CATIA自由曲面J9战斗机设计
- 格式:doc
- 大小:1.58 MB
- 文档页数:20
战斗机catia课程设计一、课程目标知识目标:1. 学生能够理解战斗机的基本结构及其在设计中的作用;2. 学生能够掌握使用CATIA软件进行三维建模的基本步骤和技巧;3. 学生能够了解并描述战斗机设计中涉及的主要参数和性能指标。
技能目标:1. 学生能够操作CATIA软件,完成战斗机的三维模型构建;2. 学生能够运用所学的三维建模技能,对战斗机部件进行修改和优化;3. 学生能够利用CATIA软件进行模型的渲染和动画制作,展示设计成果。
情感态度价值观目标:1. 学生培养对航空工程领域的兴趣,增强对国防科技的认识和自豪感;2. 学生通过团队协作,培养沟通与协作能力,增强团队意识;3. 学生在创作过程中,培养勇于尝试、不断优化改进的良好品质。
课程性质:本课程为实践性强的学科课程,结合战斗机设计和CATIA软件应用,使学生掌握实际操作技能。
学生特点:学生处于高年级,具备一定的计算机操作能力和空间想象力,对战斗机有一定的兴趣。
教学要求:教师需结合战斗机设计实例,引导学生运用所学知识,进行实际操作,并在过程中给予指导与评价,确保学生达到课程目标。
通过分解课程目标为具体学习成果,使学生在课程结束后能够独立完成战斗机模型的构建和展示。
二、教学内容1. 战斗机基本结构认知:讲解战斗机的主要组成部分,如机翼、机身、尾翼、发动机等,分析各部分在设计中的作用和相互关系。
教材章节:第三章《飞行器的结构与设计》2. CATIA软件操作基础:介绍CATIA软件的界面和基本功能,包括草图绘制、三维建模、装配设计等。
教材章节:第五章《三维建模与装配设计》3. 三维建模技巧:讲解并演示CATIA软件中进行战斗机三维模型构建的步骤和技巧,如曲面建模、参数化设计等。
教材章节:第六章《曲面建模与参数化设计》4. 战斗机参数与性能:分析战斗机设计中涉及的主要参数和性能指标,如翼展、机身长度、推重比等。
教材章节:第四章《飞行器性能与设计优化》5. 模型修改与优化:教授如何运用CATIA软件对战斗机模型进行修改和优化,提高模型的性能和美观度。
CATIA设计飞机模型的设计方法随着航空工业的发展,飞机模型的设计成为一项重要的技术任务。
CATIA(Computer-Aided Three-Dimensional Interactive Application)是一种常用的计算机辅助设计软件,被广泛应用于飞机模型的设计。
本文将介绍CATIA设计飞机模型的设计方法,包括准备工作、三维建模、材质贴图以及飞机模型的性能分析等方面。
一、准备工作在进行飞机模型的设计前,需要明确设计目标和要求。
这包括飞机的尺寸、用途、外观风格等。
同时,还要搜集和整理相关的资料和数据,为设计提供依据。
另外,确保CATIA软件的安装和配置正常,以便进行后续的设计工作。
二、三维建模CATIA提供了丰富的设计工具和功能,可以实现飞机模型的三维建模。
首先,根据设计要求创建一个新的设计项目,并选择适当的设计环境和单元,如零件设计或装配设计。
接下来,使用CATIA的草图工具,根据设计目标绘制飞机模型的草图。
可以使用线条、圆弧、曲线等基本元素,进行草图的绘制。
在完成草图后,使用特征工具对草图进行处理,生成三维实体。
三、材质贴图飞机模型的外观质感是设计的重要部分。
通过CATIA的材质贴图功能,可以为飞机模型添加各种材质效果,使其更加真实。
在CATIA中,可以选择不同的材质类型,并为模型的各个部分分别应用材质。
通过调整材质的颜色、光泽、透明度等参数,可以达到预期的效果。
此外,还可以在材质贴图过程中增加纹理、图案等元素,进一步丰富飞机模型的外观。
四、性能分析飞机模型的性能分析是设计过程中的关键环节。
CATIA提供了各种性能分析工具,用于评估飞机模型的气动性能、结构强度等方面。
通过这些工具,可以模拟飞机在不同飞行状态下的性能表现,并进行相应的分析。
这有助于优化飞机模型的设计,提高其飞行效率和安全性。
综上所述,CATIA是一种强大的工具,可以辅助设计师进行飞机模型的设计。
通过准备工作、三维建模、材质贴图以及性能分析等步骤,可以实现飞机模型的全面设计。
CATIA设计飞机模型的设计方法在现代航空工业中,飞机模型的设计是一个极其复杂且关键的环节。
CATIA 作为一款功能强大的三维设计软件,为飞机模型的设计提供了高效、精确的解决方案。
接下来,让我们深入探讨一下使用 CATIA 设计飞机模型的具体方法。
首先,在开始设计之前,我们需要对飞机的整体概念和设计要求有清晰的理解。
这包括飞机的用途(是客运、货运还是军用)、飞行性能指标(如速度、航程、升限等)、尺寸限制以及客户或相关标准的特定要求。
有了这些基础信息,我们就能够为后续的设计工作制定明确的方向和目标。
然后,进入到 CATIA 的操作界面。
我们通常会从创建基本的几何形状开始。
比如,使用草图工具绘制飞机的大致轮廓,这可能是机身的横截面、机翼的形状等。
在绘制草图时,要注意尺寸的准确性和几何关系的合理性。
通过约束和尺寸标注,确保草图能够准确反映我们的设计意图。
接下来是构建实体模型。
基于之前绘制的草图,使用拉伸、旋转、扫掠等特征操作,将二维的草图转化为三维的实体部件。
例如,通过拉伸机身的横截面草图,就可以得到初步的机身模型。
对于机翼,可以使用复杂的曲面建模工具来创建符合空气动力学的形状。
在构建飞机模型的过程中,装配设计也是至关重要的一环。
我们需要将各个独立设计的部件,如机身、机翼、发动机、起落架等,按照实际的装配关系组合在一起。
CATIA 提供了强大的装配功能,可以方便地定义部件之间的位置、约束和连接方式。
通过装配设计,我们能够直观地检查部件之间是否存在干涉,以及整体结构的合理性。
对于飞机这样对性能要求极高的产品,进行性能分析和优化是必不可少的步骤。
CATIA 集成了多种分析工具,如结构分析、流体力学分析等。
通过这些工具,我们可以评估飞机模型在不同工况下的强度、稳定性、空气动力性能等,并根据分析结果对设计进行优化改进。
比如,如果结构分析显示某个部位应力集中,我们就可以对该部位的形状或材料进行调整;如果流体力学分析发现机翼的升力不足,就可以修改机翼的外形或翼型。
CATIA设计飞机模型的设计方法哎呀,今天咱们聊聊CATIA设计飞机模型的设计方法吧!这可是个高大上的技术活,不过别担心,我会让你们轻松上手的。
咱们得了解什么是CATIA,它是一款非常强大的三维CAD软件,可以用来设计各种复杂的物体,包括飞机模型。
那咱们怎么用CATIA来设计飞机模型呢?接下来,我就给大家细细道来。
咱们要打开CATIA软件,这时候你会看到一个界面,上面有很多工具栏和菜单栏。
别急着去点这些按钮,咱们先来学习一下如何创建一个新的飞机模型。
在CATIA的菜单栏里,有一个叫做“新建”的选项,点击它,然后选择“零件”,再选择“飞机”。
这样,一个全新的飞机模型就诞生了!接下来,咱们要对这个飞机模型进行一些基本的设计。
在CATIA的工具栏里,有一个叫做“编辑几何体”的工具,点击它,就可以对飞机模型进行编辑。
比如,你可以改变飞机的形状、大小、位置等。
这些操作都是可以逆向进行的,如果你觉得不满意,可以随时撤销操作。
在CATIA中,还有很多其他的工具可以帮助我们设计飞机模型。
比如,有一个叫做“拉伸”的工具,可以让我们在飞机模型上添加各种部件。
还有一个叫做“旋转”的工具,可以让我们在飞机模型上旋转部件,以便于观察和设计。
还有一个叫做“阵列”的工具,可以让我们在飞机模型上排列大量的部件。
除了基本的设计工具之外,CATIA还有很多高级功能可以帮助我们设计飞机模型。
比如,有一个叫做“布尔运算”的功能,可以让我们在飞机模型上组合不同的部件。
还有一个叫做“干涉检测”的功能,可以帮助我们检查飞机模型在某些特定条件下是否会出现问题。
还有一个叫做“装配”的功能,可以让我们在飞机模型上安装各种部件。
在设计飞机模型的过程中,我们还需要注意一些细节问题。
比如,我们需要考虑飞机的重量分布、空气动力学特性、结构强度等问题。
这些问题可能比较复杂,但是CATIA都可以帮助我们解决。
在CATIA中,有一个叫做“分析”的功能,可以让我们在飞机模型上进行各种分析。
CA TIA的优点除了我们之前谈到的参数化设计外,强大的曲面设计功能使其能够适应包括航空航天在内的各种工业产品建模要求。
通过下面机身的外形设计过程,可以从中感受到CA TIA在曲面建模方面的独特魅力。
下面,开始机身部分的建模工作。
首先需要进行的工作是把CA D下的俯视图和侧视图导入,作为机身建模的参考。
通过菜单“文件>打开”找到之前在C A D下面完成的三面图。
按下鼠标拖动矩形选框,选择飞机的侧视图。
选中后,线条会以高亮度显示。
单击右键选择复制。
(105)利用“窗口”菜单回到建模中的CATIA文件。
参照之前绘制机翼时的步骤,以Part为父对象创建几何图形集,将其命名为机身。
选择“ZX平面”并点击草图工具进入草图绘制模式。
选择菜单“编辑>粘贴”或直接按Ct rl+V将飞机的侧视图粘贴过来。
这时如果找不到粘贴结果,可以工具栏上的“适合全部”(106)图标。
按下鼠标左键,利用矩形选择框选择粘贴过来的侧视图后,在图上任意一点按下左键可以对其位置进行拖动。
参考现有机翼的位置将其拖动到位。
这个步骤只用来作为下面建模时候的参考,因此不用追求位置的绝对准确。
(107)按照同样的方法,以“XY平面”为基准绘制草图,将飞机的俯视图也复制过来。
再次以“XY平面”为基准绘制草图,参照刚才复制过来的俯视图完成准确的机身俯视草图绘制。
尺寸的设置可以参考108。
在绘制机身俯视草图的过程中,需要使用样条线工具。
图108中的粗线均为样条线,细线为直线。
设置样条线与直线之间平滑过渡的方法可以参考前面翼尖的绘制过程。
接下来参考从A UTOCA D复制过来的侧视图,以ZX平面为基准绘制草图,将其作为飞机的侧视图。
在侧视图的绘制过程中,注意要将上一步俯视图中飞机最前端一点和最后端一点分别通过投影工具投影到当前草图中。
CATIA设计飞机模型的设计方法在现代航空领域,飞机模型的设计至关重要。
CATIA 作为一款强大的三维设计软件,为飞机模型的设计提供了高效、精确且创新的解决方案。
接下来,让我们一起深入探讨使用 CATIA 设计飞机模型的设计方法。
首先,在开始设计之前,需要对飞机的整体概念和设计要求有清晰的理解。
这包括飞机的用途(是民用客机、货运飞机还是军用飞机等)、飞行性能指标(如速度、航程、载重等)、尺寸限制以及其他特殊要求。
这些信息将为后续的设计工作提供明确的方向和约束条件。
进入 CATIA 软件后,第一步通常是创建一个新的项目,并设置合适的单位和坐标系。
对于飞机模型设计,一般会采用国际标准单位制,并根据飞机的实际情况选择合适的坐标系原点和方向。
接下来,进行飞机外形的初步勾勒。
可以使用 CATIA 中的草图工具,绘制飞机的大致轮廓。
在这个阶段,不必追求细节的精确,重点是确定飞机的整体比例和主要几何形状。
例如,机翼的形状、机身的长度和直径、尾翼的布局等。
完成初步草图后,就可以利用 CATIA 的三维建模功能,将草图拉伸、旋转、扫略等操作,生成实体模型。
在构建实体模型的过程中,要注意各个部件之间的连接和过渡,确保模型的整体性和流畅性。
比如,机翼与机身的连接处需要进行平滑处理,以减少空气阻力。
对于飞机的机翼设计,这是一个关键环节。
CATIA 提供了丰富的工具来精确设计机翼的形状和参数。
可以通过定义翼型曲线、控制翼展、翼弦长度、扭转角度等参数,来实现理想的机翼性能。
同时,还可以利用流体动力学分析模块,对设计好的机翼进行模拟分析,评估其在不同飞行条件下的气动性能,并根据分析结果进行优化调整。
机身的设计也不容忽视。
要考虑机身的结构强度、内部空间布局以及重心平衡等因素。
可以使用 CATIA 的结构分析工具,对机身的受力情况进行模拟,以确保其能够承受飞行过程中的各种载荷。
飞机的发动机安装位置和进气道设计同样重要。
在 CATIA 中,可以精确地定位发动机,并设计合适的进气道形状,以保证发动机的正常工作和最佳性能。
歼9战斗机外形设计目录目录1.歼9战斗机介绍 (1)2.制作过程 (7)2.1制作前准备工作 (7)2.2 绘制飞机截面图 (10)2.3绘制飞机机身 (14)2.4 绘制飞机翼面 (16)2.5绘制座舱 (17)3. 最终效果图 (18)一、歼9战斗机介绍国产歼击8型歼击机是大家耳熟能详的中国著名歼击机了。
但是在歼8 提出研制的 1964 年,还提出了另一种方案与之竞争,并经过了多次方案论证,但终因种种原因而未能投入量产,但是现在看来,仍有许多是值得借鉴的,我们可以称其为歼9,并来回顾一下这段历史。
歼击9 型截击机是一种全天候高空高速要地防空截击机,主要以苏“逆火”和美B-1B超音速轰炸机为主要作战对象。
设计技术指标达双 26(升限 26 公里,时速 2.6 马赫),可以说是中国歼击机性能之最了。
研制的提出是在 1964 年,那时因为 1963 年冬季以来,歼7飞机参加了几次高空作战,暴露出它升限留空时间短,高空高速性能差,没有雷达,高空机动性差等缺陷。
另外,在作战火力和起飞着陆性能上也有待加强和改善。
因此,自 1964 年初开始,六零一所就开始考虑改进歼7,以满足高空作战要求。
1964 年 10 月 25 日,六院在沈阳六零一所召开了“米格-21和伊尔-28 改进改型预备会”。
会上,六零一所提出了米格-21 的两种改型方案,一种为双发型,另一种为单发型。
前者计划装用两台涡喷 7 发动机的改进型,飞机气动外形则参照米格-21 飞机,不做大的改变,这一方案发展成了歼8;而后者拟装六零六所新设计的推力为 8,500 公斤的加力式涡轮风扇发动机(910),这一方案则发展成了歼9。
当时,两种方案的飞行性能均与美国的 F-4B 相当,即升限 20 公里,最大马赫数 2。
2,基本航程 1,600 公里,重量约 10 吨。
1965 年 1 月 12-17 日,三机部在北京召开了航空工业企事业单位领导干部会,会议期间又由段子俊副部长主持召开了新机研制工作座谈会,由于担心新发动机研制周期长,所以会议一致同意以米格-21 为原准机搞双发设计方案,从而确定了歼8 的研制方向。
但会后又提出“双25”的单发方案。
即一开始六零一所提出的单发方案。
六零一所在摸透米格-21 的同时,对国内外有关技术情况进行了调研,提出了歼8 飞机的初步战术技术要求,并于 1965 年 3 月 19 日上报六院,指导思想是突出高空高速性能,增大航程,提高爬升率和加强火力,性能指标要求是使用升限 19-20 公里,最大平飞马赫数 2.1-2.2。
六零一所设想 1967年歼 8 飞机完成首飞,1970 年能小批装备部队。
但是到了 1965 年 4 月 12 日,三机部又正式下达“关于开展歼9 飞机方案设计”的通知,要求在两个方面进行方案论证和比较:1.突出歼击性能,兼顾截击作战和对付低空高速目标,最大马赫数2.3 左右,升限 20 公里左右,航程要大,作战半径大于 450 公里。
2.突出截击性能,兼顾歼击作战,最大马赫数 2.4-2.5,升限 21-22 公里,作战半径 350 公里。
飞机总重量控制在 14 吨左右。
在随后的时间里,歼8 飞机很快得到了批准,并定下了试制的具体时间表。
歼9 也取得了一定的进展。
六零一所先是进行了歼9 气动布局参数的选择,选出了 4 种机翼平面形状,即前缘后掠 50 度的后掠翼,前缘后掠 57 度的三角翼,前缘后掠 55 度的后掠翼,以及双前缘后掠角的双三角翼,并设计了风洞模型。
1966 年 4 月 1 日,三机部向国防工办,国防科工委呈报了“歼9 飞机设计方案”。
国防科工委开会审查了歼9 飞机的设计方案,并向军委呈报了“歼9 飞机战术技术论证报告”。
报告提出歼9 最大马赫数 2.4,升限 20-21 公里,最大航程 3,000 公里,作战半径 600 公里,最大续航时间 3 小时,最大爬升率 180-200 米每秒。
六零一所对四种机翼平面形状方案均做出了模型,进行了风洞实验。
其中主要是考虑采用后掠翼还是三角翼,后掠翼和三角翼都是采用前缘后掠的方法来增加机翼的临界马赫数。
但是如果超音速飞行增加到马赫数为 2.0 时,要采用亚音速后掠翼方案就必须使前缘后掠角大于 60 度,但前缘后掠角过大,翼根结构受力就会恶化,将增加结构重量;另外,低速时空气动力特性也将恶化,升力下降,阻力增加。
故采用大后掠翼很不利,而三角翼则比较适用,不但具有后掠翼所具有的优点,而且比较长的翼根弦长保证了根部结构受力状况,减轻结构重量,而且还有助于保证飞机的纵向飞行稳定性。
所以六零一所淘汰了前三个方案,又把三角翼的前缘后掠角改为 55 度,称为歼9IV 方案。
这是一种正常布局形式的三角翼方案,起动外形上除机头改为两侧进气外,其余均与歼7,歼8 相同,类似于超7 的早期型,也就是歼7CP 的气动外形,只是尺寸上要大得多。
由于这种方案对米格-21 的改动并不算很大,所以成功的把握性挺大。
但从 1966 年第四季度到 1967 年初,经过风洞实验发现,歼9IV 方案的机动性不够理想,于是又提出无尾三角翼方案,称 V 方案。
V 方案是两侧进气的无尾三角翼飞机,前缘后掠角 60 度,翼面积达 62 平方米。
由于降低了翼载荷,V 方案的机动性较好,但升降副翼的刚度和操纵功率问题以及零升力矩带来的操纵困难却难以解决。
然而在此期间,歼8 则发展的较为顺利。
1966 年底,六零一所完成了全部图纸设计工作。
8 月由一一二厂开始试制两架原型机,1968 年 6 月,01 号原型机总装完成。
12 月 19 日完成首次地面滑行,虽然滑行中前轮摆振严重,紧急刹车时左侧主轮轮胎爆破。
但是歼8 仍于 1969 年 7 月 5 日,由试飞员尹玉焕驾驶,在一一二厂完成了首次航线起落试飞,历时 30 分钟,试飞中飞行高度 3,000 米,速度 500 公里每小时。
但是随后“文化大革命”开始,两机的研制工作也就处于了停顿状态。
1968 年 3 月,六院召开了“动员落实歼9 飞机研制任务”会议,决定采用 V 方案,并提出力争 1969 年“十一”前把歼9 送上天,向国庆 20 周年献礼。
由于 V 方案一些技术问题难于解决,加上国内生产不正常,V 方案一直搞不下去,于是六院指示停止了 V 方案的试制。
1969 年 2 月 3 日,六零一所决定抽出部分力量继续进行歼9 飞机的研制。
1969 年 10 月 10 日,航空工业领导小组决定研制歼9,并决定先试制两侧进气的正常布局三角翼方案,即歼9IV 方案。
把试制工作安排在了一一二厂,要求 1971 年底上天。
1969 年 10 月 30 日,三机部和六院军管会根据实际情况,决定把歼9 试制任务定点在一三二厂(成都飞机公司)。
1970 年 5 月 4 日,六零一所抽出 300 多人到成都空军十三航校(后组建成六一一所),从事歼9 飞机的试制工作。
1970 年 6月 9 日,航空工业领导小组在北京开会审查歼9 方案,要求“歼9 的机动性要好,活动半径 900-1,000 公里,重量 13 吨,使用过载8g,升限 25 公里,飞行马赫数 2.5。
1970 年 11 月,六院在西安召开厂,所领导干部会议。
空军领导对正在研制中的歼9 又提出了新的要求:“双 25 太小,双 28 太高,应该是双 26,即最大使用马赫数 2.6,静升限 26 公里,最大使用表速 1,300 公里每小时”。
根据这一新要求,歼9 原有布局均不能满足,最后选择了鸭式布局,腹部或两侧进气的方案。
可是工作一段后发现,升限指标太高,发动机性能达不到,歼9 飞机的研制工作又可能搁浅。
1975 年 1 月 10 日,三机部以(75)三院字 8 号文“关于请求继续研制歼9 飞机的报告”上报国务院,中央军委。
文件希望对歼 9 的指标作些调整,即最大马赫数 2.5-2.6,升限 23 公里,最大爬升率 220 米每秒,基本航程2,000 公里,作战半径大于 600 公里。
1975 年 2 月 18 日,国务院,中央军委下达国发(1975)34 号文,同意按调整后的指标继续研制歼9 飞机。
1975 年 12 月 23 日。
国家计委,国务院国防工办以(75)工办字 395 号文批准三机部上报的歼9 飞机研制实施计划。
同意零批试制 5 架,1980 年首架上天,1983 年设计定型。
并原则上同意到 1983 年拨给研制费 4 亿元。
1976 年初。
六一一所进一步调整了歼9 总体气动力布局和设计参数,形成歼9VI-II 方案,其特点是:鸭式布局,60 度三角翼。
面积 50 平方米,鸭翼为 55 度三角翼,面积 2.58 平方米,固定安装角 3 度,机身长 18 米,两侧进气。
进气道为二元可调节多波系混合压缩式。
装一台 910 涡扇发动机,地面全加力静推力 12,400 公斤。
装 205 雷达,探测距离 60-70 公里,跟踪距离45-52 公里。
带两枚 PL-4 拦射导弹,最大有效射程 8 公里,导引头截获距离 18 公里。
1978 年,由于六一一所承担的歼7 大改(即歼7III)的设计发图工作要求紧迫,歼9 的研制工作开始收缩。
1980 年,为贯彻国家国民经济调整方针歼9 的研制工作即全部中止。
机体研制费约 2,122 万元。
但歼8 的研制工作并没有停下来。
根据最初的战术技木要求,歼8 飞机本来就是全天候的。
但歼8 拟装用的交流供电系统和新雷达的研制工作动手较晚,赶不上歼8 的研制进度,于是上级决定歼8 飞机分两步设计定型。
第一步按直流供电装测距器的“白天型飞机”定型,第二步再按交流供电装新雷达的“全天候型飞机”定型。
1979 年 12 月 31 日,航空产品定型委员会同意歼8 设计定型,1980 年 3 月 2 日,中央军委常规军工产品定型委员会以(80)军定字第 40 号文批准。
1986 年 2 月 20 日。
国务院、中央军委常规军工产品定型委员会批准歼8 白天型飞机生产定型。
中国在下一代主力歼击机选择上,本着务实,求稳的态度,最终选择了歼8 路线。
虽然一开始时该方案仅仅是米格-21 的简单放大,性能也并不出众,但经过后来的不断改进,在技术指标上具备了三代机的水平,并最终成为了一种成功的歼击机。
而歼9 设计思想前卫,在设计性能上无疑是大大超越了歼8 方案,但是在研制过程中所遇到的不可逾越的困难屡屡不断,研制工作很难进行。
所以在这个事关祖国命运的重大抉择上,选择了歼8 这个渐改方案显然是正确的,而歼9的研制过程中也取得了许多经验和技术,并在后来成功地运用于歼8 的研制开发中。
在此之后,歼8II 又经过不断的改进,形成了今天闻名遐尔的歼8 系列重型歼击机。