【3套打包】海口市七年级下册数学期中考试题(5)
- 格式:docx
- 大小:680.91 KB
- 文档页数:41
海南省海口市秀英区等四地2023-2024学年七年级下学期期中考试数学试题一、单选题1.下列方程中解是2x = 的方程是( )A .240x −+=B .360x +=C .122x =D .530x −= 2.解方程123123x x −+−=,去分母正确的是( ) A .()()312231x x −−+= B .()()312236x x −−+=C .31431x x −−+=D .31436x x −−+= 3.不等式组-32-13x x <⎧⎨≤⎩的解集在数轴上表示正确的是( ) A . B .C .D .4.若a >b ,则下列式子正确的是( )A .﹣4a >﹣4bB .12a <12bC .4﹣a >4﹣bD .a ﹣4>b ﹣4 5.“x 与5的差的一半是正数”,用不等式可表示为( )A .502x −>B .502x −>C .502x −≥D .502x −≥ 6.已知2524a b a b +=⎧⎨+=⎩是关于a 、b 的二元一次方程组,求a b +是( ) A .15 B .3 C .9 D .127.不等式-3x +6>0的正整数解有( )A .1个B .2个C .3个D .无数多个 8.若()253170x y x y +−+−−=,则x ,y 的值分别为( )A .7,7B .8,3C .8,3−D .7,89.某种导火线的燃烧速度是0.82厘米/秒,爆破员跑开的速度是5米/秒,为在点火后使爆破员跑到150米以外的安全地区,导火线的长至少为( )A .22厘米B .23厘米C .24厘米D .25厘米10.某班学生分组,若每组7人,则有2人分不到组里;若每组8人,则最后一组差4人,若设计划分x 组,则可列方程为( )A .7284x x +=−B .7284x x −=+C .7284x x +=+D .7284x x −=−11.已知方程组224x y k x y +=⎧⎨+=⎩的解满足2x y +=,则k 的值为( ) A .2− B .4− C .2 D .412.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x 厘米和y 厘米,则列出的方程组为( )A .2275x y x y =⎧⎨−=⎩B .2275y x x y =⎧⎨−=⎩ C .3275x y x y =⎧⎨+=⎩ D .3275y x x y =⎧⎨+=⎩二、填空题13.方程250x +=的解是x = .14.当m = 时,式子3m +与式子21m −+的值相等.15.不等式组:212541x x x x −≥+⎧⎨+<−⎩的解集为 . 16.某型号彩电每台标价为5250元,按标价的八折销售,此时每台彩电的利润率是5%,则该型号彩电的进价为每台 元.三、解答题17.解不等式(组):(1)2132x x −<+;(2)21381x x x x <+⎧⎨+≥−⎩. 18.解下列方程或方程组:(1)42(5)8x x −+=; (2)2151136x x +−−=; (3)413327y x x y =−⎧⎨+=⎩; (4)234238x y x y +=−⎧⎨−=⎩. 19.已知y kx b =+,当2x =时,4y =;当3x =时,8y =,求k 和b 的值.20.已知关于x 的方程3(2)x m x +=−的解是正数,则m 的取值范围.21.某中学新建了一个音乐喷泉(图1),如图2,喷泉的水从出水管喷出形成漂亮的水柱,当出水量达到最大时,喷泉会响起优美的音乐,此时水柱的高度比出水管的高度的2倍还高10cm ,设出水管的高度为cm x .(1)直接用含x 的代数式表示水柱的高度为___________cm .(2)当喷泉响起优美的音乐时,出水管和水柱的总高度为130cm ,求出水管的高度. 22.一套精密仪器由一个A 部件和两个B 部件构成,用31m 钢材可以做40个A 部件或240个B 部件,现在要用34m 钢材制作这种仪器.(1)请问用多少钢材做A 部件,多少钢材做B 部件,可以恰好制成整套的仪器?(2)可以制成仪器 套.(3)现在某公司要租赁这批仪器a套,每天的付费方案有两种选择:方案一:当a不超过50套时,每套支付租金100元;当a超过50套时,超过的套数每套支付租金打八折;方案二:不论租赁多少套,每套支付租金90元.当a>50时,请回答下列问题:①若按照方案一租赁,公司每天需支付租金元(用含a代数式表示);若按照方案二租赁,公司每天需支付租金元(用含a代数式表示).②假如你是公司负责人,请你谋划一下,选择哪种租赁方案更合算?并说明理由.。
海南省海口市琼山区海南中学2022-2023学年七年级下学期
期中数学试题
学校:___________姓名:___________班级:___________考号:___________
3
⎩
A.B.
C.
D.
二、填空题
位到达D 点,则D 点的坐标是.
19.已知点A 的坐标为()2,1,直线AB y ∥轴,且5AB =,则点B 的坐标 . 20.一次竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.则他至少答对道题,成绩超过100分.
3⎩
用1600元可购进A 型垃圾桶14个和B 型垃圾桶8个,且购买3个A 型垃圾桶的费用与购买4个B 型垃圾桶的费用相同,求出A 型垃圾桶和B 型垃圾桶的单价.
26.如图1,已知直线EF 与直线AB 交于点E ,直线EF 与直线CD 交于点F ,EM 平分AEF ∠交直线CD 于点M ,且FEM EMF ∠=∠.
(1)求证:AB CD ∥;
(2)点G 是射线MD 上的一个动点(不与点M 、F 重合),EH 平分FEG ∠交直线CD 于点H ,过点H 作HN EM ∥交直线AB 于点N ,设EHN α∠=,EGF β∠=.
①如图2,当点G 在点F 的右侧时,若70β=︒,求α的值,并说明理由;
②当点G 在运动过程中,α和β之间有怎样的数量关系?直接写出你的结论.。
海口市七年级下学期数学期中考试试卷(五四学制)姓名:________ 班级:________ 成绩:________一、选择题: (共6题;共12分)1. (2分) (2019七上·柯桥期中) 下列数中π、,﹣,,3.1416,3.2121121112…(每两个2之间多一个1),中,无理数的个数是()A . 1个B . 2个C . 3个D . 4个2. (2分) (2019七下·宜昌期中) 在-1.732,,π, 3, 2+ ,3.212212221…,3.14这些数中,无理数的个数为()A . 5B . 2C . 3D . 43. (2分) (2020七下·恩施月考) 如图,a、b 两个数在数轴上的位置如图所示,则下列各式正确的是()A . a+b<0B . ab<0C . b﹣a<0D . >04. (2分) (2020七下·潍坊期中) 如图,图中∠1与∠2是同位角的是()A . (2)(3)B . (2)(3)(4)C . (1)(2)(4)D . (3)(4)5. (2分)如图,OA⊥AB于点A,点O到直线AB的距离是().A . 线段OAB . 线段OA的长度C . 线段OB的长度D . 线段AB的长度6. (2分) (2019七下·闽侯期中) 若AB∥CD,∠CDE=∠CDF,∠ABE=∠ABF,则∠E:∠F=()A . 1:2B . 1:3C . 3:4D . 2:3二、填空题: (共12题;共12分)7. (1分)(2017·黄冈模拟) 计算:|﹣2|+ +(π﹣3.14)0=________.8. (1分) (2018八上·昌图期末) 已知2x﹣1的平方根是±3,则5x+2的立方根是________.9. (1分)(2017·东莞模拟) 在﹣2,2,这三个实数中,最大的是________.10. (1分)(2018·霍邱模拟) 2017年末,全国农村贫困人口3046万人,比上年末减少1289万人,其中3046万人用科学记数法表示为________人.11. (1分) (2020七下·和平期中) 如图,同旁内角有________对.12. (1分) (2017七下·单县期末) 若5x=18,5y=3,则5x-2y=________13. (1分) (2020七上·吉安期末) 如图, O是直线上的一点, , 平分 ,,则=________°.14. (1分) 4是________的算术平方根.15. (1分) (2020八下·哈尔滨月考) 如图,正方形ABCD ,点E在CD上,连接AE , BD ,点G是AE 中点,过点G作FH⊥AE , FH分别交AD , BC于点F , H , FH与BD交于点K ,且HK=2FG ,若EG=,则线段AF的长为________.16. (1分)(2019·包头) 如图,是⊙ 的直径,是⊙ 外一点,点在⊙ 上,与⊙ 相切于点,,若,则弦的长为________.17. (1分) (2019七下·淮安月考) ,直线分别交、于点、,平分,,那么________°.18. (1分)(2020·吉林模拟) 如图,有一块含有60°角的直角三角板的两个顶点放在矩形的对边上.如果∠1=18°,那么∠2的度数是________.三、简答题: (共6题;共60分)19. (10分) (2017八下·姜堰期末) 计算:(1)(2)20. (10分) (2020八下·高新期末) 计算(1)(2) ( -5)(6+ )-(3- )+()21. (10分) (2019七上·泰兴期中) 计算:(1)(2)22. (10分) (2019七上·南岗期末) 计算:(1)(2)23. (15分) (2020七下·龙岗期中) 计算:(1)(2)(3)24. (5分) (2016八上·怀柔期末) 计算:.四、解答题: (共4题;共32分)25. (10分)(2020·永嘉模拟) 如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB 交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=2,CF=4时,求AC的长.26. (7分) (2019七上·定安期末) 如图,已知AD∥BC,∠1=∠2,要说明∠3+∠4=180°.请完善说明过程,并在括号内填上相应依据;解:∵AD∥BC ( ________)∴∠1=∠3 ( ________)∵∠1=∠2 ( 已知 )∴∠2=∠3 ( ________)∴________∥________(________ )∴∠3+∠4=180° ( ________ ) .27. (5分) (2019七下·合肥期末) 如图,某工程队从点A出发,沿北偏西67°方向铺设管道AD,由于某些原因,BD段不适宜铺设,需改变方向,由B点沿北偏东23°的方向继续铺设BC段,到达C点又改变方向,从C 点继续铺设CE段,∠ECB应为多少度,可使所铺管道CE∥AB?试说明理由.此时CE与BC有怎样的位置关系?28. (10分) (2019七下·襄州期末) 如图,D,E分别是边,上的点,,点F在的延长线上,且 .(1)试判断与的位置关系,并说明理由.(2)若比大 .求的度数.参考答案一、选择题: (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题: (共12题;共12分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、简答题: (共6题;共60分)19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、四、解答题: (共4题;共32分)25-1、25-2、26-1、27-1、28-1、28-2、。
2022-2023学年海南省海口市龙华区华侨中学七年级(下)期中数学试卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列方程解为x =3的是( )A. x +3=0B. x−3=0C. 3x +1=0D. 3x−1=02.数学表达式①−5<2;②4x +7>0;③x =5;④x 2−xy +y 2;⑤x−4>y +1中不等式的个数是( )A. 1个B. 2个C. 3个D. 4个3.如果a >b 那么下列关系不一定成立的是( )A. ab <0B. −4a <−4bC. a−1>b−1D. 2a >2b4.下列变形正确的是( )A. 由3x +3=13,得x =13+3B. 由4x =2x−7,得4x−2x =7C. 由8x =−3,得x =−83D. 由x 3=0,得x =05.下列各方程组中属于二元一次方程组的是( )A. {xy =4x +y =4B. {2x +z =5x +y =4C. {x 3+y 2=2x +y =5 D. {5x +y 2=0x +2y =−16.方程1−x +26=x 3去分母得( )A. 1−x−2=2xB. 6−x +2=2xC. 6−x−2=2xD. 1−x +2=2x7.把方程3x−y =1变形为用含x 的代数式表示y 的形式正确的是( )A. y =1−3xB. x =1+y 3C. y =3x−1D. y =x +138.若8m 7x n y +7和−3m −4y +2n 2x 是同类项,则x 和y 的值分别是( )A. x =−3,y =2B. x =−2,y =3C. x =2,y =−3D. x =3,y =−29.不等式x ≥1的解集在数轴上表示正确的是( )A. B.C. D.10.用代入法解方程组{y =2x +10①9x−2y =5②时,将方程①代入②中,所得方程正确的是( )A. 9x−4x +20=5B. 9x−4x−20=5C. 9x−2x−10=5D. 9x−2x +10=511.明代大数学家程大位著《算法统宗》一书中,记载了这样一道数学题:“八万三千短竹竿,将来要把笔头安,管三套五为期定,问都多少能完成?”用现代的话说就是:有83000根短竹,每根短竹可制成毛笔的笔管3个或笔套5个,怎样安排笔管和笔套的短竹的数量,使制成的1个笔管与1个笔套正好配套?设用于制作笔管的短竹数为x 根,用于制作笔套的短竹数为y 根,则可列方程为( )A. {x +y =83000x =y B. {x +y =830003x =5y C. {x +y =830005x =3yD. {3x +5y =83000x =y 12.暑假到了,19名男同学去外地参加研学,住宿时有2人间和3人间可供住宿,每个房间都要住满,共有几种住宿方案( )A. 5种B. 4种C. 3种D. 2种二、填空题:本题共4小题,每小题3分,共12分。
海口市七年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)在方程组、、、中,是二元一次方程组的有()A . 1个B . 2个C . 3个D . 4个2. (2分)四名学生解二元一次方程组提出四种不同的解法,其中解法不正确的是()A . 由①得x=,代入②B . 由①得y=,代入②C . 由②得y=-,代入①D . 由②得x=3+2y,代入①3. (2分) (2020八下·郑州月考) 若关于x,y的二元一次方程组的解满足,则a的取值范围是()A .B .C .D .4. (2分) (2017七下·长安期中) 如图,10块相同的长方形墙砖拼成一个矩形,设长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程组正确的是()A .B .C .D .5. (2分)下列运算,正确的是()A . 4a﹣2a=2B . a6÷a3=a2C . (﹣a3b)2=a6b2D . (a+b)2=a2+b26. (2分)(2017·昆山模拟) 下列计算正确的是()A . 3a+4b=7abB . (ab3)2=ab6C . (a+2)2=a2+4D . x12÷x6=x67. (2分)如果a2+5a+k,分解后有一个因式为(a-1),那么k的值()A . 6B . -6C . -4D . -58. (2分)对于非零的两个实数a,b,规定,那么将结果再进行分解因式,则为()A . a(a+2)(a-2)B . a(a+4)(a-4)C . (a+4)(a-4)D . a(a2+4)9. (2分)下列运算中,计算正确的是()A . 3x2+2x2=5x4B . (-x2)3=-x6C . (2x2y)2=2x4y2D . (x+y2)2=x2+y410. (2分) (2017七下·寮步期中) 如图所示,将△ABC沿BC方向平移2 cm得到△DEF,若△ABC的周长为16 cm,则四边形ABFD的周长为()A . 16 cmB . 18 cmC . 20 cmD . 22 cm二、填空题 (共8题;共10分)11. (2分)若方程x4m﹣1+5y﹣3n﹣5=4是二元一次方程,则m=________,n=________.12. (1分) (2020七下·吉林月考) 已知:若关于x、y的二元一次方程组的解是,则a+b的值为________13. (1分)已知两个正方形的边长的和为20cm,它们的面积的差为40cm2 ,则这两个正方形的边长分别是________ cm.14. (1分) (2019七下·新罗期末) 若x,y为实数,且|x+2|+ =0,则xy的值为________.15. (1分)(2017·东营) 分解因式:﹣2x2y+16xy﹣32y=________.16. (1分)(2020·丹东模拟) 分解因式:3ax2-6ax+3a= ________.17. (1分)图,△ABC平移得到△A′B′C′,已知∠B=45°,∠C′=70°,∠A=________18. (2分)(2019·上虞模拟) 《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱:若每人出7钱,还差3钱.则合伙人数为________人;羊价为________钱.三、解答题 (共8题;共67分)19. (10分) (2016七下·抚宁期末) 请你根据萌萌所给的如图所的内容,完成下列各小题.(1)若m※n=1,m※2n=﹣2,分别求m和n的值;(2)若m满足m※2≤0,且3m※(﹣8)>0,求m的取值范围.20. (5分)先化简,再求值:,其中、满足.21. (15分) (2015七下·泗阳期中) 因式分解:(1) 3x(a﹣b)﹣6y(b﹣a)(2) 4x2﹣64(3)﹣a+2a2﹣a3 .22. (5分)解方程组23. (12分) (2018八上·新蔡期中) 阅读下列多项式因式分解的过程:x2﹣2x﹣8=x2﹣2•x•1+12﹣12﹣8=(x﹣1)2﹣9=(x﹣1)2﹣32=(x﹣1+3)(x﹣1﹣3)=(x+2)(x﹣4)这种把多项式分解因式的方法叫做“配方法”,请你根据上面的材料解答下列问题:(1)利用完全平方公式填空:x2+8x+(________)2=(x+________)2;(2)用“配方法”把多项式x2﹣6x﹣16分解因式;(3)如果关于x的二次三项式x2+10x+m在实数范围内不能因式分解,求实数m的取值范围.24. (5分)将如图一个正方形和三个长方形拼成一个大长方形,再据此图写出一个多项式的因式分解.25. (5分) (2019七上·吉林月考) 若与互为相反数,求的值.26. (10分) (2017七下·迁安期末) 某体育馆计划从一家体育用品商品一次性购买若干个排球和篮球(每个排球的价格都相同,每个篮球的价格都相同),双方洽谈的信息如下:信息一:购买1个排球和2个篮球共需210元;信息二:购买2个排球和3个篮球共需340元;信息三:购买排球和篮球共50个,总费用不超过3200元,且购买排球的个数少于30个.(1)每个排球和每个篮球的价格各是多少元?(2)该体育馆有几种购买方案?应选择哪种购买方案可使总费用最低?最低费用是多少元?参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共67分)19-1、19-2、20-1、21-1、21-2、21-3、22-1、23-1、23-2、23-3、24-1、25-1、26-1、26-2、。
七年级数学下学期期中考试试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)1.下列各组图形,可由一个图形平移得到另一个图形的是 ( )A. B. C. D.2.以下列各组线段为边,能组成三角形的是 ( ) A .2、2、4 B .8、6、3 C .2、6、3 D .11、4、63.下列各计算中,正确的是 ( ) A .a 3· a 2= a 5B .(﹣2a 2)3= 8a 6C .2a 2+a 2= 3a 4D .(a ﹣b )2= a 2﹣b 24.如图,给出下列四个条件:①∠BAC=∠DCA ;②∠DAC=∠BCA ;③∠ABD=∠CDB ; ④∠ADB=∠CBD ,其中能使AD ∥BC 的条件是 ( ) A .①② B .③④C .②④D .①③④5.一个多边形的内角和比外角和的三倍少180°,则这个多边形是 ( ) A .五边形 B .六边形 C .七边形 D .八边形6.在下列多项式的乘法中,不能直接用平方差公式计算的是 ( ) A .(-a -b)( a -b) B . (c 2-d 2)(d 2+c 2) C .(x 3-y 3)( x 3+y 3)D .(m -n)(-m +n)(第4题) (第7题) (第9题)7.如图,小亮从A 点出发前进10m ,向右转一角度,再前进10m ,又向右转一相同角度,…, 这样一直走下去,他回到出发点A 时,一共走了180m ,则他每次转动的角度是( )A .15°B .18°C .20°D .不能确定8.小明在计算一个二项式的平方时,得到的正确结果是++mn m 102■,但最后一项不慎被污染了,这一项应是 ( ) A .52n B .102n C .252nD .±252n9.如图,△ABC 的面积等于35cm 2,AE=ED ,BD=3DC ,则△AEF 与△BDE 面积和等( ) A.15 B.17.5 C.18 D.20A1()2a b a <<()()12822+-∙++x x px x D BFAE CH TG 10. 如图,在△ABC 中,BD 、BE 分别是高和角平分线,点F 在CA 的延长线上,FH ⊥BE 交BD 于G ,交BC 于H ,下列结论:①∠DBE =∠EFH ;②2∠BEF =∠BAF +∠C ;③∠CFH =21(∠BAC -∠C );④∠BGH =∠ABE +∠C其中正确的是 ( ) A .①②③B .①③④C .①②④D .①②③④二、填空题(每空2分,共18分)11.计算:))((3x x --=_____________;(a -2)( a +3) =______________;12.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m ,这个数用科学记数法表示为 m. 13. 已知23==n ma a、,则n m a 2-=___________.14.已知3=+y x ,2=xy ,则22xy y x += .15.如图是我们常用的折叠式小刀,刀柄外形是一个直角梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成∠1与∠2,若∠1=75°,则∠2是的度数为 .16.若 的结果中不含3x项,则p = . 17. 已知1025104==y x ,,则)1(3)2)(2(-+--xy y x 的值为 . 18. 现有一张边长为a 的大正方形卡片和三张边长为b 的小正方形卡片 如图1,取出两张小正方形卡片放入“大正方形卡片”内拼成的图案如图2,再重新用三张小正方形卡片放入“大正方形卡片”内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab -27,则小正方形卡片边b 的长是 .三、简答题(共52分) 19. (共16分)计算:(1)()0222311--⎪⎭⎫ ⎝⎛+--π (2)a ▪a 2▪a 3+(-2a 3)2-a 8÷a 2第18题(图1)(图2) (图3)第15题第10题⎪⎪⎭⎫ ⎝⎛-⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+22222222yx y x y x (3) -3x 2(2x -4y)+2x(x 2-xy) (4)()()()2212+---x x x20.(4分) 如右图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左 平移2格,再向上平移4格. (1)请在图中画出平移后的△A ´B ´C ´; (2)再在图中画出△ABC 的高CD 和中线AE ; (3)能使S △ABC =S △QBC 的格点Q ,共有 个.(点Q 异于点A).21. (6分)填写证明的理由.已知:如右图,AB∥CD,EF 、CG 分别是∠AEC、∠ECD 的角平分线.求证:EF∥CG.证明:∵ AB∥CD(已知)∴ ∠AEC=∠DCE ( ) ∴ ∠1=21∠ 又 ∵ EF 平分∠AEC ( ) ( )同理 ∠2=21∠ ∴ ∠1=∠2∴ EF∥CG ( )22.(6分) 已知052422=+-++y x y x ,试化简求的值.23.(6分)如图AD∥BC,∠EAD=∠C ,∠FEC=∠BAE ,∠EFC=50°. (1)AE 与CD 平行吗?为什么?(2)求∠B 的度数.ABCF DE24. (6分)已知∠AOB ,过不在直线OA 、OB 上的一点P 作PE ⊥OA 于点E ,PF ⊥OB 于点F ,且∠AOB 是∠EPF 的3倍少60°,试画图并求出∠AOB 的度数。
海口市七年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)若m·23=26 ,则m等于()A . 2B . 4C . 6D . 82. (2分)(2017·衢州) 二元一次方程组的解是()A .B .C .D .3. (2分)(2020·杭州模拟) 下列各式变形中,正确的是()A .B .C .D .4. (2分) (2019八上·龙湖期末) 下列由左到右的变形,属于因式分解的是()A . (x+2)(x-2)=x2-4B . x2+4x-2=x(x+4)-2C . x2-4=(x+2)(x-2)D . x2-4+3x=(x+2)(x-2)+3x5. (2分)某种产品是由A种原料x千克、B种原料y千克混合而成,其中A种原料每千克50元,B种原料每千克40元,后来调价,A种原料价格上涨10%,B种原料价格减少15%,经核算产品价格可保持不变,则x:y的值是()A .B .C .D .6. (2分) (2020八上·新乡期末) 如图,若将图①中的阴影部分剪下来,拼成如图②所示的长方形,比较两图阴影部分的面积,可以得到乘法公式()A .B .C .D .二、填空题 (共10题;共10分)7. (1分) (2019七下·姜堰期中) =________.8. (1分)计算a2(a﹣1)的结果等于________.9. (1分) (2017八上·顺庆期末) 近来雾霾天气严重影响了我们的生活秩序,为此,我县中小学还停止了正常上课来应对,雾霾是对大气中各种悬浮颗粒物含量超标的笼统表述,尤其是PM2.5(空气动力学当量直径小于等于2.5微米的颗粒物)被认为是造成雾霾天气的“元凶”,已知1微米相当于1米的一百万分之一,那么2.5微米用科学记数法可表示为________米.10. (1分) (2016七下·东台期中) 多项式﹣3x2y3z+9x3y3z﹣6x4yz2的公因式是________.11. (1分) (2017七下·寮步期中) 已知方程,用含x的代数式表示y为:________,12. (1分) (2017七下·巨野期中) 已知:52n=a,4n=b,则102n=________.13. (1分)计算:20082﹣2007×2009=________,已知a+=3,则=________.14. (1分) (2018七上·青浦期末) 如果二次三项式是完全平方式,那么常数m=________;15. (1分)为确保信息安全,信息需加密传输,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a,b对应的密文为a﹣2b,2a+b.例如,明文1,2对应的密文是﹣3,4.当接收方收到密文是1,7时,解密得到的明文是________16. (1分)(2a﹣5b)•(________)=25b2﹣4a2 .三、解答题 (共10题;共98分)17. (20分) (2015七上·大石桥竞赛) 先化简再求值:(1),其中,.(2)化简求值:,其中,.18. (15分)(1)计算:3a3b2÷a2﹣b(a2b﹣3ab﹣5a2b);(2)因式分解:n2(m﹣2)﹣n(2﹣m).19. (5分) (2018八上·埇桥期末) 计算题:化简与解方程组(1)计算:(2)解下列方程组:.20. (5分)(2018·清江浦模拟) 已知:求代数式的值.21. (5分)(中国古代问题)设马四匹,牛六头,共价四十八两;马三匹,牛五头,共价三十八两,问马、牛各价几何?22. (15分) (2019七上·宁德期中) 阅读理解:小明是一个好学的学生,下面是他从网络搜到两位数乘11速算法.规律:“头尾一拉,中间相加,满十进一”.例如:①24×11=264.计算过程:24 两数拉开,中间相加,即 2+4=6,最后结果264;②68×11=748.计算过程:68两数分开,中间相加,即6+8=14,满十进一,最后结果748.(1)计算:①25×11=________,②87×11=________;(2)若某一个两位数十位数字是a,个位数字是b(a+b<10),将这个两位数乘11,得到一个三位数,则根据上述的方法可得,该三位数百位数字是________,十位数字是________,个位数字是________;(用含 a、b 的代数式表示)(3)请你利用所学的知识解释其中原理.23. (15分) (2019八上·绿园期末) 如图1,是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀将其均分成四个完全相同的小长方形,然后按图2的形状拼图.(1)图2中的图形阴影部分的边长为________;(用含m、n的代数式表示)(2)请你用两种不同的方法分别求图2中阴影部分的面积;方法一:________;方法二:________.(3)观察图2,请写出代数式(m+n)2、(m﹣n)2、4mn之间的关系式:________.24. (5分) (2017七下·台州期中) 已知方程组,王芳看错了方程(1)中的a,得到的方程组的解为,李明看错了方程(2)中的b,得到的方程组的解为,求原方程组的解.25. (7分)图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积.方法1:________方法2:________(2)观察图②请你写出下列三个代数式:(m+n)2,(m﹣n)2,mn之间的等量关系.________;(3)根据(2)题中的等量关系,解决如下问题:①已知:a﹣b=5,ab=﹣6,求:(a+b)2的值;②已知:,求:的值.26. (6分) (2020七下·鼓楼期中) (类比学习)小明同学类比除法240¸16=15的竖式计算,想到对二次三项式x2+3x+2进行因式分解的方法:即(x2+3x+2)¸(x+1)=x+2,所以x2+3x+2=(x+1)(x+2).(1)(初步应用)小明看到了这样一道被墨水污染的因式分解题:x2+□x+6=(x+2)(x+☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:得出□=________,☆=________.(2)(深入研究)小明用这种方法对多项式x2+2x2-x-2进行因式分解,进行到了:x3+2x2-x-2=(x+2)(*).(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x3+2x2-x-2因式分解.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共10题;共10分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共98分)17-1、17-2、18-1、19-1、19-2、20-1、21-1、22-1、22-2、22-3、23-1、23-2、23-3、24-1、25-1、25-2、25-3、26-1、26-2、。
2023—2024学年度下期期中调研考试七年级数学试题2024.4本试题卷分第一部分(选择题)和第二部分(非选择题),共6页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.考生作答时,不能使用任何型号的计算器.第一部分(选择题共36分)注意事项:1.选择题必须使用2B铅笔将答案标号填涂在答题卡对应题目标号的位置上.2.在每小题给出的四个选项中,只有一个选项符合题目要求.A. B.C. D..一次生活常识知识竞赛共有道题,规定答对一道题得10分,答错或不答A.在AD上B.12.现有如图(用3个如图(2)的全等图形和第二部分(非选择题共114分)注意事项: 1.考生使用0.5mm 黑色墨汁签字笔在答题卡上题目所指示的答题区域内作答,答在试题卷上无效. 2.作图时,可先用铅笔画线,确认后再用0.5mm 黑色墨汁签字笔描清楚.3.解答题应写出文字说明、证明过程或推演步骤.4.本部分共16个小题,共114分.二、填空题:本大题共4个小题,每小题3分,共12分.13.如果方程是关于3y m ―2+4=0的一元一次方程,那么m=_______.14.若{x =5y =10z =―15是三元一次方程组{x +y +z =02x ―y +z =k x +2y ―z =40的解,则k 的值是________.15.若(x—3y ―1)2+|5x +3y +7|=0,求代数式(x +y )2019_________.16.若关于x 的不等式组{3(x +1)>62x ―1<m ―3有且只有3个整数解,则m 的取值范围是______.三、解答题(本大题共6题,共72分)17.解下列方程或方程组(共12分)(1)4x-3(20-x )=6x-7(9-x )(2)x +12=x ―x ―26(3){2x +3y =5①4x ―2y ―1=0②(4){2x +4y ―3z =2①4x +7y +z =3②8x +3y ―2z =―5③18.(12分)(1)解不等式;2x-3≤12(x+2)(2)解不等式组{3(1―x )≤―2x +51―2x ―13>x+22并用数轴表示不等式组的解集19.(10分)一个两位数的十位上的数字与个位上数字之和为8,把这个数减去36后,结果恰好成为十位数字与个位数字对调后组成的两位数,求这个两位数.20.(12分)一项工程,甲队独做需12天完成,乙队独做需15天完成,丙队独做需20天完成.按原计划,这项工程要在7天内完成,现在甲、乙两队先合作若干天,以后为加快进度,丙队同时加入这项工作,这样比原计划提前一天完成,求甲、乙两队先合作了多少天.21.(12分)《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.其中《盈不足》名记载了一道数学问题: “今有共买物,人出六,赢二; 人出五,不足三.问人数、物价各几何?译文:“今有人合伙购物,每人出6钱,会多出2钱; 每人出5钱,又差3钱.问人数、物价各多少? ”请解答上述问题.22.(14分)某校计划购买A型和B型两种笔记本作为奖品发放给学生,若购买A型笔记本5本,B型笔记本8本,共需80元;若购买A型笔记本15本,B 型笔记本4本,共需140元.(1)A型和B型笔记本每本的价格分别是多少元?(2)该校计划购买A型和B型两种笔记本共80本,费用不超过500元,A型笔记本最多买多少本?2023—2024学年度下期期中调研考试(答案版)第一部分(选择题共36分)注意事项:1.选择题必须使用2B铅笔将答案标号填涂在答题卡对应题目标号的位置上.2.在每小题给出的四个选项中,只有一个选项符合题目要求.一、选择题:本大题共12题,每题3分,共36分.【详解】解:由题意可得①×3+②× 2,消去x,故A选项不符合题意①×2+②×3,消去y,故B选项不符合题意①×(-3)-②)×2,消去x,故C选项不符合题意①×2-②×(-3),消去y,故D选项符合题意,故选:D6.已知{x=1y=2是关于x,y的二元一次方程2x-my=10的一个解,则m的值为(D )A. 6B.-6C. 4D. -4解析:本题主要考查二元一次方程的解,根据二元一次方程的解的定义解决此题解:由题意得,2-2m=10.∴m=-4.故选:D.7.“践行垃圾分类•助力双碳目标”主题班会结束后,米乐和琪琪一起收集了一些废电池,米乐说:“我比你多收集了7节废电池”琪琪说:“如果你给我8节废电池,我的废电池数量就是你的2倍.”如果他们说的都是真的,设米乐收集了x节废电池,琪琪收集了y节废电池,根据题意可列方程组为(A )A. {x―y=72(x―8)=y+8 B.{x―y=7 x―8=2(y+8)C. {x―y=72(x―8)=y D.{x―y=7 x―8=2(y+8)A. B.C. D.解析:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础故选:B解:依题意有:5x-4--x+3.故选:B.11.如图,正方形ABCD的轨道上有两个点甲与乙,开始时甲在A处,乙在,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1cm,乙的速度为每秒5cm,已知正方形轨道ABCD的边长为2cm,则乙在第2024次追上甲时的位置是( A )A.在AD上B. 在AB上C. 在CD上D. 在BC上解析:解:设乙走x秒第一次追上甲根据题意,得5x-x=4,解得x=1,∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是4B上:设乙再走y 秒第二次追上甲,根据题意,得5y-y=8,解得y=2,∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理,乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;同理,乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是D4上.乙在第5次追上∴甲时的位置又回到AB上;∵2022÷4=506第二部分(非选择题共114分)二、填空题:本大题共4个小题,每小题3分,共12分.三、解答题(本大题共6题,共72分)17.解下列方程或方程组(共12分)(1)4x-3(20-x )=6x-7(9-x )(2)x +12=x ―x ―26(3){2x +3y =5①4x ―2y ―1=0②(4){2x +4y ―3z =2①4x +7y +z =3②8x +3y ―2z =―5③答案为:(1)x=12 (2)x=12(3){x =1316y =98 (4){x =―1y =1z =018.(12分)(1)解不等式;2x-3≤12(x+2)(2)解不等式组{3(1―x )≤―2x +51―2x ―13>x+22并用数轴表示不等式组的解集答案:解:(1)2x-3≤12(x+2)去分母得:2(2x-3)≤x+2去括号得:4x-6≤x+2,移项得;4x-x≤2+6,合并同类项得:3x≤8系数化为1得:x≤83(2){3(1―x )≤―2x +5①1―2x ―13>x +22②解不等式①得:x>-2,解不等式②得:x<27,不等式组的解集为-2≤x<27数轴表示如下所示:19.(10分)一个两位数的十位上的数字与个位上数字之和为8,把这个数减去36后,结果恰好成为十位数字与个位数字对调后组成的两位数,求这个两位数.答案:62解:设这个两位数的个位数字为x ,则十位数字为(8-x),这个两位数为10(8-x)+x ,对调后的两位数为10x+(8-x)依题意得,10(8-x)+x-36=10x+(8-x)解得,x=2,∴8-x=6,∴这个两位数为6220.(12分)一项工程,甲队独做需12天完成,乙队独做需15天完成,丙队独做需20天完成.按原计划,这项工程要在7天内完成,现在甲、乙两队先合答案:(1)4型笔记本每本8元,B型笔记本每本5元(2)4型笔记本最多买33本(1)解:设A型笔记本每本v元,B型笔记本每本y元,根据题意得{5x+8y=8015x+4y=140解得{x=8y=5答:4型笔记本每本8元,B型笔记本每本5元(2)解:设购买A型笔记本m本根据题意得8m+5(80-m)≤500解得m≤1003∵m是正整数,∴m最大取33答:A型笔记本最多买33本。
海南省海口市丰南中学2023-2024学年七年级下学期期中数学试题一、单选题1.下列方程中,是一元一次方程的是( )A .24x x =B .23x =C .21x y +=D .31x x-= 2.若12x y =⎧⎨=⎩是关于x 、y 的二元一次方程ax -3y =1的解,则a 的值为( ) A .-5 B .-1 C .2 D .73.下列解方程的步骤正确的是( )A .由2431x x +=+,得2314x x +=+B .由0.50.75 1.3x x x -=-,得57513x x x -=-C .由12226x x -+-=,得33212x x --+= D .由()()3223x x -=+,得3626x x -=+4.若m >n ,则不论a 取何实数,下列不等式都成立的是( )A .m +a >nB .ma >naC .a -m <a -nD .22ma na > 5.不等式2x ≥的解集在数轴上表示正确的是( )A .B .C .D .6.已知单项式133m x y --与52n m n x y +是同类项,那么m ,n 的值分别是( ) A .21-, B .21--, C .2,1 D .21-,7.y 与2的差不大于0,用不等式表示为( )A .20y ->B .20y -<C .20y -≥D .20y -≤8.若2946x y x y -=⎧⎨+=⎩,则x y +的值是( ) A .5- B .5 C .4- D .49.某车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.每副太阳镜需要2片镜片和1个镜架配成一套,应如何分配工人生产镜片和镜架,才能使产品配套?设安排x 名工人生产镜片,y 名工人生产镜架,则可列方程组( )A .60220050x y x y +=⎧⎨⨯=⎩B .6020050x y x y +=⎧⎨=⎩C .60250200x y x y +=⎧⎨⨯=⎩D .60200250x y x y +=⎧⎨=⨯⎩10.定义新运算:对于任意实数a ,b 都有()1a b a a b ⊕=-+,如:()2522515⊕=-+=-,那么不等式42x ⊕≥的正整数解的个数是( )A .2B .3C .4D .无数个11.《九章算术》是中国古代的数学专著,第七章“盈不足”专讲盈亏问题,其中记录了这样一道问题:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价几何?条件部分的译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,若设共有x 人,物品价格y 元,则下面所列方程组正确的是( )A .8374x y x y +=⎧⎨-=⎩B .8374x y x y -=⎧⎨+=⎩C .8374x y x y -=⎧⎨-=⎩D .8374x y x y +=⎧⎨+=⎩12.某程序的操作框图如图所示,规定:程序运行从“开始”到“结果是否33≥”为一次操作.如果程序恰好操作了三次就停止,那么开始输入的x 的取值情况是( )A .15x =B .15x <C .59x ≤<D .5x ≥二、填空题13.已知二元一次方程235x y -=,用含y 的代数式表示x ,则x =.14.已知某不等式组的解集如图所示,则不等式组的整数解为15.关于x ,y 的二元一次方程组2325x y m x y m+=⎧⎨-=⎩ 的解满足x +4y =1,则m =. 16.观察下列方程组:①221x y x y -=⎧⎨+=⎩;②26322x y x y -=⎧⎨+=⎩;③312433x y x y -=⎧⎨+=⎩;…若第④方程组满足上述方程组的数字规律,则第④方程组为.三、解答题17.解下列方程或不等式(1)4322x x -=- (2)2164135x x +-=- (3)()()32921x x +<--18.解下列方程组(1)378211x y x y -=⎧⎨+=⎩ (2)32124741x y y x +=-⎧⎨-=⎩19.解不等式组21512152263x x x x +<+⎧⎪--⎨-≤⎪⎩,并在数轴上表示出它的解集.20.为更好地落实“双减”要求.提高课后延时服务质量,某校根据学校实际,决定增设更多运动课程,让更多学生参加体育锻炼.七(1)班计划购买足球和跳绳两种体育器材共22个,其中足球每个100元,跳绳每根20元.如果购买两种体育器材共花费1240元,求足球和跳绳各买了多少个?21.甲、乙两车分别从相距210千米的A ,B 两地相向而行.(1)两车均保持匀速行驶且甲车的速度是乙车速度的2倍,若甲车比乙车提前2小时出发,则甲车出发后3小时两车相遇.求甲、乙两车的速度分别是多少(单位:千米/小时)?(2)如果甲、乙两车保持(1)中的速度,两车同时出发相向而行,求经过多少小时两车相距30千米?22.“一盔一带”安全守护行动是公安部在全国开展的一项安全守护行动,也是营造文明城市,做文明市民的重要标准,“一盔”是指安全头盔,电动自行车驾驶人和乘坐人员应当戴安全头盔,某商场欲购进一批头盔,已知购进8个甲型头盔和6个乙型头盔需要630元,购进6个甲型头盔和8个乙型头盔需要700元.(1)购进1个甲型头盔和1个乙型头盔分别需要多少元?(2)若该商场准备购进200个这两种型号的头盔,总费用不超过10200元,则最多可购进乙型头盔多少个?(3)在(2)的条件下,若该商场分别以58元/个、98元/个的价格销售完甲,乙两种型号的头盔200个,能否实现利润超过6190元的目标?若能,请给出相应的采购方案;若不能,请说明理由.。
海口市七年级下学期数学期中考试试卷(五四学制)姓名:________ 班级:________ 成绩:________一、选择题: (共6题;共12分)1. (2分) (2019七下·芜湖期末) 下列实数当中是无理数的是()A . 6B .C .D .2. (2分) (2020七下·昌吉期中) 在3.14,,,π,,0.1010010001…中,无理数有()A . 1个B . 2个C . 3个D . 4个3. (2分)下列说法中正确的是()A . -a一定表示负数B . 两数比较,绝对值大的反而小C . 互为相反数的两个数对应的点一定在原点两侧D . 如果一个数的绝对值等于这个数的相反数,那么这个数是负数或零4. (2分) (2020七下·长兴期末) 下面图形中,∠1和∠2是同位角的是()A . ①②B . ①③C . ②③D . ②④5. (2分) (2020七下·江津月考) 过点B画线段AC所在直线的垂线段,其中正确的是()A .B .C .D .6. (2分)如图,∠AOC>∠BOD,则()A . ∠AOB>∠CODB . ∠AOB=∠CODC . ∠AOB<∠CODD . 以上都有可能二、填空题: (共12题;共18分)7. (1分)(2017·枣阳模拟) 计算:(﹣2)0﹣ +2﹣1=________.8. (1分) (2019七下·端州期中) 一个正数的两个平方根分别为a+3和2a+3,则a=________.9. (1分)比较大小:________ 4.(填“>”、“<”或“=”号)10. (1分) 825 000用科学记数法表示为________11. (1分)如图,如果∠1=40°,∠2=100°,∠3的同旁内角等于________.12. (1分)如果x+4y﹣3=0,那么2x•16y=________.13. (1分) (2019七下·吴兴期末) 如图,将一条两边平行的纸带折叠,当∠2=80°,则∠1=________.14. (1分)(2020·淄博) 计算:=________.15. (1分)一个角和它的补角相等,这个角是________角.16. (7分) (2019七下·吉林期中) 完成下面的证明如图,FG//CD ,∠1=∠3,∠B=50°,求∠BDE的度数.解:∵FG//CD (已知)∴∠2=________(________)又∵∠1=∠3,∴∠3=∠2(等量代换)∴BC//________(________)∴∠B+________=180°(________)又∵∠B=50°∴∠BDE=________.17. (1分)如图,a∥b,∠1=110°,∠3=50°,则∠2的度数是________.18. (1分)(2020·北京模拟) 如图,均是五边形的外角,,则________°.三、简答题: (共6题;共70分)19. (5分) (2020九下·中卫月考)20. (10分) (2020八下·高新期末) 计算(1)(2) ( -5)(6+ )-(3- )+()21. (15分)计算(1) (- )2-+(-1)2 017-1 ×(0.5-)÷1 .(2) |-3|+(π-2017)0-2sin30°+()-1(3) (2 - )0+|2- |+(-1)2017- × ;22. (15分) (2020七下·古冶月考)(1)已知 x2-25=0,求x的值(2)计算:;(3)计算:.23. (5分)已知:8•2 2m﹣1•23m=217 ,求m的值.24. (20分)完成下列计算和解方程题(1) | ﹣ |+| ﹣1|﹣|3﹣ |(2)﹣﹣(3)(x﹣1)2﹣81=0(4) 8(x+2)3+27=0.四、解答题: (共4题;共31分)25. (15分)如果三角形有一边上的中线恰好等于这条边长,那么称这个三角形为“和谐三角形”。
七年级(下)数学期中考试试题及答案一、选择题(每小题4分,共40分,请将答案涂在答题卡相应位置上)1.下面计算正确的是( )A.b3b2 = b6 B.x3 + x3 = x6 C.(a + b)2 = a2 +b2 D.(-m)6 ÷(-m)4 =m22.下列各组长度的线段能构成三角形的是( )A.6 cm,8cm,15c m B.7 cm,5 cm,12 cm C.4 cm,6 cm,5 cm D.8 cm,4 cm,3 cm3.在下列多项式乘法中,可以用平方差公式计算的是()A.(2a - 3b)(-2a +3b) B.(-3a+4b)(-4b-3a)C.(a + 1)(-a -1) D.(a2- b)(a + b2)4.如图所示,点E在A C 的延长线上,下列条件中能.判.断.AB // CD ()A. ∠3 =∠4B. ∠1 =∠2C. ∠D =∠DCED. ∠D +∠ACD =18005.下列说法正确的是()A.相等的两个角是对顶角;B.过一点有且只有一条直线与已知直线平行;C.直线外一点与直线上各点连接的所有线中,垂线最短;D.平面内,过一点有且只有一条直线与已知直线垂直6. 要使式子4x2 + 25 y 2 成为一个完全平方式,则需添上( )A.10 xyB.±10xyC.20 xyD.±20 xy7. 已知:直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于()A.30° B.35° C.40°D.45°8. 如图,从边长为(a+4)的正方形纸片中剪去一个边长为(a+1)的正方形(a>0),剩余部分沿虚线又剪开拼成一个长方形(不重叠无缝隙),则长方形的周长为( ).A.2a+5B.4a+10C.4a+16D.6a+159.如图,在边长为2的正方形A B C D中剪去一个边长为1的小正方形C E F G,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△A B P的面积S随着时间t变化的图象大致为( )10.如图所示,在折纸活动中,小明制作了一张△ABC 纸片,点D、E 分别是边A B 、A C 上,将△ABC 沿着DE 折叠压平,A 与A'重合,若∠A=70︒,则∠1+∠2= ().A. 140︒ B. 130︒ C. 110︒ D. 70︒二、填空题(每小题4分,共24 分)(请将答案填在答题卷相应横线上.)11.自从扫描隧道显微镜发明以后,世界上便诞生了一门新兴的学科,这就是“纳米技术”.已知:1 纳米=10-9 米,则32.95纳米用科学记数法表示为米 .12. 若a m=3,a n= 2 ,则a3m-2 n 等于.13. 图书馆现有200本图书供学生借阅,如果每个学生一次借4本,则剩下的书y(本)和借书学生人数x(人)之间的关系式是.14. 如图,将矩形纸片A BCD沿B D折叠,得到△BCD,C′D与A B交于点E.若∠1=35°,则∠2= 度.15.如图:△ABC中,点D、E、F分别在边B C,AC,AB上,E为A C的中点,AD,BE,CF交于一点G, BD=2CD,S∆AGE=3, S∆GDC= 4, 则S∆ABC 的值是.16. 若规定符号a bc d的意义是a bc d= ad - bc ,则当m2﹣2m﹣3=0时,23122m mm m---的值为三、解答题(共 86 分)(请在答题卡指定区域内作答,解答时应写出必要的文. 字.说.明.、.证.明.过.程.或.演.算.步.骤.,.写.错.区.域.或.超.过.区.域.答.题.无.效.) 17.计算题 (每小题 5 分,共 20 分)(1) x 3y ⋅ 2xy 2 + (- x 2y )3 ÷ x 2 (2) 20201520161()(3.14)(0.25)42π----+-⨯(3) 3502 -349× 351 (用 乘 法 公 式 计 算 ) (4) (a + 2b + 3)(a + 2b - 3)18.( 8 分 )先化简,再求值:[(2 x + y)2 - y(-2 x + y) - 8xy] ÷ (-12x) ,其中x = 2, y = -119.( 6 分 ) 尺规作图(在原图上作图,不写作法,保留作图痕迹)在下列图形中,补充作图: (1)在 A B 的左侧作∠APD=∠B AC (2)根据上面所作出的图形,你认为 PD 与 A C 一定平行吗?答:你的理由是20.(8分)将长为40cm、宽为15 cm 的长方形白纸,按如图所示的方法黏合起来,黏合部分宽为5 cm.(1)根据上图,将表格补充完整:(2)设x张白纸黏合后的总长度为y cm,则y与x之间的关系式是;(3)你认为白纸黏合起来总长度可能为2018cm 吗?为什么?21.(8分)阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段A B、BC上,AC∥DE,DF∥AE 交B C于点F,AE平分∠BAC.求证:DF 平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1= ()∵AC∥DE(已知)∴∠1=∠3()∴∠2=∠3()∵DF∥AE(已知)∴∠2= ()∠3=∠4()∴∠4=∠5∴DE平分∠BDE()22.(8分)某景区售票处规定:非节假日的票价打a折售票; 节假日根据团队人数x(人)实行分段售票:若x≤10,则按原票价购买;若x>10,则其中10 人按原票价购买,超过部分的按原票价打b 折购买.某旅行社带团到该景区游览,设购票款为y1元,在节假日的购票款为y2元, y1,y2与x之间的函数图象如图所示(1)观察图象可知:a= , b= .与x的关系式:;(2)当x>10 时,y2(3)该旅行社在今年5 月1 日带甲团与5 月10 日(非节假日)带乙团到该景区游览,甲、乙两个团各25 人,请问乙团比甲团便宜多少元?23.( 8分)如图,点D、F在线段A B上,点E、G分别在线段B C和A C上,CD∥EF,∠1=∠2.(1)判断D G与B C的位置关系,并说明理由;(2)若D G是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明A B与C D有怎样的位置关系?24.(6 分)图①是一个长为2a,宽为2b 的长方形,沿图中虚线剪开,可分成四块小长方形.(1)将图①中所得的四块长为a,宽为b的小长方形拼成一个正方形(如图②).请利用图②中阴影部分面积的不同表示方法,直接写出代数式(a+b)2、(a-b)2、ab 之间的等量关系是;(2)根据(1)题中的等量关系,解决如下问题:已经 m+n=9,mn=8,则m-n= ;(如图③),(3)将如图①所得的四块长为a,宽为b的小长方形不重叠地放在长方形A BCD的内部未被覆盖的部分(两个长方形)用阴影表示.若左下角与右上角的阴影部分的周长之差为8,且小长方形的周长为22,则每一个小长方形的面积为.25.(12分)在△ABC 中,AD 是∠BAC 的平分线,AE⊥BC,垂足为E,作C F∥AD,交直线A E 于点F,设∠B=α,∠ACB=β.(1)若∠B=30°,∠ACB=70°,依题意补全图1,并直接写出∠AFC 的度数;(2)如图2,若∠ACB 是钝角,求∠AFC 的度数(用含α,β的式子表示);(3)如图3,若∠B>∠ACB,直接写出∠AFC 的度数(用含α,β的式子表示).参考答案1.B.2.B.3.C.4.A.5.D.6.B.7.C.8.B.9.C.10.D11.二;12.1;13.52°;14.①②⑤;15.5.16.(0,5),(0,-7) 17.(1)原式=323+; (2)原式=13-;18.(1)⎩⎨⎧-==10y x ;(2)⎩⎨⎧-==46y x ;19.解:(1)∠BOD 、∠AOE ;(2)∠BOE=28°;∠AOE=152°; 20.(1)画图略;(2)(0,0)、(2,4); 21.证明:∵AE 平分∠BAC(已知) ∴∠1=∠2(角平分线的定义) ∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等) 故∠2=∠3(等量代换) ∵DF∥AE(已知)∴∠2=∠5(两直线平行,同位角相等) ∴∠3=∠4(等量代换)∴DE 平分∠BDE(角平分线的定义). 22.解:23.解:(1)∵DG∥BC,理由如下:∵CD∥EF,∴∠2=∠DCB,又∵∠1=∠2,∴∠1=∠DCB,∴DG∥BC;(2)CD⊥AB,理由如下:由(1)知DG∥BC,∵∠3=85°,∴∠BCG=180°-∠3=95°,∵∠DCE:∠DCG=9:10,∴∠DCG=95°×0.9=45°,∵DG∥BC,∴∠CDG=45°,∵DG是∠ADC的平分线,七年级下册数学期中考试试题及答案一、选择题:本大题有10个小题,每小题3分,共30分在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)方程■x﹣2y=x+5是二元一次方程,■是被弄污的x的系数,推断■的值()A.不可能是2B.不可能是1C.不可能是0D.不可能是﹣1 2.(3分)如图,射线AB、AC被直线DE所截,则∠1与∠2是()A.同位角B.内错角C.同旁内角D.对顶角3.(3分)下列计算正确的是()A.a3•a2=a6B.3a3+a=3a C.a2﹣a=a D.(﹣a3)2=a6 4.(3分)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.已知1微米相当于1米的一百万分之一,则2.5微米用科学记数可表示为()A.2.5×10﹣7米B.2.5×10﹣6米C.2.5×107米D.2.5×106米5.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.x3﹣xy2=x(x﹣y)2B.(x+2)(x﹣2)=x2﹣4C.a2﹣b2+1=(a﹣b)(a+b)+1D.﹣2x2﹣2xy=﹣2x(x+y)6.(3分)不考虑优惠,买1本笔记本和3支水笔共需14元,买3本笔记本和5支水笔共需30元,则购买1本笔记本和1支水笔共需()A.3元B.5元C.8元D.13元7.(3分)小兰是一位密码编译爱好者,在他的密码手册中有这样一条信息:x﹣1,a﹣b,2,x2+1,a,x+1,分别对应下列六个字:州,爱,我,美,游,杭,现将2a(x2﹣1)﹣2b(x2﹣1)因式分解,结果呈现的密码信息可能是()A.我爱美B.杭州游C.我爱杭州D.美我杭州8.(3分)若将一副三角板按如图所示的方式放置,则下列结论正确的是()A.∠l=∠2B.如果∠2=30°,则有AC∥DEC.如果∠2=45°,则有∠4=∠D D.如果∠2=50°,则有BC∥AD9.(3分)已知a是任何实数,若M=(2a﹣3)(3a﹣1),N=2a(a﹣)﹣1,则M、N 的大小关系是()A.M≥NB.M>NC.M<ND.M,N的大小由a的取值范围10.(3分)已知关于x,y的方程,给出下列结论:①存在实数a,使得x,y的值互为相反数;②当a=2时,方程组的解也是方程3x+y=4+a的解;③x,y都为自然数的解有3对.其中正确的是()A.①②B.②③C.①③D.①②③二、填空题:本大题有8个小题,每小题4分,共32分.11.(4分)将方程5x﹣y=1变形成用含x的代数式表示y,则y=.12.(4分)多项式m2﹣n2和am﹣am的公因式是.13.(4分)若x,y均为整数,且3x•9y=243,则x+2y的值为.14.(4分)如图将一条两边都互相平行的纸带进行折叠,设∠1为45°,则∠2=°.15.(4分)一个多项式与﹣x3y的积为x6y2﹣3x4y﹣x3y4z,那么这个多项式为.16.(4分)若实数a,b满足a﹣2b=4,ab=2,那么a2+4b2=.17.(4分)下列说法中:①若a m=3,a n=4,则a m+n=7;②两条直线被第三条直线所截,一组内错角的角平分线互相平行;③若(t﹣2)2t=1,则t=3或t=0;④平移不改变图形的形状和大小;⑤经过一点有且只有一条直线与已知直线平行.其中,你认为错误的说法有.(填入序号)18.(4分)一张边长为a的大正方形卡片和三张边长为b的小正方形卡片(a<b<a)如图1,取出两张小正方形卡片放入“大正方形卡片”内拼成的图案如图2,再重新用三张小正方形卡片放入“大正方形卡片”内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab﹣9,则小正方形卡片的面积是.三、解答题:本大题有6个小题,共58分)19.(12分)(1)计算:2﹣2+(π﹣3.14)0+(﹣)﹣1(2)计算:(﹣2019)2+2018×(﹣2020)(3)解方程组20.(8分)给出三个多项式:①2x2+4x﹣4;②2x2+12x+4;③2x2﹣4x请你把其中任意两个多项式进行加法运算(写出所有可能的结果),并把每个结果因式分解.21.(8分)(1)先化简,再求值:(3x﹣6)(x2﹣)﹣6x(x2﹣x﹣6),其中x=﹣.(2)已知y2﹣5y+3=0,求2(y﹣1)(2y﹣1)﹣2(y+1)2+7的值.22.(8分)如图,D,E,F,G,H,Ⅰ是三角形ABC三边上的点,且EF∥BC,GH∥AC,DI∥AB,连结EI.(1)判断∠GHC与∠FEC是否相等,并说明理由.(2)若EI平分∠FEC,∠C=54°,∠B=49°.求∠EID的度数.23.(10分)如图,杭州某化工厂与A,B两地有公路,铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.4元/(吨•千米),铁路运价为1.1元/(吨•千米),且这两次运输共支出公路运输费14000元,铁路运输费89100元,求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?24.(12分)长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a度/秒,灯B转动的速度是b度/秒,且a,b满足|a﹣3b﹣1|+(a+b﹣5)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.(1)求a,b的值;(2)若两灯同时转动,经过42秒,两灯射出的光束交于C,求此时∠ACB的度数;(3)若灯B射线先转动10秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(直接写出答案)2018-2019学年浙江省杭州市四校七年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:设■的值为a,方程为ax﹣2y=x+5,整理得:(a﹣1)x﹣2y=5,由方程为二元一次方程,得到a﹣1≠0,即a≠1,则■的值不可能是1,故选:B.2.【解答】解:射线AB、AC被直线DE所截,则∠1与∠2是同位角,故选:A.3.【解答】解:A、a3•a2=a5,故此选项错误;B、3a3+a,无法计算,故此选项错误;C、a2﹣a,无法计算,故此选项错误;D、(﹣a3)2=a6,正确.故选:D.4.【解答】解:2.5微米用科学记数可表示为2.5×10﹣6米.故选:B.5.【解答】解:A选项x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y),故A错.B选项不符合因式分解的概念,故B错,C选项不符合因式分解的概念,故C错,D选项﹣2x2﹣2xy=﹣2x(x+y),故D正确,故选:D.6.【解答】解:设购买1本笔记本需要x元,购买1支水笔需要y元,根据题意,得.解得.所以x+y=5+3=8(元)故选:C.7.【解答】解:原式=2(a﹣b)(x﹣1)(x+1),则呈现的密码信息可能是我爱杭州,故选:C.8.【解答】解:∵∠CAB=∠DAE=90°,∴∠1=∠3,故A错误.∵∠2=30°,∴∠1=∠3=60°∴∠CAE=90°+60°=150°,∴∠E+∠CAE=180°,∴AC∥DE,故B正确,∵∠2=45°,∴∠1=∠2=∠3=45°,∵∠E+∠3=∠B+∠4,∴∠4=45°,∵∠D=60°,∴∠4≠∠D,故C错误,∵∠2=50°,∴∠3=40°,∴∠B≠∠3,∴BC不平行AE,故D错误.故选:A.9.【解答】解:∵M=(2a﹣3)(3a﹣1),N=2a(a﹣)﹣1,∴M﹣N=(2a﹣3)(3a﹣1)﹣2a(a﹣)+1,=6a2﹣11a+3﹣2a2+3a+1=4a2﹣8a+4=4(a﹣1)2∵(a﹣1)2≥0,∴M﹣N≥0,则M≥N.故选:A.10.【解答】解:①若x与y互为相反数,则有,解得,即存在实数a,使得x,y的值互为相反数,①正确②当a=2时,方程组有,解得,将x,y代入3x+y=4+a得,3×﹣=6=4+2,②正确③y的方程,x+2y=3﹣a等式两边同时乘以2,得,整理得,3x+y=6,当x=0时,y=6;当x=1时,y=3;当x=2时,y=0,.共有3组自然数解.③正确故选:D.二、填空题:本大题有8个小题,每小题4分,共32分.11.【解答】解:方程5x﹣y=1,解得:y=5x﹣1,故答案为:5x﹣112.【解答】解:多项式m2﹣n2和am﹣am的公因式是m﹣n,故答案为:m﹣n.13.【解答】解:∵3x•9y=243,∴3x•32y=35=3x+2y=35,∴x+2y=5.故答案为:5.14.【解答】解:由题意:∠1=∠3=45°,由翻折可知:∠4=∠5=(180°﹣45°)=67.5°,∴∠2=∠5=67.5°,故答案为67.5.15.【解答】解:根据题意得:(x6y2﹣3x4y﹣x3y4z)÷(﹣x3y)=﹣x3y+3x+y3z.故答案为:﹣x3y+3x+y3z.16.【解答】解:∵实数a,b满足a﹣2b=4,ab=2,∴a2+4b2=(a﹣2b)2+4ab=42+4×2=24.故答案是:24.17.【解答】解:①a m=3,a n=4,则a m+n=a m×a n=12;故此选项错误;②两条直线被第三条直线所截,如果两直线位置不平行,那么一组内错角的角平分线也不平行;故此选项错误;③若(t﹣2)2t=1,则t=3或t=0或t=1;故此选项错误;④平移只改变图形的位置,不改变图形的形状和大小;故此选项正确;⑤在同一平面内,经过直线外一点有且只有一条直线与已知直线平行,故此选项错误;故答案为:①②⑤.18.【解答】解:由图可得,图2中阴影部分的面积是:(2b﹣a)2,图3中阴影部分的面积是:(a﹣b)(a﹣b),则(a﹣b)(a﹣b)﹣(2b﹣a)2=2ab﹣9,化简,得b2=3,故答案为:3.三、解答题:本大题有6个小题,共58分)19.【解答】解:(1)2﹣2+(π﹣3.14)0+(﹣)﹣1=+1﹣3=﹣(2)(﹣2019)2+2018×(﹣2020)=20192﹣(2019﹣1)×(2019+1)=20192﹣(20192﹣12)=1(3)∵,∴,①﹣②,可得:6y=18,解得y=3,把y=3代入①,可得:3x+12=36,解得x=8,∴原方程组的解是.20.【解答】解:①+②得:2x2+4x﹣4+2x2+12x+4=4x2+16x=4x(x+4);①+③得:2x2+4x﹣4+2x2﹣4x=4x2﹣4=4(x+1)(x﹣1);②+③得:2x2+12x+4+2x2﹣4x=4x2+8x+4=4(x2+2x+1)=4(x+1)2.21.【解答】解:(1)原式=3x3﹣x﹣6x2+2﹣3x3+6x2+36x,=35x+2,当x=﹣时,原式=﹣7+2=﹣5;(2)∵y2﹣5y+3=0,∴y2﹣5y=﹣3,原式=2(2y2﹣y﹣2y+1)﹣2(y2+2y+1)+7,=4y2﹣2y﹣4y+2﹣2y2﹣4y﹣2+7,=2y2﹣10y+7,=2(y2﹣5y)+7,=﹣6+7=1.22.【解答】解:(1)∠GHC=∠FEC,理由:∵EF∥BC,∴∠FEC+∠C=180°,∵GH∥AC,∴∠GHC+∠C=180°,∴∠GHC=∠FEC;(2)∵EF∥BC,∠C=54°,∴∠FEC+∠C=180°,∴∠FEC=126°,∵EI平分∠FEC,∴∠FEI=63°,∴∠EIC=63°,∵DI∥AB,∠B=49°,∴∠DIC=49°,∴∠EID=14°.23.【解答】解:(1)设该工厂从A地购买了x吨原料,制成运往B地的产品y吨,依题意,得:,解得:.答:该工厂从A地购买了400吨原料,制成运往B地的产品300吨.(2)8000×300﹣(1000×400+14000+89100)=1896900(元).答:这批产品的销售款比原料费与运输费的和多1896900元24.【解答】解:(1)∵a、b满足|a﹣3b﹣1|+(a+b﹣5)2=0,∴a﹣3b﹣1=0,且a+b﹣4=0,∴a=4,b=1;(2)同时转动,t=42时,∠PBC=42°,∠MAC=168°,∵PQ∥MN,∴∠ACB=54°,(3)①当0<t<45时,∴4t=10+7,解得t=;②当45<t<90时,∴360﹣4t=10+t,解得t=70;③当90<t<135时,∴4t﹣360=10+t,解得t=;④当135<t<170时,∴720﹣4t=10+t,解得t=142;综上所述:t=或t=70 或t=或t=142;七年级下学期期中考试数学试题及答案一.填空题(每小题3分,共计24分)1.(3分)如图,AB∥CD,BC∥DE,若∠B=50°,则∠D的度数是.2.(3分)若方程组的解适合x+y=2,则k的值为.3.(3分)的平方根是.4.(3分)已知方程x m﹣3+y2﹣n=6是二元一次方程,则m﹣n=.5.(3分)把命题“平行于同一直线的两直线平行”改写成“如果…,那么…”的形式:.6.(3分)已知5+小数部分为m,11﹣为小数部分为n,则m+n=.7.(3分)已知:A(1,2),B(x,y),AB∥x轴,且B到y轴距离为3,则点B的坐标是.8.(3分)观察数表:根据数表排列的规律,第10行从左向右数第8个数是.二.选择题(每小题2分,共计12分)9.(2分)把方程4y+=1+x写成用含x的代数式表示y的形式,以下各式正确的是()A.y=+1B.y=+C.y=+1D.y=+10.(2分)将一直角三角板与两边平行的硬纸条如图所示放置,下列结论(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其中错误的个数是()A.0B.1C.2D.311.(2分)下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中错误的有()A.1个B.2个C.3个D.4个12.(2分)下列运算中正确的是()A.±=5B.﹣=±5C.=2D.=2 13.(2分)如图所示,AB∥CD,则∠A+∠E+∠F+∠C等于()A.180°B.360°C.540°D.720°14.(2分)若以A(﹣1,0),B(3,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限三.解答题(每小题5分,共计20分)15.(5分)解方程:25x2﹣36=0.16.(5分)计算:|﹣|+﹣.17.(5分)如图,∠1=∠2,CF⊥AB,DE⊥AB,求证:FG∥BC.证明:∵CF⊥AB,DE⊥AB()∴∠BED=90°,∠BFC=90°()∴∠BED=∠BFC()∴ED∥FC()∴∠1=∠BCF()∵∠1=∠2 ()∴∠2=∠BCF()∴FG∥BC()18.(5分)已知是方程组的解,求m,n值.四.解答题(每小题7分,共计28分)19.(7分)多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?20.(7分)如图,BD⊥AC于D,EF⊥AC于F,DM∥BC,∠1=∠2.求证:∠AMD=∠AGF.21.(7分)甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解为,乙看错了方程②中的b,得到方程组的解为,试计算a2019+(﹣b)2018.22.(7分)已知(2a﹣1)的平方根是±3,(3a+b﹣1)的平方根是±4,求a+2b的平方根.五.解答题(每小题8分,共计16分)23.(8分)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.24.(8分)△ABC与△A'B'C'在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A';B';C';(2)说明△A'B'C'由△ABC经过怎样的平移得到?.(3)若点P(a,b)是△ABC内部一点,则平移后△A'B'C'内的对应点P'的坐标为;(4)求△ABC的面积.六.解答题(每小题10分,共计20分)25.(10分)如图,在平面直角坐标系中,A、B坐标分别为A(O,a)、B(b,a),且a、b满足:,现同时将点A、B分别向下平移3个单位,再向左平移1个单位,分别得到点A、B的对应点C、D,连接AC、BD、AB.(1)求点C、D的坐标;(2)在y轴上是否存在点M,连接MC、MD,使三角形MCD的面积为30?若存在这样的点,求出点M的坐标;若不存在,试说明理由.(3)点P是线段BD上的一个动点,连接PA、PO,当点P在BD上移动时(不与B、D重合),的值是否发生变化,并说明理由.26.(10分)小张去书店购买图书,看好书店有A,B,C三种不同价格的图书,分别是A 种图书每本1元,B种图书每本2元,C种图书每本5元.(1)若小张同时购买A,C两种不同图书的6本,用去18元,求购买两种图书的本数;(2)若小张同时购买两种不同的图书10本,用去18元,请你设计他的购书方案;(3)若小张同时购进A,B,C三种不同图书10本,用去18元,请你设计他的购买方案.2018-2019学年吉林省白城市五校联考七年级(下)期中数学试卷参考答案与试题解析一.填空题(每小题3分,共计24分)1.(3分)如图,AB∥CD,BC∥DE,若∠B=50°,则∠D的度数是130°.【分析】首先根据平行线的性质可得∠B=∠C=50°,再根据BC∥DE可根据两直线平行,同旁内角互补可得答案.【解答】解:∵AB∥CD,∴∠B=∠C=50°,∵BC∥DE,∴∠C+∠D=180°,∴∠D=180°﹣50°=130°,故答案为:130°.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.两直线平行,内错角相等.2.(3分)若方程组的解适合x+y=2,则k的值为3.【分析】方程组两方程相加表示出x+y,代入x+y=2中求出k的值即可.【解答】解:,①+②得:5(x+y)=5k﹣5,即x+y=k﹣1,代入x+y=2得:k﹣1=2,解得:k=3,故答案为:3【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.3.(3分)的平方根是±2.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.4.(3分)已知方程x m﹣3+y2﹣n=6是二元一次方程,则m﹣n=3.【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得m﹣3=1,2﹣n=1,解出m、n的值可得答案.【解答】解:由题意得:m﹣3=1,2﹣n=1,解得:m=4,n=1,m﹣n=4﹣1=3,故答案为:3.【点评】此题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.5.(3分)把命题“平行于同一直线的两直线平行”改写成“如果…,那么…”的形式:如果两条直线都与第三条直线平行,那么这两条直线互相平行.【分析】命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【解答】解:命题可以改写为:“如果两条直线都与第三条直线平行,那么这两条直线互相平行”.故答案为:如果两条直线都与第三条直线平行,那么这两条直线互相平行.【点评】本题考查了命题的改写.任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.6.(3分)已知5+小数部分为m,11﹣为小数部分为n,则m+n=1.【分析】由于4<7<9,则2<<3,于是可得到7<5+<8,8<11﹣<9,则有m=5+﹣7=﹣2,n=11﹣﹣8=3﹣,然后代入m+n中计算即可.【解答】解:∵4<7<9,∴2<<3,∴7<5+<8,8<11﹣<9,∴m=5+﹣7=﹣2,n=11﹣﹣8=3﹣,∴m+n=﹣2+3﹣=1.故答案为:1.【点评】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.7.(3分)已知:A(1,2),B(x,y),AB∥x轴,且B到y轴距离为3,则点B的坐标是(3,2)或(﹣3,2).【分析】因为A(1,2),B(x,y),AB∥x轴,根据平面直角坐标系内点的坐标特征,可知y=2,因为B到y轴距离为3,所以x=±3,于是B的坐标是(3,2)或(﹣3,2).【解答】解:∵A(1,2),B(x,y),AB∥x轴,∴y=2,∵B到y轴距离为3,x=±3,∴B的坐标是(3,2)或(﹣3,2),故答案为(3,2)或(﹣3,2).【点评】本题考查了坐标与图形性质,正确掌握平面直角坐标系内点的坐标特征是解题的关键.8.(3分)观察数表:根据数表排列的规律,第10行从左向右数第8个数是7.【分析】第1行第1个数为1,第2行第2个数为2,第3行第3个数为3,第4行第4个数为4,y以此类推,第10行第10个数为10,第10行第9个数为,第8个数为==7,【解答】解:第1行第1个数为1,第2行第2个数为2,第3行第3个数为3,第4行第4个数为4,…第10行第10个数为10,第10行第9个数为,第8个数为==7,故答案为7.【点评】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.二.选择题(每小题2分,共计12分)9.(2分)把方程4y+=1+x写成用含x的代数式表示y的形式,以下各式正确的是()A.y=+1B.y=+C.y=+1D.y=+【分析】把x看做已知数表示出y即可.【解答】解:方程4y+=1+x,去分母得:12y+x=3+3x,解得:y=+.故选:B.【点评】此题考查了解二元一次方程,将x看做已知数求出y是解本题的关键.10.(2分)将一直角三角板与两边平行的硬纸条如图所示放置,下列结论(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其中错误的个数是()A.0B.1C.2D.3【分析】根据两直线平行同位角相等,内错角相等,同旁内角互补,及直角三角板的特殊性解答.【解答】解:∵纸条的两边平行,∴(1)∠1=∠2(同位角);(2)∠3=∠4(内错角);(4)∠4+∠5=180°(同旁内角)均正确;又∵直角三角板与纸条下线相交的角为90°,∴(3)∠2+∠4=90°,正确.故选:A.【点评】本题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.11.(2分)下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中错误的有()A.1个B.2个C.3个D.4个【分析】根据对顶角的性质和平行线的判定定理,逐一判断.【解答】解:①是正确的,对顶角相等;②正确,在同一平面内,垂直于同一条直线的两直线平行;③错误,角平分线分成的两个角相等但不是对顶角;④错误,同位角只有在两直线平行的情况下才相等.故①②正确,③④错误,所以错误的有两个,故选:B.【点评】平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要学会区分不同概念之间的联系和区别.12.(2分)下列运算中正确的是()A.±=5B.﹣=±5C.=2D.=2【分析】根据平方根、算术平方根的定义求出每个式子的值,再进行判断即可.【解答】解:A、±=±5,故本选项错误;B、﹣=﹣5,故本选项错误;C、=2,故本选项正确;D、=≠2,故本选项错误;故选:C.【点评】本题考查了对算术平方根和平方根的定义的应用,能理解定义是解此题的关键.13.(2分)如图所示,AB∥CD,则∠A+∠E+∠F+∠C等于()A.180°B.360°C.540°D.720°【分析】分别过E、F作AB或CD的平行线,运用平行线的性质求解.【解答】解:作EM∥AB,FN∥AB,∵AB∥CD,∴AB∥EM∥FN∥CD.∴∠A+∠AEM=180°,∠MEF+∠EFN=180°,∠NFC+∠C=180°,∴∠A+∠AEF+∠EFC+∠C=540°.故选:C.【点评】注意此类题要常作的辅助线,充分运用平行线的性质探求角之间的关系.14.(2分)若以A(﹣1,0),B(3,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】首先画出平面直角坐标系,根据A、B、C三点的坐标找出其位置,然后再根据两组对边分别平行的四边形是平行四边形找出D的位置,进而可得答案.【解答】解:如图所示:第四个顶点不可能在第三象限.故选:C.【点评】此题主要考查了平行四边形的性质、坐标与图形性质,根据题意画出图形是解题的关键.三.解答题(每小题5分,共计20分)15.(5分)解方程:25x2﹣36=0.【分析】先求出x2,再根据平方根的定义进行解答.【解答】解:整理得,x2=,∴x=±.故答案为:x=±.【点评】本题考查了利用平方根的定义求未知数的值,熟记正数的平方根有两个,互为相反数,负数没有平方根,0的平方根是0是解题的关键.16.(5分)计算:|﹣|+﹣.【分析】先把各根式化为最减二次根式,再合并同类项即可.【解答】解:原式=﹣+﹣1﹣(3﹣)=﹣+﹣1﹣3+=2﹣4.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.17.(5分)如图,∠1=∠2,CF⊥AB,DE⊥AB,求证:FG∥BC.证明:∵CF⊥AB,DE⊥AB(已知)∴∠BED=90°,∠BFC=90°(垂线的性质)∴∠BED=∠BFC(等量代换)∴ED∥FC(同位角相等,两直线平行)∴∠1=∠BCF(两直线平行,同位角相等)∵∠1=∠2 (已知)∴∠2=∠BCF(等量代换)∴FG∥BC(内错角相等,两直线平行)【分析】由CF⊥AB、DE⊥AB知∠BED=∠BFC,利用平行线的判定知ED∥FC,由性质得∠1=∠BCF,又因为∠2=∠1,所以∠2=∠BCF,故可由内错角相等两直线平行判定FG∥BC.【解答】证明:∵CF⊥AB,DE⊥AB(已知),∴∠BED=90°,∠BFC=90°(垂线的性质).∴∠BED=∠BFC(等量代换),∴ED∥FC(同位角相等,两直线平行).∴∠1=∠BCF(两直线平行,同位角相等).∵∠2=∠1 (已知),∴∠2=∠BCF(等量代换).∴FG∥BC(内错角相等,两直线平行).故答案为:已知、垂线的性质、等量代换、同位角相等,两直线平行、两直线平行,同位角相等、等量代换.【点评】本题主要考查证明过程中理论依据的填写,训练学生证明步骤的书写,比较简单.18.(5分)已知是方程组的解,求m,n值.【分析】把x与y的值代入方程组计算,即可求出m与n的值.【解答】解:把代入方程组得:解得:【点评】本题考查了二元一次方程组,掌握方程组的解满足方程组中的每个方程.四.解答题(每小题7分,共计28分)19.(7分)多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?【分析】根据马场的坐标为(﹣3,﹣3),建立直角坐标系,找到原点和x轴、y轴.再找到其他各景点的坐标.【解答】解:建立坐标系如图:∴南门(0,0),狮子(﹣4,5),飞禽(3,4)两栖动物(4,1).【点评】本题考查了坐标位置的确定,由已知条件正确确定坐标轴的位置是解决本题的关键.20.(7分)如图,BD⊥AC于D,EF⊥AC于F,DM∥BC,∠1=∠2.求证:∠AMD=∠AGF.。