCD =8,∴(4k n﹣2m )•n =8,4k ﹣2mn =8,∵点A (m ,n )在y =k x上,∴mn =k ,∴4k ﹣2k =8解得:k =4故答案为:418.(1)12(2)12x x ==【分析】(1)将x=1代入原方程可得出关于a 的一元一次方程,解之即可得出a 的值;(2)把a=3代入原方程得到x 2+3x+1=0,再利用公式法求解即可.(1)将x=1代入原方程,得:1+a+a-2=0,解得:a=12.(2)把a=3代入原方程得,x 2+3x+1=0,∴Δ=32-4×1×1=5,∴33212x --==⨯∴12x x =.19.(1)200,72;(2)见解析;(3)13.【分析】(1)根据B 的人数以及百分比得到被调查的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)求出C 组的人数即可补全图形;(3)列表得出所有等可能结果,即可运用概率公式得甲、乙两名学生恰好选择同一种交通工具回家的概率.【详解】解:(1)本次调查的学生人数为6030%200÷=(名),扇形统计图中,B 项对应的扇形圆心角是4036072200︒⨯=︒,故答案为:200;72;(2)C 选项的人数为200(20603040)50-+++=(名),补全条形图如下:(3)画树状图如图:共有9个等可能的结果,甲、乙两名学生恰好选择同一种交通工具上班的结果有3个,∴甲、乙两名学生恰好选择同一种交通工具上班的概率为3193=.20.(1)10%;(2)60元【分析】(1)设每次下降的百分率为a ,根据刚上市每件利润100元和连续两次降价后每件利润81元,可列方程为:100(1﹣a )2=81,即可求解;(2)设每件应降价x 元,则降价后的利润为()81x -,因降价后销量为()202x +,根据总利润=利润⨯销量,列方程进而求解.【详解】(1)设每次下降的百分率为a ,根据题意,得:100(1﹣a )2=81,解得:a =1.9(舍)或a =0.1=10%,答:每次下降的百分率为10%;(2)设每件应降价x 元,根据题意,得(81﹣x )(20+2x )=2940,解得:x 1=60,x 2=11,∵尽快减少库存,∴x=60,答:若商场每天要盈利2940元,每件应降价60元.21.(1)见解析;(2)菱形,理由见解析;(3)∠A=45°.【分析】(1)根据∠ACB=90°,DE⊥BC可得DE//AC,即可证明四边形ADEC是平行四边形,根据平行四边形的性质即可得结论;(2)根据直角三角形斜边中线的性质可得AD=BD=CD,可得BD=CE,根据AB//MN可证明BECD是平行四边形,根据有一组邻边相等的平行四边形是菱形即可得结论;(3)根据正方形的性质可得∠CBD=45°,根据∠ACB=90°可得△ABC为等腰直角三角形,可得答案.【详解】(1)∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD.(2)四边形BECD是菱形,理由如下:∵D为AB中点,∠ACB=90°,∴AD=BD=CD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵BD=CD,∴四边形BECD是菱形.(3)当△ABC是等腰直角三角形时,四边形BECD是正方形,理由如下:由(2)可知,四边形BECD是菱形,∴∠BDC=90°时,四边形BECD是正方形,∴∠CBD=45°,∵∠ACB=90°,∴△ABC 是等腰直角三角形,∴当△ABC 是等腰直角三角形时,四边形BECD 是正方形.22.(1)132y x =-,y=8x;(2)C (2,-2),18(3)O'(4,2),D'(6,6).【分析】(1)把A 坐标代入一次函数解析式求出k 的值,确定出一次函数解析式,再将A 坐标代入反比例函数解析式求出k 的值,即可确定出反比例解析式;(2)设C 的坐标为(a ,132a -),表示出D 的坐标,两点纵坐标之差即为DC 的长,由已知DC 的长求出a 的值,确定出C 的坐标,过A 作AE ⊥CD 于点E ,由A 与C 的横坐标之差求出AE 的长,三角形ACD 面积以DC 为底,AE 为高,求出即可;(3)连接OO',由平移可得:OO'∥AC ,根据两直线平行时k 的值相同确定出直线OO'的解析式,与反比例函数解析式联立求出交点O'的坐标,根据平移的性质,由O 平移到O'的路径确定出D 平移到D'的路径,进而确定出D'的坐标即可.(1)解:∵点A (8,1)在直线y=kx -3上,∴1=8k -3,解得:k=12,∴一次函数解析式为132y x =-,∵A (8,1)在y=m x(x >0)的图象上,∴1=8m ,解得:m=8,则反比例函数解析式为y=8x;(2)解:设C (a ,132a -)(0<a <8),则有D (a ,8a ),∴CD=8a-(132a -)=8132a a -+,∵CD=6,∴81362aa-+=,解得:a=-8(舍去)或a=2,∴13132 2a-=-=-,∴C(2,-2),过A作AE⊥CD于点E,则AE=8-2=6,∴S△ACD=12CD•AE=12×6×6=18;(3)连接OO',由平移可得:OO'∥AC,∴直线OO'的解析式为y=12 x,联立得:812yxy x ⎧=⎪⎪⎨⎪=⎪⎩,解得:42xy=⎧⎨=⎩或42xy=-⎧⎨=-⎩(不合题意,舍去),∴O'(4,2),即O (0,0)通过往右平移4个单位,往上平移2个单位得到O'(4,2),又由(2)中知D 坐标为(2,4),∴点D (2,4)往右平移4个单位,往上平移2个单位得到D'(6,6).【点睛】此题属于一次函数综合题,涉及的知识有:待定系数法求一次函数及反比例函数解析式,一次函数与反比例函数的交点,平移的性质,熟练掌握各自的性质是解本题的关键.23.(1)见解析;(2)AC =(1)根据2AD BC =,E 为AD 的中点,证得四边形BCDE 是平行四边形,再根据BE=DE 即可证得结论;(2)根据AD ∥BC ,AC 平分BAD ∠,求出AD=2BC=2=2AB ,得到30ADB ∠=︒,60ADC ∠=︒,90ACD ∠=︒,根据Rt ACD ∆求出答案即可.【详解】(1)证明:2AD BC = ,E 为AD 的中点,DE BC ∴=.//AD BC ,∴四边形BCDE 是平行四边形.90ABD ∠=︒ ,AE DE =,BE DE ∴=,则四边形BCDE 是菱形;(2)解:如答图所示,连接AC ,//AD BC ,AC 平分BAD ∠,BAC DAC BCA ∴∠=∠=∠.1AB BC ∴==.22AD BC ∴==,2AD AB ∴=,∴在Rt ABD ∆中,30ADB ∠=︒.30DAC ∴∠=︒,60ADC ∠=︒,90ACD ∠=︒.在Rt ACD ∆中2AD = ,1CD ∴=,∴AC ==.【点睛】此题考查菱形的判定定理及性质定理,勾股定理,直角三角形30度角的性质,平行线的性质,直角三角形斜边中线等于斜边一半的性质,熟记菱形的判定及性质是解题的关键.24.(1)3(0)y x x =>;(2)面积为334;(3)P (2,0)或(4,0)【分析】(1)解直角三角形求得AB ,作CE ⊥OB 于E ,根据平行线分线段成比例定理和三角形中位线的性质求得C 的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)补形法,求出各点坐标,S △OCD =S △AOB -S △ACD -S △OBD ;(3)分两种情形:①∠OPC=90°.②∠OCP=90°,分别求解即可.【详解】解:(1)∵∠ABO=90°,∠AOB=30°,OB=23∴33OB=2,作CE ⊥OB 于E ,∵∠ABO=90°,∴CE ∥AB ,∴OC=AC ,∴OE=BE=123CE=12AB=1,∴C 31),∵反比例函数k y x =(x >0)的图象经过OA 的中点C ,∴33∴反比例函数的关系式为3y x=;(2)∵OB=23∴D的横坐标为23代入3yxy=12,∴D(2312),∴BD=12,∵AB=12,∴AD=3 2,∴S△OCD =S△AOB-S△ACD-S△OBD=12OB•AB-12AD•BE-12334(3)当∠OPC=90°时,点P的横坐标与点C的横坐标相等,C(2,2),∴P(2,0).当∠OCP=90°时.∵C(2,2),∴∠COB=45°.∴△OCP为等腰直角三角形.∴P(4,0).综上所述,点P的坐标为(2,0)或(4,0).【点睛】本题主要考查的是一次函数、反比例函数的综合应用,列出关于k、n的方程组是解答问题(2)的关键,分类讨论是解答问题(3)的关键.25.(1)见解析;(2)面积332(1)先证明四边形BECD是平行四边形,再根据直角三角形中线的性质可得CD=BD,再根据菱形的判定即可求解;(2)根据图形可得菱形BECD的面积=直角三角形ACB的面积,根据三角函数可求BC,根据直角三角形面积公式求解即可.【详解】(1)证明:∵BE∥CD,CE∥BD,∴四边形BECD是平行四边形,∵Rt△ABC中点D是AB中点,∴CD=BD,∴四边形BECD是菱形;(2)解:∵Rt△ABC中,∠A=60°,∴,∴直角三角形ACB的面积为∴菱形BECD【点睛】本题考查了平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力.26.(1)10-2t;(2)4013或2513;(3)3527或209【分析】(1)作DH⊥AB于H,得矩形DHBC,则CD=BH=8cm,DH=BC=6cm,AH=8cm,由勾股定理可求得AD的长,从而可得AP;(2)分两种相似情况加以考虑,根据对应边成比例即可完成;(3)分∠QMB=90゜和∠MQB=90゜两种情况考虑即可,再由相似三角形的性质即可求得t的值.【详解】(1)如图,作DH⊥AB于H则四边形DHBC是矩形∴CD=BH=8cm,DH=BC=6cm∴AH=AB-BH=16-8=8(cm)在Rt△ADH中,由勾股定理得10(cm)AD===∵DP=2tcm∴AP=AD-DP=(10-2t)cm(2)①当△APQ∽△ADB时则有AP AD AQ AB=∴10210 216tt-=解得:4013 t=②当△APQ∽△ABD时则有AP AB AQ AD=∴10216 210tt-=解得:2513 t=综上所述,当4013t=或2513t=时,以点A、P、Q为顶点的三角形与△ABD相似;(3)①当∠QMB=90゜时,△QMB为直角三角形如图,过点P作PN⊥AB于N,DH⊥AB于H∴∠PNQ=∠BHD∵∠QMB=90゜∴∠PQN+∠DBH=90゜∵∠PQN+∠QPN=90゜∴∠QPN=∠DBH∴△PNQ∽△BHD∴6384 QN DHPN BH===即4QN=3PN∵PN∥DH∴△APN∽△ADH∴63105PN DHAP AD===,84105AN AHAP AD===∴33(102)55PN AP t ==-,44(102)55AN AP t ==-∴418(102)2855QN AN AQ t t t=-=--=-由4QN=3PN 得:1834(8)3(102)55t t -=⨯-解得:3527t =②当∠MQB=90゜时,△QMB 为直角三角形,如图则PQ ∥DH∴△APQ ∽△ADH ∴45AQAH AP AD ==∴45AQ AP=即42(102)5t t =-解得:209t =综上所述,当3527t =或209时,△QMB 是直角三角形.。
第1页(共23页)北师大新版九年级上册数学期末复习试卷说明:1.本试卷分为第Ⅰ卷和第Ⅰ卷,满分为120分,考试时间90分钟.2.用黑色或蓝色钢笔或圆珠笔在答卷上作答.第Ⅰ卷一.选择题(本大题10小题,每小题3分,共30分)1.下列方程属于一元二次方程的是( )A .x 2+y ﹣2=0B .x +y =3C .x 2+2x =3D .x +x 1=52.已知3a =2b (a ≠0,b ≠0),下列变形错误的是( )A .32b a= B .32a b= C .23a b= D .3b2a=3.关于菱形,下列说法错误的是( )A .对角线互相平分B .对角线互相垂直C .四条边相等D .对角线相等4.在中ABC R △t 中,ⅠC = 90,若ⅠABC 的三边都缩小5倍,则A sin 的值( )A . 放大5倍B . 缩小5倍C . 不变D .无法确定5.关于x 的一元二次方程9x 2﹣6x +k =0有两个不相等的实根,则k 的范围是( )A .k <1B .k >1C .k ≤1D .k ≥16.如图,已知Ⅰ1=Ⅰ2,那么添加下列一个条件后,仍无法判定ⅠABC ~ⅠADE 的是()A .DE BCAD AB = B .AE ACAD AB = C .ⅠB =ⅠD D .ⅠC =ⅠAED第2页(共23页)7. 如图,已知ABC R △t 中,斜边BC 上的高AD =3,B cos =53,则AC 的长为( ) A . 3 B . 3.5 C . 4.8 D . 58.四张完全相同的卡片上,分别画有菱形、矩形、等边三角形、等腰梯形,现从中随机抽取一张卡片上画的恰好是中心对称图形的概率为( )A .41B .21C .43 D .1 9.如下表给出了二次函数y =x 2+2x ﹣10中x ,y 的一些对应值,则可以估计一元二次方程y =x 2+2x ﹣10的一个近似解(精确到0.1)为( )A .2.2B . 2.3C . 2.4D . 2.510. 如图,点A 在反比例函数y 1=x 20(x >0)的图象上,过点A 作AB Ⅰx 轴,垂足为B ,交反比例函数y 2=x8的图象于点C ,P 为轴上一点,连接P A ,PC ,则ⅠAPC 的面积为( )A . 6B . 8C . 12D . 20第6题图 第7题图 第10题图 第Ⅰ卷二.填空题(本大题7小题,每小题4分,共28分)第3页(共23页)11.方程x 2=4x 的解是.12.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,已知ⅠAOD =120°,AB =2.5则AC 的长为。
(北师大版)九年级数学上册各章测试题及期中、期末测试题及答案(共10套)班级: 姓名: 考号:一、填空题(本大题有10小题,每小题3分,共30分.将答案填在题中横线上)1.在ABC ∆中,边AB 、BC 、AC 的垂直平分线相交于P ,则PA 、PB 、PC 的大小关系是 .2.如果等腰三角形的一个角是80°,那么顶角是 度.3.若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为 .4. ABC ∆中,90=∠C ,AD 平分BAC ∠,交BC 于点D ,若7=DC ,则D 到AB 的距离是 .5.如图,ABC ∠=DCB ∠,需要补充一个直接条件才能使ABC ∆≌DCB ∆.甲、乙、丙、丁四位同学填写的条件分别是:甲“DC AB =”;乙“DB AC =”;丙“D A ∠=∠”;丁“A CB ∠=DBC ∠”.那么这四位同学填写错误的是 .6. 用反证法证明 “三角形中至少有一个角不小于60°时,假设“ ”,则与“ ”矛盾,所以原命题正确.7.补全“求作AOB ∠的平分线”的作法:①在OA 和OB 上分别截取OD 、OE ,使OD =OE .②分别以D 、E 为圆心,以 为半径画弧,两弧在AOB ∠内交于点C .③作射线OC 即为AOB ∠的平分线.8.一轮船以每小时20海里的速度沿正东方向航行.上午8时,该船在A 处测得某灯塔位于它的北偏东30°的B 处(如图),上午9时行到C 处,测得灯塔恰好在它的正北方向,此时它与灯塔的距离是 海里(结果保留根号).9.在ABC ∆中,A ∠=90°,AC AB =,BD 平分B ∠交AC 于D ,BC DE ⊥于E ,若10=BC ,则DEC ∆的周长是 .10.如图是2002年8月在北京召开的第24届国际数学家大会的会标,它是由4个相同的直角三角形拼和而成.若图中大小正方形的面积分别为522cm 和42cm ,则直角三角形的两条直角边的和是 cm .二、选择题(本大题有10小题,每小题3分,共30分.请选出每小题中一个符合题意的正确选项,不选、多选、错选,均不给分)11.两个直角三角形全等的条件是( )(A )一锐角对应相等; (B )两锐角对应相等; (C )一条边对应相等; (D )两条边对应相等.12.到ABC ∆的三个顶点距离相等的点是ABC ∆的( ).(A )三边垂直平分线的交点; (B )三条角平分线的交点; (C )三条高的交点; (D )三边中线的交点.13.如图,由21∠=∠,DC BC =,EC AC =,得ABC ∆≌EDC ∆的根据是( ) (A )SAS (B )ASA (C )AAS (D )SSS14.ABC ∆中,AC AB =,BD 平分ABC ∠交AC 边于点D ,75=∠BDC ,则A ∠的度数为( )(A )35° (B )40° (C )70° (D )110° 15.下列两个三角形中,一定全等的是( ) (A )有一个角是40°,腰相等的两个等腰三角形; (B )两个等边三角形;(C )有一个角是100°,底相等的两个等腰三角形; (D )有一条边相等,有一个内角相等的两个等腰三角形.C ∠1(A )锐角三角形; (B )钝角三角形; (C )直角三角形; (D )任意三角形.17.有一块边长为24米的正方形绿地,如图所示,在绿地旁边B 处有健身器材,由于居住在A 处的居民践踏了绿地,小明想在A 处树立一个标牌“少走▇米,踏之何忍?”请你计算后帮小明在标牌的“▇”填上适当的数字是( ).(A )3米 (B )4米 (C )5米 (D )6米18. 一个三角形如果有两边的垂直平分线的交点在第三边上,那么这个三角形是( ). (A )等腰三角形; (B )等边三角形; (C )直角三角形; (D )等腰直角三角形.19.如图,已知AC 平分PAQ ∠,点B 、B '分别在边AP 、AQ 上,如果添加一个条件,即可推出AB =B A ',那么该条件不可以是( )(A)AC B B ⊥' (B)C B BC '= (C)ACB ∠=B AC '∠ (D) =20.如图,AO FD ⊥于D ,BO FE ⊥于E ,下列条件:①OF 是AOB ∠的平分线;②EF DF =;③EO DO =;④OFD ∠=OFE ∠.其中能够证明DOF ∆≌EOF ∆的条件的个数有( )(A)1个 (B)2个 (C)3个 (D)4个三、解答题(本大题有6小题,共60分.解答需写出必要的文字说明、演算步骤或证明过程) 21.(8分)已知:如图,A ∠=90=∠D ,BD AC =.求证:OC OB =.22.(8分)如图,OCB OBC ∠=∠,AOC AOB ∠=∠,请你写一个能用全部已知条件才能推出的结论,并证明你的结论.23.(10分)已知:如图,在等边三角形ABC 的AC 边上取中点D ,BC 的延长线上取一点E ,使CE=CD .求证:BD =DE .24.(10分)已知:如图,ABC ∆中,AC AB =,120=∠A .(1)用直尺和圆规作AB 的垂直平分线,分别交BC 、AB 于点M 、N (保留作图痕迹,不写作法). (2)猜想CM 与BM 之间有何数量关系,并证明你的猜想.25. (本题满分12分)阅读下面的题目及分析过程,并按要求进行证明. 已知:如图,E 是BC 的中点,点A 在DE 上,且CDE BAE ∠=∠.求证:CD AB =.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证CD AB =,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.26.(12分)已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形,可以说明:ACN ∆≌MCB ∆,从而得到结论:BM AN =.现要求:(1)将ACM ∆绕C 点按逆时针方向旋转180°,使A 点落在CB 上.请对照原题图在下图中画出符合要求的图形(不写作法,保留作图痕迹).(2)在(1)所得到的图形中,结论“BM AN =”是否还成立?若成立,请给予证明;若不成立,请说明理由.(3)在(1)所得到的图形中,设MA 的延长线与BN 相交于D 点,请你判断△ABD 与四边形MDNC 的形状,并说明你的结论的正确性.北师大版九年级数学上册第一章测试题参考答案一、DAABCDDCBD二、11.PC PB PA ==; 12.80或20; 13.75; 14.7; 15.乙;16.三角形的三个内角都小于60,三角形的内角和是 180;17.大于DE21的长为半径;18. 320;19.10;20. 10.三、21由A ∠=90=∠D ,BD AC =,BC BC =知BAC ∆≌CDB ∆,因此有DC AB =.又DOC AOB ∠=∠(对顶角),A ∠= 90=∠D ,所以BAC ∆≌CDB ∆,所以OD AO =.又BD AC =,所以BO BD AO AC -=-,即OC OB =.22.∵ ∠OBC =∠OCB ,∴ OB =OC .又∵ ∠AOB =∠AOC ,OA =OA , ∴ △AOB ≌△AOC ,∴AB =AC .23. BD 是正三角形ABC 的AC 边的中线得AC BD ⊥,BD 平分ABC ∠,30=∠DBE .由CE CD =知∠CDE =∠E .由∠ACE = 120°,得∠CDE +∠E =60°,所以∠CDE =∠E =300,则有BD = DE .24.(1)作图略;(2)连接AM ,则BM =AM .∵ AB =AC ,∠BAC =120°,∴ ∠B =∠C =30°于是∠MAB =∠B =30°,∠MAC =90°.∴ .21CM AM =故CMBM 21=,即CM =2BM .25.方法一:作BF ⊥DE 于点F ,CG ⊥DE 于点G . ∴ ∠F =∠CGE =90°.又∵ ∠BEF =∠CEG ,BE =CE ,∴ △BFE ≌△CGE .∴ BF =CG .在△ABF 和△DCG 中,∵ ∠F =∠DGC =90°,∠BAE =∠CDE ,BF =CG ,∴ △ABF ≌△DCG .∴ AB =CD .方法二:作CF ∥AB ,交DE 的延长线于点F .∴ ∠F =∠BAE .又∵ ∠ABE =∠D ,∴ ∠F =∠D .∴ CF =CD .∵ ∠F =∠BAE ,∠AEB =∠FEC ,BE =C E ,∴ △ABE ≌△FCE .∴ AB =CF . ∴ AB =CD .方法三:延长DE 至点F ,使EF =DE .又∵ BE =CE ,∠BEF =∠CED ,∴ △BEF ≌△CED . ∴ B F=CD ,∠D =∠F . 又∵ ∠BAE =∠D ,∴ ∠BAE =∠F . ∴ AB =BF .∴ AB =CD .26.(1)作图略.(2)结论“AN =BM ”还成立.证明:∵ CN =CB ,∠ACN =∠MCB =60°,CA =CM ,∴ △ACN ≌△MCB .∴ AN =BM . (3)△ABD 是等边三角形,四边形MDNC 是平行四边形.证明: ∵ ∠DAB =∠MAC =60°,∠DBA =60°∴ ∠ADB =60°.∴ △ABD 是等边三角形.∵ ∠ADB =∠AMC =60°,∴ ND ∥CM .∵ ∠ADB =∠BNC =60°,∴ MD ∥CN . ∴ 四边形MDNC 是平行四边形.北师大版九年级数学上册第二章测试题 班级: 姓名: 考号:一、选择题(每题3分,计30分)1.下列方程中,一元二次方程共有( ). ① ② ③ ④ ⑤A . 2个B .3个C .4个D . 5个 2.方程 的根为( ).A .B .C .D .3.若方程ABC ∆有解,则ABC ∆的取值范围是( ). A .ABC ∆ B .ABC ∆ C .ABC ∆ D .无法确定 4.若分式ABC∆的值为零,则x 的值为( ).A .3B .3或-3C .0D .-35.用配方法将二次三项式a 2+ 4a +5变形,结果是( ).A.(a –2)2+1B.(a +2)2+1C.(a –2)2-1D.(a +2)2-1 6.一元二次方程x 2-x+2=0的根的情况是( ).A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .只有一个实数根7.已知一个三角形的两边长是方程x 2-8x+15=0的两根,则第三边y 的取值范围是( ). A .y<8 B .3<y<5 c .2<y<8 D .无法确定8.方程x 2+4x=2的正根为( ).A .2-ABC ∆B .2+ABC ∆ C .-2-ABC ∆D .-2+ABC ∆9.有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,则原来的两位数中较大的数为( ). A .62 B .44 C .53 D .3510.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为( ).A .5%B .20%C .15%D .10% 二、填空题(每题3分,计30分)11.把方程(2x+1)(x —2)=5-3x 整理成一般形式后,得 ,其中常数项是 . 12.方程ABC ∆用 法较简便,方程的根为ABC ∆. 13.方程ABC ∆是一元二次方程,则ABC ∆.14.已知方程ABC ∆的一个根是2,则ABC ∆的值是 ,方程的另一个根为 . 15.当x=________时,代数式3x 2-6x 的值等于12.16.请你给出一个c 值, c= ,使方程x 2-3x+c=0无解. 17.已知x 2+4x -2=0,那么3x 2+12x +2002的值为 .18.菱形ABCD 的一条对角线长为6,边AB 的长是方程ABC ∆的一个根,则菱形ABCD 的周长为 .19.第二象限内一点A (x —1,x 2—2),关于x 轴的对称点为B ,且AB=6,则x=_________.20.两个正方形,小的正方形的边长是大的正方形的边长一半多4cm ,大的正方形的面积是小的正方形的面积2倍少32cm 2.则大、小两正方形的边长分别为____________. 三、解答题(共40分)21.(6分)用适当的方法解方程: (1) ABC ∆; (2) ABC∆.22.(5分)已知ABC ∆,且当ABC ∆时,ABC ∆,求ABC ∆的值.23.(5分)已知关于x 的方程x 2+kx -2=0的一个解与方程ABC∆解相同.(1)求k 的值;(2)求方程x 2+kx -2=0的另一个根.24.(8分)我们知道:对于任何实数ABC ∆,①∵ABC ∆≥0,∴ABC ∆+1>0; ②∵ABC ∆≥0,∴ABC ∆+ABC∆>0.模仿上述方法解答:求证:(1)对于任何实数ABC ∆,均有:ABC ∆>0;(2)不论ABC ∆为何实数,多项式ABC ∆的值总大于ABC ∆的值.25.(8分)若把一个正方形的一边增加2 cm ,把另一边增加1 cm ,所得的矩形比正方形面积多14 cm 2,求原来得正方形边长.26.(8分)三个连续正奇数,最大数与最小数的积比中间一个数的6倍多3,求这三个正奇数.四、拓广提高(共20分)27.(10分)某校2006年捐款1万元给希望工程,以后每年都捐款,计划到2008年共捐款4.75万元,问该校捐款的平均年增长率是多少?28.(10分)为了开阔学生视野,某校组织学生从学校出发,步行6km到科技展览馆参观.返回时比去时每小时少走1千米,结果返回时比去时多用了半小时.求学生返回时步行的速度.北师大版九年级数学上册第二章测试题参考答案1.B 2.C 3.B 4.D 5.B 6.C 7.C 8.D 9.C 10. D 二、填空题11.ABC ∆ 12.因式分解法,ABC∆ 13.—2 14.ABC ∆15.ABC ∆ 16.3等 17.200818.16 19.ABC ∆ 20.16cm ,12cm 三、解答题21.(1)ABC ∆,ABC∆;(2)ABC ∆ABC ∆,ABC ∆22.把x=1,y=0代入得ABC ∆ 23.(1)方程ABC∆的解为,x=2,把x=2代入方程x 2+kx -2=0得:4+2k-2=0,k=—1; (2)x 2—x -2=0的根为ABC ∆,所以方程x 2+kx -2=0的另一个根为—1. 24.(1)ABC ∆; (2)ABC∆即ABC ∆>ABC ∆.25.设原正方形的边长为x ,则ABC ∆. 所以,原来得正方形边长为4cm . 26.设中间一个正奇数为x ,则ABC ∆由于x 为正奇数,x=—1舍去,三个正奇数为5,7,9 四、拓广提高27.设该校捐款的平均年增长率是x ,则, 整理,得 , 解得 ,所以,该校捐款的平均年增长率是50%. 28.设返回的速度为xkm/h ,则ABC∆(舍去)所以,学生返回时步行的速度为3km/h .北师大版九年级数学上册第三章测试题 班级: 姓名: 考号:A 1 个B 2 个C 3 个D 4 个 2、四边形具有的性质是A 对边平行B 轴对称性C 稳定性D 不稳定性 3、一个多边形的每一个外角都等于720,则这个多边形的边数是A 四边B 五边C 六边D 七边 4、下列说法不正确的是A 平行四边形对边平行B 两组对边平行的四边形是平行四边形C 平行四边形对角相等D 一组对角相等的四边形是平行四边形 5、一个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角为 A ︒30 B ︒45 C ︒60 D ︒756、平行四边形的两条对角线将此平行四边形分成全等三角形的对数是A 2 对B 3对C 4对D 5 对7、 菱形具有而平行四边形不具有的性质是A .内角和是360°; B. 对角相等; C. 对边平行且相等; D. 对角线互相垂直. 8、 平行四边形各内角的平分线围成一个四边形,则这个四边形一定是 A. 矩形; B. 平行四边形; C. 菱形; D. 正方形9、 如图,在等腰梯形ABCD 中,AB ∥CD ,AD=BC= a cm ,∠A=60°,BD 平分∠ABC ,则这个梯形的周长是A. 4a cm ;B. 5a cm ;C.6a cm ;D. 7a cm ;10、等边三角形的一边上的高线长为cm 32,那么这个等边三角形的中位线长为 A cm 3 B cm 5.2 C cm 2 D cm 4 二、耐心填一填:(把答案填放相应的空格里。
北师大版九年级上册数学期中考试试题一、单选题1.方程x(x+2)=0的根是()A.x=2B.x=0C.x1=0,x2=﹣2D.x1=0,x2=2 2.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数是奇数的概率为()A.12B.13C.14D.153.如图,在菱形ABCD中,AB=6,∠ABD=30°,则菱形ABCD的面积是()A.18B.C.36D.4.如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是()A.EG=4GC B.EG=3GC C.EG=52GC D.EG=2GC5.一元二次方程x(x﹣3)=0的根是()A.0B.3C.0和3D.1和36.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.1B C.2D17.如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.给出以下结论:①DG=DF;②四边形EFDG是菱形;③EG2=12GF×AF;④当AG=6,EG=BE)A.①②③B.①②④C.①③④D.①②③④8.某校文学小组在举行的图书共享仪式上互赠图书,每位同学都把自己的图书向本组其他成员增送一本,全组共互赠了1260本书,设全组共有x名同学,依题意,可列出方程为A.x(x﹣1)=1260B.x(x+1)=1260C.2x(x﹣1)=1260D.12x(x﹣1)=12609.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,若∠DHO=20°,则∠ADC的度数是()A.120°B.130°C.140°D.150°10.下列四个选项中的三角形,与图中的三角形相似的是()A.B.C.D.二、填空题11.方程23530x x-=-的一次项系数是__________.12.已知23a cb d==,若b+d≠0,则a cb d++=_____.13.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于7”的概率是_____. 14.已知长方形ABCD,AB=3cm,AD=4cm,过对角线BD的中点O做BD垂直平分线EF,分别交AD 、BC 于点E 、F ,则AE 的长为__________cm .15.如图,在正方形ABCD 的外侧,作等边DCE ,则AEC 的度数是__________.16.如图,Rt △ABC 中,∠C =90°,以斜边AB 为边向外作正方形ABDE ,且正方形对角线交于点O ,连接OC ,已知AC =3,OC =,则另一直角边BC 的长为_____.三、解答题17.解下列方程(1)2x 2﹣4x ﹣3=0(2)(x ﹣1)2=(1﹣x )18.已知关于x 的一元二次方程(a +c)x 2+2bx +(a -c)=0,其中a ,b ,c 分别为△ABC 三边的长.(1)如果x =-1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由.19.袋中装有除数字不同其它都相同的六个小球,球上分别标有数字1,2,3,4,5,6.(1)从袋中摸出一个小球,求小球上数字小于3的概率;(2)将标有1,2,3数字的小球取出放入另外一个袋中,分别从两袋中各摸出一个小球,求数字之和为偶数的概率.(要求用列表法或画树状图求解)20.在矩形ABCD 中,点E 在BC 上,AE AD =,DF ⊥AE ,垂足为F .(1)求证.DF AB=(2)若30FDC ∠=︒,且4AB =,求AD .21.某商店从厂家以每件18元购进一批商品出售,若每件售价为a 元,则可售出(320﹣10a )件,但物价部门限定每件商品加价不能超过进价的25%,若商店要想获得400元利润,则售价应定为每件多少元?需售出这种商品多少件?22.在 ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB.23.如图,在△ABC 中,AB=AC ,点P 、D 分别是BC 、AC 边上的点,且∠APD=∠B .(1)求证:AC•CD=CP•BP ;(2)若AB=10,BC=12,当PD ∥AB 时,求BP 的长.24.如图,△ABC 在平面直角坐标系中,三个顶点坐标分别为A (0,3)、B (3、4)、C (2,2)(网格中每个正方形的边长是1个单位长度).(1)以点B为位似中心,在网格内画出△A′BC′,使△A′BC′与△ABC位似,且位似比为2:1,则点C′的坐标是______;(2)△A′BC′的面积是_______平方单位;(3)在x轴上找出点P,使得点P到B与点A距离之和最小,请直接写出P点的坐标.25.如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD 于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若3DCF=30°,求四边形AECF的面积.(结果保留根号)参考答案1.C【解析】【分析】本题可根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【详解】解:x(x+2)=0,∴x=0或x+2=0,解得x1=0,x2=﹣2.故选:C.【点睛】此题考查解一元二次方程,正确掌握解方程的方法及能依据每个方程的特点选择恰当的解法是解题的关键.2.A【解析】【详解】试题解析:∵骰子六个面中奇数为1,3,5,∴P(向上一面为奇数)31. 62 ==故选A.3.B【解析】【详解】过点A作AE⊥BC于E,如图,∵在菱形ABCD中,AB=6,∠ABD=30°,∴∠BAE=30°,∵AE⊥BC,∴AE=∴菱形ABCD的面积是6⨯=,故选B.4.B【解析】【分析】根据平行线分线段成比例定理即可得到答案.【详解】∵DE∥FG∥BC,DB=4FB,∴31EG DFGC FB===3.故选B.【点睛】此题主要考查平行线分线段成比例定理的理解及运用.根据平行线分线段成比例定理解答是解题的关键.5.C【解析】【详解】试题分析:x=0或x﹣3=0,所以x1=0,x2=3.故选C.考点:因式分解法解一元二次方程6.B【解析】【分析】先根据四边形ABCD是菱形可知,AD∥BC,由∠A=120°可知∠B=60°,作点P关于直线BD的对称点P′,连接P′Q,PC,则P′Q的长即为PK+QK的最小值,由图可知,当点Q与点C重合,CP′⊥AB时PK+QK的值最小,再在Rt△BCP′中利用锐角三角函数的定义求出P′C的长即可.【详解】解:∵四边形ABCD是菱形,∴AD∥BC,∵∠A=120°,∴∠B=180°-∠A=180°-120°=60°,作点P 关于直线BD 的对称点P′,连接P′Q ,P′C ,则P′Q 的长即为PK+QK 的最小值,由图可知,当点Q 与点C 重合,CP′⊥AB 时PK+QK 的值最小,在Rt △BCP′中,∵BC=AB=2,∠B=60°,∴sin 2P Q CP BC B ''==⋅=⨯故选B .【点睛】本题考查的是轴对称-最短路线问题及菱形的性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.7.D【解析】【分析】先依据翻折的性质和平行线的性质证明∠DGF=∠DFG ,从而得到GD=DF ,接下来依据翻折的性质可证明DG=GE=DF=EF ,连接DE ,交AF 于点O .由菱形的性质可知GF ⊥DE ,OG=OF=12GF ,接下来,证明△DOF ∽△ADF ,由相似三角形的性质可证明DF 2=FO•AF ,于是可得到GE 、AF 、FG 的数量关系,过点G 作GH ⊥DC ,垂足为H .利用(2)的结论可求得FG=4,然后再△ADF 中依据勾股定理可求得AD 的长,然后再证明△FGH ∽△FAD ,利用相似三角形的性质可求得GH 的长,最后依据BE=AD-GH 求解即可.【详解】解:∵GE ∥DF ,∴∠EGF =∠DFG .∵由翻折的性质可知:GD =GE ,DF =EF ,∠DGF =∠EGF ,∴∠DGF =∠DFG .∴GD =DF .故①正确;∴DG =GE =DF =EF .∴四边形EFDG 为菱形,故②正确;如图1所示:连接DE ,交AF 于点O .∵四边形EFDG 为菱形,∴GF ⊥DE ,OG =OF =12GF .∵∠DOF =∠ADF =90°,∠OFD =∠DFA ,∴△DOF ∽△ADF .∴DFAF =OFDF ,即DF 2=FO•AF .∵FO =12GF ,DF =EG ,∴EG 2=12GF•AF .故③正确;如图2所示:过点G 作GH ⊥DC ,垂足为H .∵EG 2=12GF•AF ,AG =6,EG =∴20=12FG (FG+6),整理得:FG 2+6FG ﹣40=0.解得:FG =4,FG =﹣10(舍去).∵DF =GE =AF =10,∴AD =∵GH ⊥DC ,AD ⊥DC ,∴GH ∥AD .∴△FGH ∽△FAD .∴GHAD=FGAF410,∴GH,∴BE=AD﹣GH=故选:D.【点睛】本题考查了四边形与三角形的综合应用,掌握矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到DF2=FO•AF是解题答问题②的关键,依据相似三角形的性质求得GH的长是解答问题④的关键.8.A【解析】【分析】设全组共有x名同学,那么每名同学要赠送(x﹣1)本,那么总共送x(x﹣1)本,据此可得出方程.【详解】设全组共有x名同学,那么每名同学送出的图书是(x﹣1)本;则总共送出的图书为x(x﹣1);又知实际互赠了1260本图书,∴x(x﹣1)=1260;故选:A.【点睛】此题考查列一元二次方程,本题弄清每名同学送出的图书是(x-1)本是解题的关键.9.C【解析】【分析】由四边形ABCD是菱形,可得OB=OD,AC⊥BD,又由DH⊥AB,∠DHO=20°,可求得∠OHB的度数,然后由直角三角形斜边上的中线等于斜边的一半,证得△OBH是等腰三角形,继而求得∠ABD的度数,然后求得∠ADC的度数.【详解】∵四边形ABCD是菱形,∴OB=OD,AC⊥BD,∠ADC=∠ABC,∵DH⊥AB,∴OH=OB=12 BD,∵∠DHO=20°,∴∠OHB=90°﹣∠DHO=70°,∴∠ABD=∠OHB=70°,∴∠ADC=∠ABC=2∠ABD=140°,故选C.【点睛】本题考查了菱形的性质、直角三角形的性质以及等腰三角形的判定与性质,证得△OBH是等腰三角形是关键.10.B【解析】【分析】由于已知三角形和选择项的三角形都放在小正方形的网格中,设正方形的边长为1,所以每一个三角形的边长都是可以表示出,然后根据三角形的对应边成比例即可判定选择项.【详解】解:设小正方形的边长为1,那么已知三角形的三边长分别为,所以三边之比为1:2A、三角形的三边分别为2,,三边之比为3,故本选项错误;B、三角形的三边分别为2,4,1:2C、三角形的三边分别为2,32:3D44,故本选项错误.故选:B.【点睛】此题主要考查了相似三角形的判定,属于基础题,掌握三边对应成比例的两个三角形相似是解答本题的关键,难度一般.11.-5【解析】【分析】根据任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;b叫做一次项系数,c叫做常数项可得答案.【详解】方程3x2﹣5x﹣3=0的一次项系数是﹣5.故答案为:﹣5.【点睛】本题考查了一元二次方程的一般形式,关键是掌握要确定二次项系数,一次项系数和常数项,必须先把一元二次方程化成一般形式.12.23【解析】【分析】分别设a=2m,c=2n,根据23a cb d==可用m、n表示出b、d,代入所给代数式即可得答案.【详解】设a=2m,c=2n,∵23a cb d==,∴b=3m,d=3n,∴a cb d++=2m2n3m3n++=23,故答案为:2 3【点睛】本题考查等比性质的应用,若a c kb d==,则a cb d++=k,熟练掌握等比性质是解题关键.13.15 36【解析】【分析】画树状图展示所有36种等可能的结果数,再找出“两枚骰子的点数和小于7”的结果数,然后根据概率公式求解.【详解】画树状图为:共有36种等可能的结果数,其中“两枚骰子的点数和小于7”的结果数为15,所以“两枚骰子的点数和小于7”的概率15 36;故答案为:15 36 .【点睛】此题考查列表法与画树状图法,解题关键在于根据题意画出树状图.14.7 8【解析】【详解】连接EB,∵BD垂直平分EF,∴ED=EB,设AE=xcm,则DE=EB=(4﹣x)cm,在Rt△AEB中,AE2+AB2=BE2,即:x2+32=(4﹣x)2,解得:x=78故答案为78cm .15.45︒【解析】【分析】先求出AED ∠的度数,即可求出AEC ∠.【详解】解:由题意可得,,90,60AD DC DE ADC EDC DEC ︒︒==∠=∠=∠=,,150AD DE ADE ADC EDC ︒=∠=∠+∠= 180150152AED DAE ︒︒︒-∴∠=∠==45AEC CED AED ︒∴∠=∠-∠=故答案为45︒【点睛】本题考查了等腰与等边三角形的性质,等腰三角形的两底角相等,等边三角行的三条边都相等,三个角都相等,灵活应用等腰及等边三角形的性质是解题的关键.16.9【解析】【分析】过O 作OF ⊥BC ,过A 作AM ⊥OF ,根据正方形的性质得出∠AOB=90°,OA=OB ,求出∠BOF=∠OAM ,根据AAS 证△AOM ≌△BOF ,推出AM=OF ,OM=FB ,求出四边形ACFM 为矩形,推出AM=CF ,AC=MF=3,得出等腰三角形三角形OCF ,根据勾股定理求出CF=OF=6,求出BF ,即可求出答案.【详解】解:过O 作OF ⊥BC 于F ,过A 作AM ⊥OF 于M ,∵∠ACB =90°,∴∠AMO =∠OFB =90°,∠ACB =∠CFM =∠AMF =90°,∴四边形ACFM 是矩形,∴AM =CF ,AC =MF =3,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∵∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△OBF中0AM BOF AMO OFB OA0B∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOM≌△OBF(AAS),∴AM=OF,OM=FB,∴OF=CF,∵∠CFO=90°,∴△CFO是等腰直角三角形,∵OC=,由勾股定理得:CF=OF=6,∴BF=OM=OF﹣FM=6﹣3=3,∴BC=6+3=9.故答案为:9.【点睛】本题考查了等腰直角三角形,勾股定理,正方形的性质,全等三角形的性质和判定的应用,主要考查学生综合运用性质进行推理的能力.17.(1)x1x2(2)x1=1,x2=0.【解析】【分析】(1)利用公式法解方程即可;(2)先移项,利用因式分解法解方程即可.【详解】(1)∵a =2,b =﹣4,c =﹣3,∴△=(﹣4)2﹣4×2×(﹣3)=40>0,则x 22,即x 1=22+,x 2=22;(2)(x ﹣1)2=(1-x ),(x ﹣1)2+(x ﹣1)=0,(x ﹣1)•x =0,解得:x 1=1,x 2=0.【点睛】本题考查解一元二次方程,解一元二次方程常用的方法有直接开平方法、公式法、因式分解法、配方法等,熟练掌握并灵活运用适当的方法是解题关键.18.(1)△ABC 是等腰三角形,理由见解析;(2)△ABC 是直角三角形.理由见解析.【解析】【详解】试题分析:(1)由方程解的定义把x=﹣1代入方程得到a ﹣b=0,即a=b ,于是由等腰三角形的判定即可得到△ABC 是等腰三角形;(2)由判别式的意义得到△=0,整理得222a b c =+,然后由勾股定理的逆定理得到△ABC 是直角三角形.试题解析:解:(1)△ABC 是等腰三角形.理由如下:∵x=﹣1是方程的根,∴(a+c )×1﹣2b+(a ﹣c )=0,∴a+c ﹣2b+a ﹣c=0,∴a ﹣b=0,∴a=b ,∴△ABC 是等腰三角形;(2)△ABC 是直角三角形.理由如下:∵方程有两个相等的实数根,∴△=2(2)4()()0b a c a c -+-=,∴2224440b a c -+=,∴222a b c =+,∴△ABC 是直角三角形.考点:1.根的判别式;2.等腰三角形的判定;3.勾股定理的逆定理.19.(1)13;(2)49.【解析】【分析】(1)先列出摸出一个小球的所有可能的结果,再找出小球上数字小于3的结果,然后利用概率公式求解即可;(2)先用表格列出从两袋中摸出小球的所有可能的结果,再计算两个小球数字之和,从而得出数字之和为偶数的结果,然后利用概率公式计算即可.【详解】(1)依题意,从袋中摸出一个小球的结果有6种,即1,2,3,4,5,6,它们每一种出现的可能性相等其中,小球上数字小于3的结果有2种,即1,2故小球上数字小于3的概率为2163 P==;(2)依题意,用列表法列出从两袋中摸出小球的所有可能的结果如下:4561(1,4)(1,5)(1,6)2(2,4)(2,5)(2,6)3(3,4)(3,5)(3,6)其中,数字之和为偶数的结果有4种,即(1,5),(2,4),(2,6),(3,5)故两个小球上数字之和为偶数的概率为49 P=.【点睛】本题考查了简单事件的概率计算、利用列举法求概率,依据题意,正确列出事件的所有可能的结果是解题关键.20.(1)证明见解析;(2)8【解析】【分析】(1)利用“AAS”证△ADF≌△EAB即可得;(2)由∠ADF+∠FDC=90°、∠DAF+∠ADF=90°得∠FDC=∠DAF=30°,据此知AD=2DF,根据DF=AB可得答案.【详解】(1)证明:在矩形ABCD中,∵AD∥BC,∴∠AEB=∠DAF,又∵DF⊥AE,∴∠DFA=90°,∴∠DFA=∠B,又∵AD=EA,∴△ADF≌△EAB,∴DF=AB.(2)∵∠ADF+∠FDC=90°,∠DAF+∠ADF=90°,∴∠FDC=∠DAF=30°,∴AD=2DF,∵DF=AB,∴AD=2AB=8.【点睛】本题主要考查矩形的性质,解题的关键是掌握矩形的性质和全等三角形的判定与性质及直角三角形的性质.21.每件商品的售价应定为22元,需要卖出这种商品100件.【解析】【分析】可根据关键语“若每件售价x元,则每件盈利(x-18)元,则可卖出(320-10x)件”,根据每件的盈利×销售的件数=获利,即可列出方程求解.【详解】解:设每件商品的售价定为x元,则(x﹣18)(320﹣10x)=400,整理得x2﹣50x+616=0,∴x1=22,x2=28∵18(1+25%)=22.5,而28>22.5∴x=22.卖出商品的件数为320﹣10×22=100.答:每件商品的售价应定为22元,需要卖出这种商品100件.【点睛】本题考查了一元二次方程的应用,解题时可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.22.(1)见解析(2)见解析【解析】【分析】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE 是平行四边形,再根据矩形的判定,即可证明;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,即可证明.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【点睛】本题考查了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.23.(1)证明见解析;(2)253.【解析】【分析】(1)易证∠APD=∠B=∠C,从而可证到△ABP∽△PCD,即可得到BP ABCD CP=,即AB•CD=CP•BP,由AB=AC即可得到AC•CD=CP•BP;(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,从而可证到△BAP∽△BCA,然后运用相似三角形的性质即可求出BP的长.【详解】解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴BP AB CD CP=,∴AB•CD=CP•BP.∵AB=AC,∴AC•CD=CP•BP;(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴BA BP BC BA=.∵AB=10,BC=12,∴101210BP =,∴BP=253.【点睛】本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP 转化为证明AB•CD=CP•BP 是解决第(1)小题的关键,证到∠BAP=∠C 进而得到△BAP ∽△BCA 是解决第(2)小题的关键.24.(1)(1,0);(2)10;(3)(97,0).【解析】【分析】(1)利用位似图形的性质得出对应点位置,即可得出答案;(2)利用勾股定理逆定理可得△A′BC′是直角三角形,利用三角形面积公式求出△A′BC′面积即可;(3)作A 关于y 轴的对称点A″,连接A″B ,交x 轴于点P ,根据对称性质可得A″B 即为PA+PB 的最小值,根据A″和B 点坐标可得直线A″B 的解析式,令y=0即可得P 点坐标.【详解】(1)如图所示:C′(1,0);故答案为:(1,0);(2)∵A′B 2=62+22=40,A′C′2=42+22=20,C′B 2=42+22=20,∴A′B 2=A′C′2+C′B 2,∴△A′BC′是直角三角形,∴△A′BC′的面积是:1210平方单位;故答案为:10(3)作A 关于y 轴的对称点A″,连接A″B ,交x 轴于点P ,∴PA=PA″,∴PA″+PB=PA+PB=BA″,即为PA+PB 的最小值,设A″B 直线解析式为:y =kx+b ,把(3,4),(0,﹣3),代入得:343k bb+=⎧⎨=-⎩,解得:733 kb⎧=⎪⎨⎪=-⎩,故A″B直线解析式为:y=73x﹣3,当y=0时,x=9 7,故P(97,0).【点睛】本题考查位似变换以及坐标与图形的性质、待定系数法求一次函数解析式及轴对称的性质,正确得出对应点的坐标是解题关键.25.(1)证明见解析(2)【解析】【分析】(1)由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,继而求得答案.【详解】(1)∵O是AC的中点,且EF⊥AC,∴AF=CF ,AE=CE ,OA=OC ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠AFO=∠CEO ,在△AOF 和△COE 中,{AFO CEOAOF COEOA OC∠=∠∠=∠=∴△AOF ≌△COE (AAS ),∴AF=CE ,∴AF=CF=CE=AE ,∴四边形AECF 是菱形;(2)∵四边形ABCD 是矩形,∴在Rt △CDF 中,cos ∠DCF=CDCF ,∠DCF=30°,∴CF=cos 30CD︒=2,∵四边形AECF 是菱形,∴CE=CF=2,∴四边形AECF 是的面积为:。
北师大版九年级上册数学期中考试试题一、单选题1.下列方程中,关于x 的一元二次方程是()A .2230x x --=B .2210x y --=C .()270x x x -+=D .20ax bx c ++=2.如图,在平行四边形ABCD 中,E 是BC 上一点,BE :EC =1:2,AE 与BD 相交于点F ,若S △BEF =2,则S △ABD =()A .24B .25C .26D .233.若方程(a-2)x²+ax-3=0是关于x 的一元二次方程,则a 的取值范围是()A .a≥2且a≠2B .a≥0且a≠2C .a≥2D .a≠24.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是()A .12OM AC =B .MB MO =C .BD AC ⊥D .AMB CND∠=∠5.如图,菱形ABCD 的面积为120cm 2,正方形AECF 的面积为50cm 2,则AB 的长为()A .9cmB .12cmC .13cmD .15cm6ABCD 中,30B ∠=︒,过点A 作AE BC ⊥于点E ,现将△ABE沿直线AE 翻折至△AFE 的位置,AF 与CD 交于点G .则CG 等于()A 1B .1C .12D .27.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的概率是0.2,则估计盒子中大约有红球()A .12个B .16个C .20个D .25个8.如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是()A .B .C .5D .69.如图,在ABCD 中,CD=2AD ,BE ⊥AD 于点E ,F 为DC 的中点,连接EF 、BF ,下列结论:①∠ABC=2∠ABF ;②EF=BF ;③S 四边形DEBC =2S △EFB ;④∠CFE=3∠DEF,其中正确结论的个数共有()A .1个B .2个C .3个D .4个10.如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,若AC =8,CE =12,BD =6,则BF 的值是()A .14B .15C .16D .1711.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF=45°,AE 、AF 分别交BD 于M 、N ,连按EN 、EF ,有以下结论:①△ABM ∽△NEM ;②△AEN 是等腰直角三角形;③当AE=AF 时,2BEEC=④BE+DF=EF ;⑤若点F 是DC 的中点,则CE 23=CB .其中正确的个数是()A .2B .3C .4D .512.如图,四边形ABCD 和A′B′C′D′是以点O 为位似中心的位似图形,若OA :OA′=2:3,则四边形ABCD 与四边形A′B′C′D′的面积比为()A .4:9B .2:5C .2:3D二、填空题13.已知菱形的周长为24,较大的内角为120°,则菱形的较长的对角线长为_____.14.方程x 2=2x 的解是_______.15.在平面直角坐标系中,矩形OABC 的顶点坐标分别是(0O ,0),(8A ,0),(8B ,6),(0C ,6),已知矩形111OA B C 与矩形OABC 位似,位似中心为坐标原点O ,位似比为12,则点1B 的坐标是______.16.如图,矩形纸片ABCD ,BC=10,AB=8,E 是边CD 上一点,连接AE 、折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上,若DE=5,则GE 的长为____.三、解答题17.解方程:①2x 2﹣4x ﹣3=0;②5(x+1)2=7(x+1).18.(1)解方程(3)30x x x -+-=;(2)解方程2220x x --=;(3)已知a≠0,b≠0,a≠b 且x=1是方程ax²+bx-10=0的一个解,求2222a b a b--的值.19.已知:如图,在△ABC 中,AB=AC ,D 为边BC 上一点,以AB ,BD 为邻边作平行四边形ABDE ,连接AD ,EC .(1)求证:△ADC ≌△ECD ;(2)当点D 在什么位置时,四边形ADCE 是矩形,请说明理由.20.某超市准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为每个50元,可售出400个;定价每增加1元,销售量将减少10个,设每个定价增加x 元,(1)当定价增加5元时,获利是多少元?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?21.如图,在△ABC 中,∠ACB=90°,AC=BC ,点D 在边AB 上,连接CD ,将线段CD 绕点C 顺时针旋转90°至CE 位置,连接AE(1)求证:AB ⊥AE ;(2)若BC 2=AD•AB ,求证:四边形ADCE 为正方形.22.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.23.已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.24.已知如图,矩形ABCD的周长为64,AB=12,对角线AC的垂直平分线分别交AD、BC于E、F,连接AF、CE、EF,且EF与AC相交于点O.(1)求证:四边形AECF是菱形;(2)求S△ABF 与S△AEF的比值.25.如图,在△ABC中,∠C=90°,AC=12cm,BC=16cm,D、E分别是AC、AB的中点,连接DE.点P从点D出发,沿DE方向匀速运动,速度为2cm/s;同时,点Q从点B 出发,沿BA方向匀速运动,速度为4cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s.解答下列问题:(1)当t为何值时,以点E、P、Q为顶点的三角形与△ADE相似?(2)当t 为何值时,△EPQ 为等腰三角形?参考答案1.A 【解析】【详解】试题解析:A 、符合一元二次方程的定义,正确;B 、方程含有两个未知数,错误;C 、原方程可化为-7x=0,是一元一次方程,错误;D 、方程二次项系数可能为0,错误.故选A .考点:一元二次方程的定义.2.A 【解析】【分析】已知平行四边形ABCD 中,E 是BC 上一点,BE :EC =1:2,可知△BEF ∽△ADF 得出相似比1==3BE BF EF AD DF AF =,所以211(39S BEF S ADF ==V V 得出18S ADF =V 根据2S BEF =V ,在△BEF 中,把EF 作为底边,在三角形ABF 中,把AF 作为底边,高相等,面积比即是底边的比,即13S BEF EF S ABF AF ==V V ,得出6S ABF =V ,S ABD S ABF S ADF =+V V V 求得答案.【详解】在平行四边形ABCD 中AD=BC ,AD ∥BC ∴△BEF ∽△ADF ,∴1==3BE BF EF AD DF AF =∴211(39S BEF S ADF ==V V ∵2S BEF =V ∴18S ADF =V 在△BEF 中,把EF 作为底边,在三角形ABF 中,把AF 作为底边,高相等,面积比即是底边的比,即13S BEF EF S ABF AF ==V V ∴6S ABF =V 且18S ADF =V ∴61824S ABD S ABF S ADF =+=+=V V V 故选:A .【点睛】本题考查了相似三角形的判定定理和性质,如果两个三角形相似,面积比就等于相似比的平方,可以作为求解三角形面积的方法.3.D 【解析】【分析】根据一元二次方程的定义得到a-2≠0,由此求得a 的取值范围.【详解】解:依题意得:a-2≠0,解得a≠2.故选D .【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.4.A 【解析】【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形.【详解】∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =,∴OB BM OD DN -=-,即OM ON =,∴四边形AMCN 是平行四边形,∵12OM AC =,∴MN AC =,∴四边形AMCN 是矩形.故选:A .【点睛】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.5.C 【解析】【分析】根据正方形的面积求出AC 的长,根据菱形的面积求出BD 的长,再利用菱形的对角线互相垂直平分计算菱形的边长.【详解】解:因为正方形AECF 的面积为50cm 2,所以AC=10cm=因为菱形ABCD 的面积为120cm 2,所以BD=21202410cm ⨯=所以菱形的边长=13cm 故选C .【点睛】此题考查正方形和菱形的性质,关键是根据正方形和菱形的面积进行解答.6.A 【解析】【分析】在Rt △ABE 中,∠B=30°,BE=32,根据△ABE 沿直线AE 翻折至△AFE 的位置可知BF=3,结合菱形ABCD 32,则利用菱形对边平行即CG ∥AB ,再根据平行线段成比例可得CG CFAB BF ==求得1【详解】∵∠B=30°,AE ⊥BC∴AE=2,BE=32∴BF=3,32,则又∵CG ∥AB ∴CG CFAB BF=33=解得1.【点睛】本题考查了菱形的性质,平行线段成比例,图形的翻折,解本题的关键是通过利用菱形对边平行发现与要求线段CG 与其他线段成比例的关系.7.B 【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:设盒子中有红球x 个,由题意可得:44x +=0.2,解得:x=16,故选B ..【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黄球的概率得到相应的等量关系8.C 【解析】【详解】连接EF 交AC 于点M ,由四边形EGFH 为菱形可得FM=EM ,EF ⊥AC ;利用“AAS 或ASA”易证△FMC ≌△EMA ,根据全等三角形的性质可得AM=MC ;在Rt △ABC 中,由勾股定理求得AC=tan ∠BAC=12BC AB =;在Rt △AME 中,AM=12AC=,tan ∠BAC=12EM AM =可得Rt △AME 中,由勾股定理求得AE=5.故答案选C .【点睛】本题考查了菱形的性质;矩形的性质;勾股定理;锐角三角函数.9.D 【解析】【分析】如图延长EF 交BC 的延长线于G ,取AB 的中点H 连接FH .证明△DFE ≌△FCG 得EF=FG ,BE ⊥BG ,四边形BCFH 是菱形即可解决问题.【详解】解:如图延长EF交BC的延长线于点G,取AB的中点H,连接FH.∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE=S△CFG,=S△EBG=2S△BEF,故③正确,∴S四边形DEBC∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选D.【点睛】本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.10.B【解析】【分析】三条平行线截两条直线,所得的对应线段成比例.直接根据平行线分线段成比例定理即可得出结论.【详解】解:∵a∥b∥c,AC=8,CE=12,BD=6,∴AC BD AE BF=,即86=812BF +,解得:=15BF,故选:B.【点睛】本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.11.C【解析】【分析】①如图,证明△AMN ∽△BME 和△AMB ∽△NME ,②利用相似三角形的性质可得∠NAE=∠AEN=45°,则△AEN 是等腰直角三角形可作判断;③先证明CE=CF ,假设正方形边长为1,设CE=x ,则BE=1-x ,表示AC 的长为AO+OC 可作判断;④如图3,将△ADF 绕点A 顺时针旋转90°得到△ABH ,证明△AEF ≌△AEH (SAS ),则EF=EH=BE+BH=BE+DF ,可作判断;⑤如图4中,设正方形的边长为2a ,则DF=CF=a ,,想办法求出BE ,EC 即可判断.【详解】如图,∵四边形ABCD 是正方形,∴∠EBM=∠ADM=∠FDN=∠ABD=45°.∵∠MAN=∠EBM=45°,∠AMN=∠BME ,∴△AMN ∽△BME ,∴AM MN BM EN =,∴AM BM MN EN=,∵∠AMB=∠EMN ,∴△AMB ∽△NME ,故①正确,∴∠AEN=∠ABD=45°,∴∠NAE=∠AEN=45°,∴△AEN 是等腰直角三角形,故②正确,在△ABE 和△ADF 中,∵90AB AD ABE ADF AE AF =⎧⎪∠=∠=︒⎨⎪=⎩,∴Rt △ABE ≌Rt △ADF(HL),∴BE=DF .∵BC=CD ,∴CE=CF ,假设正方形边长为1,设CE=x ,则BE=1﹣x ,如图2,连接AC ,交EF 于H ,∵AE=AF ,CE=CF ,∴AC 是EF 的垂直平分线,∴AC ⊥EF ,OE=OF ,Rt △CEF 中,OC 12=EF 22=,在△EAF 中,∠EAO=∠FAO=22.5°=∠BAE=22.5°,∴OE=BE .∵AE=AE ,∴Rt △ABE ≌Rt △AOE(HL),∴AO=AB=1,∴AC 2==AO+OC ,∴122+x 2=∴x=22-,∴1222222BE EC -==-③如图3,∴将△ADF 绕点A 顺时针旋转90°得到△ABH ,则AF=AH ,∠DAF=∠BAH .∵∠EAF=45°=∠DAF+∠BAE=∠HAE .∵∠ABE=∠ABH=90°,∴H 、B 、E 三点共线,在△AEF 和△AEH 中,AE AE FAE HAE AF AH =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AEH(SAS),∴EF=EH=BE+BH=BE+DF ,故④正确,如图4中,设正方形的边长为2a ,则DF=CF=a ,AF =a,∵DF ∥AB ,∴12FN DF AN AB ==,∴AN=NE 23=AF =a ,∴AE =3=a ,∴BE 23=a ,∴EC 43=a 23=BC ,故⑤正确.故选:C .【点睛】本题考查相似三角形的判定和性质、正方形的性质、全等三角形的判定和性质,等腰直角三角形的判定和性质、线段垂直平分线的性质和判定等知识,解题的关键是灵活应用所学知识解决问题,学会添加常用辅助线构造全等三角形,属于中考压轴题.12.A【解析】【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【详解】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:4:9,故选:A.【点睛】本题是对相似图形的考查,熟练掌握多边形相似的性质是解决本题的关键.13.【解析】【分析】由菱形的性质可得AB=6,AC⊥BD,BD=2OB,由直角三角形的性质可得AO=1,由勾股定理可求BO的长,即可得BD的长.【详解】解:如图所示:∵菱形ABCD的周长为24,∴AB=6,AC⊥BD,BD=2OB,∵∠BAD=120°,∴∠ABC=60°,∴∠ABO=12∠ABC=30°,∴AO=3,∴∴BD=故答案为:.【点睛】本题考查了菱形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,熟记性质是解题的关键,作出图形更形象直观.14.x 1=0,x 2=2【解析】【分析】先移项得到x 2﹣2x =0,再把方程左边进行因式分解得到x (x ﹣2)=0,方程转化为两个一元一次方程:x =0或x ﹣2=0,即可得到原方程的解为x 1=0,x 2=2.【详解】解:∵x 2﹣2x =0,∴x (x ﹣2)=0,∴x =0或x ﹣2=0,∴x 1=0,x 2=2.故答案为:x 1=0,x 2=2.【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并能够根据方程的特征灵活选用合适的方法解答是解题的关键.15.()4,3或()4,3--【解析】【分析】由矩形OA 1B 1C 1与矩形OABC 位似,位似中心为坐标原点O ,位似比为12,又由点B 的坐标为(8,6),即可求得答案.【详解】解:如图,∵矩形OA 1B 1C 1与矩形OABC 位似,位似中心为坐标原点O ,位似比为12,∴点B 1的坐标是:(4,3)或(-4,-3).故答案为:(4,3)或(-4,-3).【点睛】本题考查了位似图形的性质,注意位似图形是特殊的相似图形,注意数形结合思想的应用.16.955.【解析】【分析】由勾股定理求出AE 的长,证明△ABH ∽△EAD ,得出AH AB DE AE =求出AH 的长,得出AG 的长,即可得出答案.【详解】∵四边形ABCD 为矩形,∴AB=CD=8,AD=BC=10,∠BAD=∠D=90°,∴AE 2222105AD DE =+=+=5由折叠及轴对称的性质可知,△ABF ≌△GBF ,BF 垂直平分AG ,∴BF ⊥AE ,AH=GH ,∴∠BAH+∠ABH=90°,又∵∠FAH+∠BAH=90°,∴∠ABH=∠FAH ,∴△ABH ∽△EAD ,∴AH AB DE AE =,即555AH =解得:AH 855=∴AG=2AH 1655=,∴GE=AE ﹣55555=.【点睛】本题考查了正方形的性质,翻折变换的性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握翻折变换和矩形的性质,证明三角形相似是解题的关键.17.①x 1=22,x 2=22;②x 1=﹣1,x 2=25.【解析】【分析】①直接利用一元二次方程的求根公式,求方程的解;②先移项得到5(x+1)2﹣7(x+1)=0,然后利用因式分解法解方程,即可求解.【详解】①2x 2﹣4x ﹣3=0,a =2,b =﹣4,c =﹣3,∴△=b 2﹣4ac =16﹣4×2×(﹣3)=40,∴2b x a -±==,∴x 1x 2;②5(x+1)2﹣7(x+1)=0,(x+1)(5x+5﹣7)=0,x+1=0或5x+5﹣7=0,∴x 1=﹣1,x 2=25.【点睛】本题主要考查解一元二次方程,掌握公式法和因式分解法解一元二次方程,是解题的关键.18.(1)123,1x x ==-;(2)1211x x ==(3)5.【解析】【分析】(1)提公因式因式分解后可解;(2)把方程左边化为完全平方式的形式,再利用直接开方法求出x 的值即可;(3)把x=1代入方程求得a+b=10,然后将其整体代入化简后的分式并求值.【详解】解:(1)因式分解得(3)(1)0x x -+=,∴123,1x x ==-;(2)∵原方程可化为(x-1)2=3,1x ∴-=1x ∴=±1211x x ∴==(3)解:∵x=1是方程ax²+bx-10=0的根,∴a+b=10,∴225222a b a b a b -+==-,故答案是:5.【点睛】本题考查的是一元二次方程的解法,熟练掌握直接开平方法、因式分解法、配方法、公式法是解题关键.19.(1)证明见解析;(2)点D 在BC 的中点上时,四边形ADCE 是矩形.【解析】【分析】(1)利用等边对等角以及平行四边形的性质可以证得∠EDC=∠ACB ,则易证△ADC ≌△ECD ,利用全等三角形的对应边相等即可证得;(2)根据平行四边形性质推出AE=BD=CD ,AE ∥CD ,得出平行四边形,根据AC=DE 推出即可.【详解】解:(1)证明:∵AB=AC ,∴∠B=∠ACB ,又∵▱ABDE 中,AB=DE ,AB ∥DE ,∴∠B=∠EDC=∠ACB ,AC=DE ,在△ADC 和△ECD 中,{EDC=ACB DC=CDAC DE=∠∠,∴△ADC ≌△ECD (SAS ).(2)点D 在BC 的中点上时,四边形ADCE 是矩形,∵四边形ABDE 是平行四边形,∴AE=BD ,AE ∥BC ,∵D 为边长中点,∴BD=CD ,∴AE=CD ,AE ∥CD ,∴四边形ADCE是平行四边形,∵△ADC≌△ECD,∴AC=DE,∴四边形ADCE是矩形,即点D在BC的中点上时,四边形ADCE是矩形.考点:平行四边形的性质;等腰三角形的性质;全等三角形的判定与性质;矩形的判定的应用.20.(1)5250元;(2)当定价为70元时利润达到6000元,此时的进货量为200个【解析】【分析】(1)根据利润=每件商品利润×销售量,列式即可求解;(2)总利润=每件商品利润×销售量,销售量为400﹣10x,列方程求解,根据题意取舍;【详解】(1)定价增加5元即为:50+5=55元时,销售量为:400-10×5=350获利为:(50+5﹣40)(400﹣5×10)=5250元(2)设每个定价增加x元,根据题意(x+10)(400﹣10x)=6000,整理得:x2﹣30x+200=0解得,x1=10,x2=20,∵要使进货量较少,∴x=20,∴定价为50+20=70元,进货量为:400﹣10x=400﹣200=200.当定价为70元时利润达到6000元,此时的进货量为200个.【点睛】本题是一元二次方程的实际应用问题,现列出关于x的关系式,求解一元二次方程,根据条件对x值取舍,确定最终符合题意的答案.21.(1)根据旋转的性质得到∠DCE=90°,CD=CE,利用等角的余角相等得∠BCD=∠ACE,然后根据“SAS”可判断△BCD≌△ACE,则∠B=∠CAE=45°,所以∠DAE=90°,即可得到结论.(2)由于BC=AC,则AC2=AD•AB,根据相似三角形的判定方法得到△DAC∽△CAB,则∠CDA=∠BCA=90°,可判断四边形ADCE为矩形,利用CD=CE可判断四边形ADCE为正方形.【分析】(1)根据旋转的性质得到∠DCE=90°,CD=CE,利用等角的余角相等得∠BCD=∠ACE,然后根据“SAS”可判断△BCD≌△ACE,则∠B=∠CAE=45°,所以∠DAE=90°,即可得到结论.(2)由于BC=AC,则AC2=AD•AB,根据相似三角形的判定方法得到△DAC∽△CAB,则∠CDA=∠BCA=90°,可判断四边形ADCE为矩形,利用CD=CE可判断四边形ADCE为正方形.【详解】证明:(1)∵∠ACB=90°,AC=BC,∴∠B=∠BAC=45°∵线段CD绕点C顺时针旋转90°至CE位置,∴∠DCE=90°,CD=CE∵∠ACB=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,即∠BCD=∠ACE∵在△BCD和△ACE中,BC AC {BCD ACE CD CE=∠=∠=,∴△BCD≌△ACE(SAS)∴∠B=∠CAE=45°∴∠BAE=45°+45°=90°∴AB⊥AE(2)∵BC2=AD•AB,BC=AC,∴AC2=AD•AB∴AC AD AB AC=∵∠DAC=∠CAB,∴△DAC∽△CAB∴∠CDA=∠BCA=90°∵∠DAE=90°,∠DCE=90°,∴四边形ADCE为矩形∴四边形ADCE 为正方形.22.(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7.【解析】【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解.【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克,b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩解之得:108a b =⎧⎨=⎩答:甲、乙两种苹果的进价分别为10元/千克,8元/千克(2)由题意得:()()()()410010214010960x x x x +-++-=解之得:12x =,27x =经检验,12x =,27x =均符合题意答:x 的值为2或7.【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.23.(1)证明见解析;(2)485.【解析】【分析】(1)先证得△ADB ≌△CDB 求得∠BCD=∠BAD ,从而得到∠ADF=∠BAD ,所以AB ∥FD ,因为BD ⊥AC ,AF ⊥AC ,所以AF ∥BD ,即可证得.(2)先证得平行四边形是菱形,然后根据勾股定理即可求得.【详解】(1)证明:∵BD 垂直平分AC ,∴AB=BC ,AD=DC ,在△ADB 与△CDB 中,AB BC AD DC DB DB =⎧⎪=⎨⎪=⎩,∴△ADB ≌△CDB (SSS )∴∠BCD=∠BAD ,∵∠BCD=∠ADF ,∴∠BAD=∠ADF ,∴AB ∥FD ,∵BD ⊥AC ,AF ⊥AC ,∴AF ∥BD ,∴四边形ABDF 是平行四边形,(2)解:∵四边形ABDF 是平行四边形,AF=DF=5,∴▱ABDF 是菱形,∴AB=BD=5,∵AD=6,设BE=x ,则DE=5-x ,∴AB 2-BE 2=AD 2-DE 2,即52-x 2=62-(5-x )2解得:x=75,∴245AE =,∴AC=2AE=485.考点:1.平行四边形的判定;2.线段垂直平分线的性质;3.勾股定理.24.(1)证明见解析;(2)8:17.【解析】【分析】(1)根据SSS 证明△AOE ≌△COF ,根据全等得出OE=OF ,推出四边形是平行四边形,再根据EF ⊥AC 即可推出四边形是菱形;(2)由(1)知S △AEF =S △ACF ,再分别求得S △ABF 与S △AEF 的面积即可得到其比值.【详解】∴AD∥BC,∴∠OAE=∠OCF.∵EF垂直平分AC,∴AO=CO,∠AOE=∠COF=90°,∴△AOE≌△COF(ASA),∴OE=OF,∴四边形AFEC是平行四边形,又∵EF⊥AC,∴四边形AFEC是菱形;(2)∵△AOE≌△COF,∴S△AEF=S△ACF∵S△ABF=3BF,S△AEF=3FC,∴S△ABF:S△AEF=BF:FC.∵矩形ABCD的周长为64,AB=12,∴BC=20,设FC=x,则AF=x,BF=20﹣x在Rt△ABF中,由勾股定理122+(20﹣x)2=x2解得:x68 5 =,BF32 5 =,∴S△ABF:S△AEF=BF:FC=8:17.【点睛】此题主要考查了矩形的性质、线段的垂直平分线性质、菱形的判定以及勾股定理等知识的综合应用.熟练掌握菱形的判定方法是解题的关键.25.(1)4114s或4013s;(2)t=1或3或207或196秒【解析】【分析】(1)①当PQ⊥AB时,△PQE是直角三角形.证明△PQE∽△ACB,将PE、QE用时间t 表示,由三角形对应线段成比例的性质即可求出t值;②当PQ⊥DE时,证明△PQE∽△DAE,(2)分三种情形讨论,①当点Q在线段BE上时,EP=EQ;②当点Q在线段AE上时,EQ=EP;③当点Q在线段AE上时,EQ=QP;④当点Q在线段AE上时,PQ=EP,分别列出方程即可解决问题.【详解】解:(1)在Rt△ABC中,AC=12cm,BC=16cm,∴AB20cm.∵D、E分别是AC、AB的中点.∴AD=DC=6cm,AE=EB=10cm,DE∥BC且DE=12BC=8cm,①如图1中,PQ⊥AB时,∵∠PQB=∠ADE=90°,∠AED=∠PEQ,∴△PQE∽△ADE,∴PE QE AE DE=,由题意得:PE=8﹣2t,QE=4t﹣10,即82410 108t t--=,解得t=41 14;②如图2中,当PQ⊥DE时,△PQE∽△DAE,∴PE QE ED AE=,∴82410 810t t--=,∴t=40 13,∴当t为4114s或4013s时,以点E、P、Q为顶点的三角形与△ADE相似.(2)①如图3中,当点Q在线段BE上时,由EP=EQ,可得8﹣2t=10﹣4t,t=1.②如图4中,当点Q在线段AE上时,由EQ=EP,可得8﹣2t=4t﹣10,解得t=3.③如图5中,当点Q在线段AE上时,由EQ=QP,可得12(8﹣2t):(4t﹣10)=4:5,解得t=20 7.④如图6中,当点Q在线段AE上时,由PQ=EP,可得12(4t﹣10):(8﹣2t)=4:5,解得t=19 6.综上所述,t=1或3或207或196秒时,△PQE是等腰三角形.【点睛】本题主要考查了相似三角形的判定和性质及等腰三角形的判定,注意分类讨论,灵活的用含t的代数式表示线段的长度是解题的关键.。
八年级上册数学北师大版期中检测卷时间:90分钟满分:120分一、选择题(本大题共10小题,每题3分,共30分)1.若m+n n =52,则mn等于 ( )A.52B.23C.25D.322.现有三张质地、大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是 ( )A.13B.12C.23D.493.关于x 的一元二次方程(m-1)x 2-2x-1=0有两个实数根,则实数m 的取值范围是 ( )A.m ≥0B.m>0C.m ≥0且m ≠1D.m>0且m ≠14.如图,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,相似比为1∶√2,点A 的坐标为(1,0),则点E 的坐标为 ( )A.(√2,0)B.(√2,√2)C.(23,32) D.(2,2)第4题图 第6题图 第7题图5.为执行“均衡教育”政策,某市2017年投入教育经费2 500万元,预计到2019年底三年累计投入1.2亿元.若每年投入教育经费的平均增长率为x ,则下列方程正确的是 ( )A.2 500(1+x )2=1.2B.2 500(1+x )2 =12 000C.2 500+2 500(1+x )+2 500(1+x )2=1.2D.2 500+2 500(1+x )+2 500(1+x )2=12 0006.某网球单打比赛场地宽度为8米,球网两侧的长度各为12米,球网高度为0.9米(如图AB 的高度),比赛中,某运动员退出场地在距球网14米的D 点处接球,设计打出直线穿越球,使球落在对方底线上点C 处,用刁钻的落点牵制对方.在这次进攻过程中,为保证战术成功,该运动员击球点E 的高度至少为 ( )A.1.65米B.1.75米C.1.85米D.1.95米7.如图,在▱ABCD 中,连接AC ,作AC 的垂直平分线MN ,分别交AD ,AC ,BC 于M ,O ,N ,连接AN ,CM ,则四边形ANCM 是( )A.矩形B.菱形C.正方形D.无法判断8.如图,在矩形ABCD中,AB=6,BC=8,对角线AC,BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是()A.5B.32 C.74D.154第8题图第9题图第10题图9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16B.17C.18D.1910.如图,在矩形ABCD中,O为AC的中点,过点O的一条直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB ≌△CMB;③四边形EBFD是菱形;④MB∶OE=3∶2.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(本大题共8小题,每题3分,共24分)11.在一次数学活动课上,老师将全班同学分成5个小组进行摸球试验,试验规则如下:在一个不透明的盒子中装有6个黄球和若干个红球,这些球除颜色外其他都相同,将盒子里的球摇匀,任意摸出一个球,记下颜色后再放回盒子,这样连续摸球200次.试验结束后,5个小组分别计算出摸出黄球的频率(如下表所示).由此估计,盒子中红球的个数为.组别第1组第2组第3组第4组第5组摸出黄球的频率0.190.220.200.190.2012.菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为.13.如图,在△ABC中,DE∥BC,EF∥AB.若AD=2BD,则CFBF的值为.第13题图第15题图14.小明走进迷宫,迷宫中的每一个门都相同,第一道关口有四个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,他一次就能走出迷宫的概率是.15.如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD于E,GF⊥BC于F,AD=1 500 m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3 100 m,则小聪行走的路程为m.16.新年期间,某微信群组织抢红包活动,活动规定:群内的每个人都要发一次红包,并保证群内其他人都能抢到,且自己不能抢自己发的红包.若此次抢红包活动,群内所有人共收到90个红包,则该微信群一共有人.17.如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=6,BD=8,点P是AC延长线上的一个动点,过点P作PE⊥AD,垂足为点E,过点P作PF⊥DC,交DC的延长线于点F,则PE-PF=.第17题图第18题图18.三角形纸片ABC中,∠C=90°,AC=1,BC=2.按图1的方式在这张纸片中剪去一个尽可能大的正方形,称为第1次剪取,记余下的两个三角形的面积和为S1;按图2的方式在余下的Rt△ADF和Rt△BDE中,分别剪去尽可能大的正方形,称为第2次剪取,记余下的所有三角形的面积和为S2……第n次剪取后,余下的所有三角形的面积和S n为.三、解答题(本大题共6小题,共66分)19.(8分)解下列方程.(1)x(x-2)-3x2=-1;(2)(x+3)2=(1-2x)2.20.(10分)小亮与小明做掷骰子(质地均匀的正方体,6个面上的点数分别为1,2,3,4,5,6)的试验.(1)他们共做了50次试验,试验结果如下:朝上的点数123456出现的次数1096988①填空:试验中,“朝上的点数为1”的频率是.②小亮说:“根据试验,出现朝上的点数为1的概率最大.”他的说法正确吗?为什么?(2)两人约定:每次同时掷两枚骰子,如果两枚骰子的点数之和超过6,则小亮获胜,否则小明获胜.小亮与小明谁获胜的可能性大?试说明理由.21.(10分)如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗户距地面的高度OD=0.8 m,窗高CD=1.2 m,并测得OE=0.8 m,OF=3 m,求围墙AB的高度.22.(11分)某商店以40元/千克的价格新进一批茶叶,经调查发现,在一段时间内,销售量y(千克)与销售价格x(元/千克)之间的函数关系式为y=-2x+240(40≤x≤120).(1)该商店想在销售成本不超过3 000元的情况下,使销售利润达到2 400元,销售价格应定为多少?(2)在(1)条件下,该商店为了国庆期间促销,经过两次降价将销售价格定为81元/千克且全部售完,求平均每次降价的百分比.23.(13分)如图1,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB的中点时,四边形ADEF的形状为;(3)延长图1中的DE到点G,使EG=DE,连接AE,AG,FG,得到图2,若AD=AG,判断四边形AEGF的形状,并说明理由.图1图224.(14分)如图1,在△ABC中,点D在线段AB上,点E在线段CB的延长线上,且BE=CD,EP∥AC交直线CD于点P,交直线AB于点F,∠ADP=∠ACB.(1)图1中是否存在与AC相等的线段?若存在,请找出,并加以证明,若不存在,请说明理由;(2)若将“点D在线段AB上,点E在线段CB的延长线上”改为“点D在线段BA的延长线上,点E在线段BC 的延长线上”,其他条件不变(如图2).当∠ABC=90°,∠BAC=60°,AB=2时,求线段PE的长.图1图2八年级上册数学北师大版期末检测卷时间:90分钟满分:120分一、选择题(本大题共10小题,每题3分,共30分)1.点P(-2,a)是反比例函数y=2x的图象上的一点,则a=()A.-2B.2C.1D.-12.三本相同的书本叠成如图所示的几何体,它的主视图是()3.为了估计湖中有多少条鱼,先从湖中捕捞50条鱼作记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中后,再捕捞200条,其中有10条鱼带记号,则估计湖里鱼的数量为()A.500B.1 000C.1 500D.2 0004.如果△ABC∽△DEF,点A,B的对应点分别为点D,E,且AB∶DE=1∶2,那么下列等式一定成立的是()A.BC∶DE=1∶2B.△ABC的面积∶△DEF的面积=1∶2C.∠A∶∠D=1∶2D.△ABC的周长∶△DEF的周长=1∶25.若(a+c)2>a2+c2,则关于x的一元二次方程ax2+x-c=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断6.如图所示的两个转盘中均有5个数字,同时旋转两个转盘,指针落在某一个数上的机会均等,那么两个指针同时落在奇数上的概率是()A.425B.625C.25D.1925第6题图第7题图7.如图,两个含有30°角的完全相同的三角尺ABC和DEF沿直线l滑动,连接AF,CD,则下列说法错误的是() A.四边形ACDF是平行四边形 B.当点E为BC的中点时,四边形ACDF 是矩形C.当点B与点E重合时,四边形ACDF是菱形D.四边形ACDF不可能是正方形8.在同一平面直角坐标系中,函数y=x-k与y=kx(k为常数且k≠0)的图象可能为()9.如图,正方形ABCD 中,AB=12,点E 在边BC 上,BE=EC ,将△DCE 沿DE 对折至△DFE ,延长EF 交边AB 于点G ,连接DG ,BF ,给出以下结论:①△DAG ≌△DFG ;②EG=10;③BG=2AG ;④△EBF ∽△DEG.其中正确结论的个数是( )A.1B.2C.3D.4第9题图 第10题图 10.如图,把菱形ABCD 沿着它的对角线AC 方向平移1 cm ,得到菱形EFGH ,若AC=4 cm ,则图中阴影部分的面积与四边形ENCM 的面积之比为( )A.14∶9B.3∶2C.4∶3D.17∶9二、填空题(本大题共8小题,每题3分,共24分)11.一元二次方程(m-2)x 2-3x+m 2-4=0的一个根为0,则m 的值为 . 12.若a 5=b 3=c 2,且a-b+c=8,则a= .13.直线y=k 1x+b 与双曲线y=k 2x在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x>k 1x+b 的解集为 .第13题图 第14题图 第15题图14.如图,物理课上张明做小孔成像试验,已知蜡烛与成像板之间的距离为24 cm ,要使烛焰的像A'B'是烛焰AB 的2倍,则蜡烛与成像板之间的小孔纸板应放在离蜡烛 cm 的地方.15.一个几何体是由一些大小相同的小立方块摆成的,其主视图与左视图如图所示,则组成这个几何体的小立方块最少有 个.16.在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (2,2),B (4,2),C (6,4),以原点O 为位似中心,将△ABC 缩小,使变换后得到的△DEF 与△ABC 的相似比为1∶2,则变换后点B 的对应点的坐标为 . 17.已知实数x 满足(x 2+3x )2+2(x 2+3x )-3=0,那么x 2+3x 的值为 .18.如图,在矩形ABCD中,AD=4,AB=10,点E为边DC上的一个动点(不与D,C重合).把△ADE沿AE折叠,点D的对应点为点D',若∠D'AB=30°,则DD'的长为.三、解答题(本大题共6小题,共66分)19.(8分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)请用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率;(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.20.(10分)如图1,在平行四边形纸片ABCD中,AD=5,S平行四边形ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D.(1)四边形AEE'D的形状为()A.平行四边形B.菱形C.矩形D.正方形(2)如图2,在图1中的四边形纸片AEE'D中,在EE'上取一点F,使EF=4,剪下△AEF,将它平移至△DE'F'的位置,拼成四边形AFF'D.①求证:四边形AFF'D是菱形;②求四边形AFF'D的两条对角线的长.图1图221.(10分)百货商场服装专区的某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,提升销售量,减少库存,增加盈利.经市场调查发现:如果每件童装降价1元,那么平均每天可多售出2件.(1)要想平均每天销售这种童装盈利1 200元,那么每件童装应降价多少元?(2)是否有可能平均每天销售这种童装盈利达到1 800元?22.(12分)如图,将直角边长为4的等腰直角三角形ABC放置在平面直角坐标系中,∠ACB=90°,AC在x轴上,点C的坐标为(3,0).(1)点A的坐标为;点B的坐标为;(2)反比例函数y=k的图象在第一象限内与AB,BC分别交于点D,E,连接DE,若△BDE ∽△BCA,求点E的坐标和x反比例函数的表达式.23.(12分)如图,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以5 cm/s的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以4 cm/s的速度向点B匀速运动,运动时间为t s(0<t<2).(1)如图1,连接PQ,若△BPQ与△ABC相似,求t的值;(2)如图2,连接AQ,CP,若AQ⊥CP,求t的值.图1图224.(14分)[操作]如图1,正方形ABCD中,AB=a,点E是CD边上的一个动点,在AD上截取AG=DE,连接EG,过正方形的中心O作OF⊥EG交AD边于F,连接OE,OG,EF,AC.[探究]在点E的运动过程中:(1)猜想线段OE与OG的数量关系,并证明你的结论;(2)∠EOF的度数会发生变化吗?若不会,求出其度数;若会,请说明理由. [应用](3)当a=6时,试求△DEF的周长,并写出DE的取值范围. (4)当a的值不确定时:①若AFCE =3625,试求OFOE的值;②在图1中,过点E作EH⊥AB于H,过点F作FG⊥CB于G,EH与FG相交于点M;将图1简化得到图2,记矩形MHBG的面积为S,试用含a的代数式表示出S,并说明理由.图1图2参考答案与解析期中检测卷题号 1 2 3 4 5 6 7 8 9 10答案 D A C B D D B C B C11.2412.1613.1214.1815.4 60016.1017.4.818.(59)n1.D2.A【解析】画树状图如下:由树状图知,共有9种等可能的结果,其中满足条件的结果有3种,所以第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是13.故选A.3.C【解析】∵关于x的一元二次方程(m-1)x2-2x-1=0有两个实数根,∴m-1≠0且Δ≥0,即m≠1且(-2)2-4×(m-1)×(-1)=4m≥0,∴m的取值范围是m≥0且m≠1.故选C.4.B【解析】由正方形的性质得,OA=OC=1,因为正方形OABC与正方形ODEF的相似比为1∶√2,所以DE=EF=√2,所以点E的坐标为(√2,√2).故选B.5.D 【解析】 由题意得,2018年投入的教育经费为2 500(1+x )万元,2019年投入的教育经费为2500(1+x )2万元,预计到2019年底,三年累计投入[2 500+2 500(1+x )+2 500(1+x )2]万元,所以2 500+2500(1+x )+2 500(1+x )2=12 000.故选D .6.D 【解析】 如图,由题意知,当C ,A ,E 三点共线时,击球点E 的高度最低,即DE 最小.由AB ∥DE ,可得△ABC ∽△EDC ,所以CB CD =AB ED ,即1212+14=0.9ED,解得ED=1.95.故选D .7.B 【解析】 ∵MN 垂直平分AC ,∴AO=CO ,∠AOM=90°.∵在▱ABCD 中,AD ∥BC ,∴∠MAC=∠NCA.在△AOM 和△CON中,{∠MAO =∠NCO,OA =OC,∠AOM =∠CON,∴△AOM ≌△CON ,∴OM=ON ,∴AC 和MN 互相垂直平分,∴四边形ANCM 是菱形.故选B .8.C 【解析】 在Rt △ABC 中,AB=6,BC=8,∴AC=10,∴AO=12AC=5.∵EO ⊥AC ,∴∠AOE=∠ADC=90°.又∵∠EAO=∠CAD ,∴△AEO ∽△ACD ,∴AE AC =AO AD ,即AE 10=58,解得AE=254,∴DE=8-254=74.故选C . 9.B 【解析】 由题意知,AC=√2BC ,BC=CE=√2CD ,∴AC=2CD ,CD=63=2,∴EC 2=22+22,∴EC=2√2,∴S 2=EC 2=2√2×2√2=8.由题意知S 1=3×3=9,∴S 1+S 2=9+8=17.故选B .10.C 【解析】 ∵四边形ABCD 是矩形,且O 是AC 的中点,∴OB=OC=OA.∵∠COB=60°,∴△OBC 是等边三角形.又∵FO=FC ,∴FB 是OC 的垂直平分线,∴FB ⊥OC ,OM=CM ;在△AOE 和△COF 中,{∠EAO =∠FCO,OA =OC,∠EOA =∠FOC,∴△AOE ≌△COF ,∴AE=CF ,OE=OF ,∴BE=DF.又∵BE ∥DF ,∴四边形EBFD 是平行四边形,易知∠FOB=∠EOB=90°,∵OE=OF ,BO=BO ,∴△EOB ≌△FOB ,∴BF=BE ,∴四边形EBFD 是菱形;设OE=x ,则OF=x ,∵∠FOM=∠OBF=30°,∴BF=2x ,MF=12x ,∴BM=2x-12x=32x ,∴MB∶OE=32x∶x=3∶2.∴①③④正确,易知②不正确,故选C .11.24 【解析】 由题中表格可知,摸出黄球的频率稳定在0.20左右,所以估计摸一次球,摸出黄球的概率为0.2,所以盒子中小球约有6÷0.2=30(个),所以估计红球的个数为30-6=24.12.16 【解析】 解方程x 2-7x+12=0得,x=3或4.∵菱形的一条对角线长为6,3+3=6,不能构成三角形,∴菱形的边长为4,∴菱形ABCD 的周长为4×4=16.13.12 【解析】 ∵DE ∥BC ,AD=2BD ,∴CE AE =BD AD =BD 2BD =12.∵EF ∥AB ,∴CF BF =CE AE =12. 14.18【解析】 设第一道关口的四个门分别为A 1,A 2,A 3,A 4,第二道关口的两个门分别为B 1,B 2.列表得: A 1 A 2 A 3 A 4B 1 (B 1,A 1) (B 1,A 2) (B 1,A 3) (B 1,A 4) B 2 (B 2,A 1) (B 2,A 2) (B 2,A 3) (B 2,A 4)由表格得,共有8种等可能的结果,而一次能走出迷宫的只有1种,所以P(一次就能走出迷宫)=18.15.4 600【解析】小敏行走的路程为BA+AG+GE=1 500+AG+GE=3 100 m,则AG+GE=1 600 m,小聪行走的路程为BA+AD+DE+EF=3 000+DE+EF.连接CG,在正方形ABCD中,∠ADG=∠CDG=45°,AD=CD,在△ADG和△CDG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△ADG≌△CDG,∴AG=CG.∵GE⊥CD,GF⊥BC,∠BCD=90°,∴四边形GECF是矩形,∴CG=EF.∵∠CDG=45°,∴DE=GE,∴小聪行走的路程为3 000+DE+EF=3 000+GE+AG=3 000+1 600=4 600(m).16.10【解析】设该微信群一共有x人,则每个人抢到(x-1)个红包,所以可列方程x(x-1)=90,解得x1=-9(不合题意,舍去),x2=10,所以该微信群一共有10人.17.4.8【解析】延长BC交PE于点G,∵四边形ABCD是菱形,∴AD∥BC,AC⊥BD,且AC与BD互相平分.又∵AC=6,BD=8,∴AB=√32+42=5,S菱形ABCD=12×6×8=24.∵PE⊥AD,∴PE⊥BG,∴EG=245=4.8,易证△PFC≌△PGC,∴PG=PF,∴PE-PF=PE-PG=EG=4.8.18.(59)n【解析】易知在题图1中得到的两个直角三角形均与原直角三角形相似,且AFDF=DEBE=ACBC=12,由DE=CE,可得CE=13BC=23,则正方形DECF的面积为(23)2=49,则余下的两个直角三角形的面积和为59.同理,由题图2得余下四个三角形的面积和为(59)2……依此类推,每次剪取后剩余部分的面积均为上次剩余面积的59,故第n次剪取后,余下的所有三角形的面积和S n为(59)n.19.【解析】(1)原方程可化为2x2+2x-1=0,其中a=2,b=2,c=-1,b2-4ac=22-4×2×(-1)=12,所以x=-2±√122×2=-1±√32,即原方程的根为x1=-1+√32,x2=-1-√32.(2)移项,得(x+3)2-(1-2x)2=0,因式分解,得(3x+2)(-x+4)=0.所以3x+2=0,或-x+4=0,解得x1=-23,x2=4.20.【解析】(1)①0.2②不正确.因为在一次试验中频率并不一定等于概率,只有当试验次数很大时,频率才趋近于概率.(2)小亮获胜的可能性大,理由如下.列表如下:第2枚骰子掷得的点数和第1枚骰子掷得的点数123456123456723456783456789456789105678910116789101112由表格可知,所有可能的结果共有36种,每一种结果出现的可能性相同.所以P(点数之和超过6)=2136=712,P(点数之和不超过6)=1536=512.因为712>512,所以小亮获胜的可能性大.21.【解析】 如图,连接CD ,易知C ,D ,O 在同一直线上. ∵DO ⊥BF ,∴∠DOE=90°. ∵OD=0.8 m ,OE=0.8 m ,∴△OED 是等腰直角三角形,∴∠DEB=45°. ∵AB ⊥BF ,∴∠BAE=45°,∴AB=BE. 设AB=EB=x m ,∵AB ⊥BF ,CO ⊥BF ,∴AB ∥CO ,可得△ABF ∽△COF ,∴AB BF =COOF , ∴xx+(3−0.8)=1.2+0.83,解得x=4.4. 经检验,x=4.4是原分式方程的根. 答:围墙AB 的高度是4.4 m .22.【解析】 (1)根据题意得,(x-40)(-2x+240)=2 400,整理得,x 2-160x+6 000=0, 解得x 1=60,x 2=100.当x=60时,销售价格为60元/千克,销售量为120千克,则销售成本为40×120=4 800(元),超过了3 000元,不合题意,舍去;当x=100时,销售价格为100元/千克,销售量为40千克,则销售成本为40×40=1 600(元),低于3 000元,符合题意.答:销售价格应定为100元/千克. (2)设平均每次降价的百分比是x ,根据题意得,100(1-x )2=81,解得x 1=0.1=10%,x 2=1.9(舍去). 答:平均每次降价的百分比是10%.23.【解析】 (1)∵DE ∥AC ,∴∠BDE=∠A. ∵∠DEF=∠A ,∴∠DEF=∠BDE ,∴AD ∥EF. 又∵DE ∥AC ,∴四边形ADEF 为平行四边形. (2)菱形∵点D 为AB 的中点,∴AD=12AB , ∵DE ∥AC ,点D 为AB 中点,∴DE=12AC. ∵AB=AC ,∴AD=DE.由(1)知四边形ADEF 为平行四边形, ∴四边形ADEF 为菱形.(3)四边形AEGF 是矩形.理由如下: 由(1)得,四边形ADEF 为平行四边形, ∴AF ∥DE ,AF=DE. ∵EG=DE ,∴AF=EG ,∴四边形AEGF 是平行四边形. ∵AD=AG ,EG=DE ,∴AE ⊥EG , ∴四边形AEGF 是矩形.24.【解析】(1)AC=BF.证明如下:∵∠ADP=∠ACD+∠A,∠ACB=∠ACD+∠BCD,∠ADP=∠ACB,∴∠BCD=∠A,又∵∠CBD=∠ABC,∴△CBD∽△ABC,∴CDAC =BC BA.∵FE∥AC,∴BCBA =BE BF,∴CDAC =BE BF.∵BE=CD,∴AC=BF.(2)∵∠ABC=90°,∠BAC=60°,∴∠ADP=∠ACB=30°,∴∠BCD=60°,∠ACD=60°-30°=30°.∵PE∥AC,∴∠E=∠ACB=30°,∠CPE=∠ACD=30°,∴∠E=∠CPE,∴CP=CE,又∵BE=CD,∴BC=DP.∵∠ABC=90°,∠D=30°,∴BC=12CD,∴DP=12CD,即P为CD的中点.又∵PF∥AC,∴F是AD的中点,∴FP是△ADC的中位线,∴FP=12AC.∵∠ABC=90°,∠ACB=30°,∴AB=12AC,∴FP=AB=2.∵DP=CP=BC,CP=CE,∴BC=CE,即C为BE的中点.又∵EF∥AC,∴A为FB的中点,∴AC是△BEF的中位线,∴EF=2AC=4AB=8,∴PE=EF-FP=8-2=6.。