压力容器及管道法兰新的计算方法
- 格式:pdf
- 大小:176.05 KB
- 文档页数:6
钢制法兰计算方法及选用问题的讨论朱灿朋1,2,穆传冰1,2,李义超1,2(1.北京首钢国际工程技术有限公司冶金工程分公司焦化事业部,北京 100043)(2.北京市冶金三维仿真设计工程技术研究中心,北京 100043)[摘 要] 介绍了国内外钢制管法兰标准和设计计算方法的发展历史和现状,重点对国内主要钢制管法兰标准进行对比分析,详细论述国内法兰选型设计过程并进行相关讨论,对法兰的合理选型进行了论述。
[关键词] 钢制法兰;选用;计算作者简介:朱灿朋(1975—),男,安徽庐江人,硕士研究生。
高级工程师。
目前主要从事焦化设计管理和总承包项目管理工作。
表1 美洲管法兰标准体系和欧洲管法兰标准体系对比1 概述法兰连接是一种在承压设备工程设计中应用广泛的可拆型连接结构。
保证其连接的强度、刚度以及密封的安全是对法兰接头设计提出的最基本要求。
在法兰计算中需要解决三个主要问题。
(1)确定安装时螺栓的预紧应力水平:预紧力的大小,与所使用的垫片密封性能有关。
即垫片在预紧和操作状态下达到密封设计要求时所需要的最小垫片应力,与法兰的承载能力以及作用载荷的变化有关。
(2)密封分析计算:保证法兰接头在预紧、试验及操作条件下都满足设计要求的密封等级,以控制泄漏率在允许范围内。
(3)应力分析计算:防止法兰接头在不同静载荷作用下发生强度破坏或刚度失效[1]。
法兰连接由配对法兰、垫片和紧固件组成,通过紧固件压紧垫片实现密封。
一般流体在垫片处的泄漏以“渗透泄漏”和“界面泄漏”两种形式出现。
渗透泄漏是流体通过垫片材料本体毛细管的泄漏,除了与介质压力、温度、黏度和分子结构等流体状态性质有关外,主要与垫片的结构、材质有关;界面泄漏是流体从垫片与法兰接触界面泄漏,主要与界面间隙尺寸有关。
无论哪种泄漏都是通过垫片压紧力来阻止,因此工作状态的法兰要保证密封,必须保证工作状态下,垫片上有足够的剩余预紧力[2]。
2 国内外钢制管法兰标准发展现状2.1 国外钢制管法兰标准国际上管法兰标准主要有两个体系,一个是以欧盟EN 为代表的欧洲管法兰标准体系(公称压力采用PN 表示);另一个是以美国ASME 为代表的美洲管法兰标准体系(公称压力采用Class 表示),两个管法兰标准体系不同,且不能互换。
压力容器材料用量计算公式在工程设计中,压力容器是一种常见的设备,用于储存或输送气体、液体或蒸汽等物质。
压力容器的设计和制造需要考虑许多因素,其中之一就是所使用的材料。
合适的材料选择不仅可以确保容器的安全性能,还可以降低成本并延长使用寿命。
因此,对于压力容器材料用量的计算是至关重要的。
一般来说,压力容器的材料用量计算需要考虑以下几个方面:压力容器的设计压力、工作温度、容器尺寸、材料的强度和韧性等。
根据这些因素,可以通过以下公式来计算所需的材料用量:材料用量 = (P V) / (σ K)。
其中,P为设计压力,V为容器的体积,σ为材料的许用应力,K为材料的强度系数。
这个公式可以帮助工程师们快速准确地计算出所需的材料用量,从而指导材料的选取和使用。
在实际应用中,压力容器的设计压力是一个非常重要的参数,它直接影响到材料用量的计算。
设计压力是指在容器内部所能承受的最大压力,通常由设计标准或规范来规定。
在计算材料用量时,需要将设计压力考虑在内,以确保容器在正常运行条件下不会发生破裂或变形。
另外,工作温度也是一个影响材料用量计算的重要因素。
由于材料的强度和韧性会随着温度的变化而变化,因此需要根据工作温度来选择合适的材料,并考虑其温度影响因素。
通常情况下,工作温度越高,所需的材料用量也越大。
容器尺寸是另一个影响材料用量计算的因素。
容器的尺寸越大,所需的材料用量也会随之增加。
因此,在设计压力容器时,需要根据实际尺寸来计算材料用量,以确保容器的结构安全可靠。
材料的强度和韧性是影响材料用量计算的关键因素。
在计算材料用量时,需要考虑材料的许用应力和强度系数,以确保所选择的材料能够满足设计要求。
通常情况下,工程师们会根据材料的性能指标和实际需求来选择合适的材料,并进行材料用量的计算。
总之,压力容器材料用量的计算是一个复杂而重要的工作。
通过合理的材料用量计算,可以确保压力容器在设计压力、工作温度和容器尺寸等条件下具有足够的强度和韧性,从而保证容器的安全性能和可靠性。
压力容器重量计算公式
首先,计算压力容器本身的重量,需要考虑材料的密度。
不同材料的密度是不同的,例如常见的钢材的密度约为7.85 g/cm³,而铝材的密度约为2.7 g/cm³。
可以通过容器的体积和材料的密度计算得到容器本身的重量。
例如,容器的体积为 V,材料的密度为ρ,则容器本身的重量 W = V × ρ。
其次,对于一些特殊形状的容器,如球形、圆柱形、圆锥形等,还需要根据具体的形状和尺寸来计算容器的重量。
以下是一些常见形状的容器重量计算公式:
1.球形容器
球形容器的重量计算公式为W=(4/3)×π×r³×ρ,其中r为球的半径,ρ为材料的密度。
2.圆柱形容器
圆柱形容器的重量计算公式为W=π×r²×h×ρ,其中r为圆柱的半径,h为圆柱的高度,ρ为材料的密度。
3.圆锥形容器
圆锥形容器的重量计算公式为W=(1/3)×π×r²×h×ρ,其中r为圆锥的底半径,h为圆锥的高度,ρ为材料的密度。
对于复杂形状的容器,可以将其分为多个简单形状进行计算,然后将其各个部分的重量相加。
此外,还需要考虑容器的附件重量,如法兰、支座等。
附件的重量可以根据附件的材料密度和尺寸来计算,然后将其与容器本身的重量相加得到总重量。
需要注意的是,上述公式都是理想情况下的计算公式,实际制造过程中还需考虑平均壁厚、焊缝、椭圆度等因素对计算结果的影响。
中、低压法兰密封计算世界各国在有关压力容器的技术规范中,密封计算都归属于法兰设计或法兰螺栓连接部分,而且都以法兰、螺栓的受力分析和计算为主要内容。
这里不重复有关法兰的计算,重点介绍垫片计算与密封性能的校核。
一、华特斯计算法目前,我国的《钢制石油化工压力容器设计规定》与英国、日本有关压力容器规范一样,基本是沿用美国《ASME》规范,法兰和密封的设计采用华斯特法。
这种方法在密封性能的计算方面强调螺栓的强度,华斯特认为:在各种情况下,只要螺栓强度足够,作用在垫片上的螺栓力不小于设计值,即能保证垫片和密封面的紧密连接。
1.在操作情况下所需的最小螺栓载荷Fm1(N)和在预紧螺栓时所需的最小螺栓载荷Fm2(N) 2.垫片计算密封宽度垫片计算密封宽度b可如下确定:当bo≤0.0064m时,b=bo,从表3-5可见,垫片的有效密封宽度bo不等于垫片与压紧面的实际接触宽度N。
此因垫圈置于螺栓孔内侧时,螺栓力使法兰产生一定程度的偏转。
内压建立后,介质压力产生的轴向力加剧偏转。
因此,压紧力并不是均匀分布在整个接触面上,二是外缘紧、内缘松,介质可能渗透到垫圈的某一宽度,而且垫片宽度愈大,这种现象愈严重,所以计算宽度b≤bo,DG的计算方法也随bo变化。
3.螺栓总截面积的计算二、西德DIN2505法西德标准DIN2505“法兰连接计算”中,垫片计算部分与我国现行规范有所不同,其步骤分为下列几个:(9)计算结束后,还需作受力图。
将升压升温过程中法兰、螺栓、垫片变形量算出并反映在一张图上,以便了解在操作情况下,是否因过度松弛,需要在预紧时采用更高的螺栓力或另选垫片。
三、系数法国内有关单位在探讨垫片密封性能设计方法时曾作过大量工作。
现将该计算方法作一简介。
四、对三种计算方法的讨论(1)《ASME规范》作为美国的国家标准,在世界上影响很大。
其垫片密封性能计算部分的核心是预紧比压y 与垫片系数m值的确定。
尽管《ASME 规范》每隔3年修订一次,但四十多年来,y、m值的变化并不大。
法兰的设计和选用罗永智;王治刚;杨斌;李永红【摘要】法兰的正确设计和选用是保证压力容器和管道安全运行的关键.介绍了法兰的类型和密封面型式,以及法兰密封的工作原理,并对法兰的设计和选用进行了概括总结,给技术人员的设计工作提供了参考和帮助.【期刊名称】《机械研究与应用》【年(卷),期】2017(030)005【总页数】3页(P174-176)【关键词】法兰;密封;设计;选用【作者】罗永智;王治刚;杨斌;李永红【作者单位】兰州兰石重型装备股份有限公司,甘肃兰州 730314;兰州兰石重型装备股份有限公司,甘肃兰州 730314;兰州兰石重型装备股份有限公司,甘肃兰州730314;兰州兰石重型装备股份有限公司,甘肃兰州 730314【正文语种】中文【中图分类】TH49;TQ055.8法兰[1]在压力容器和管道上被广泛应用,主要用于设备与设备之间、管道与管道之间、设备与管道之间的连接,具有较好的强度,拆卸方便,密封性能可靠。
法兰作为压力容器和管道的重要元件之一,在设计和选用时保证法兰能够安全使用是前提条件,由于其结构类型多样,涉及到的参数和外部因素又较多,所以具体实施过程还比较复杂。
文中结合工作当中的实践经验,对法兰的设计和选用做了分析总结。
从计算角度出发,法兰按其连接在容器或管道上的整体性程度分为如图1所示的三种型式。
(2) 整体法兰:法兰完全固定在容器或接管上且形成一个整体结构,能够共同承受施加于法兰上的载荷,固定的方式包括法兰与容器或接管锻造加工成一个整体,或者采用焊接连接,保证全截面焊透。
如带颈对焊法兰、长高颈法兰、全焊透的平焊法兰等。
整体法兰能够用于高温、高压、存在疲劳或冲击载荷、极度高度危害介质,强渗透性介质的场合。
(3) 任意式法兰:该种法兰介于上述两种法兰之间,从结构上看,法兰与容器或接管存在关联,但又未完全形成整体结构,最常见的就是未全截面焊透的平焊法兰。
这种法兰通常按照整体法兰进行强度计算,但为了简便,当满足如下条件时可按照活套法兰进行强度计算:筒体或接管的壁厚不大于15 mm;筒体或接管的内径与壁厚的比值不大于300;设计压力不大于2 MPa;设计温度不大于370 ℃。
第三章 压力容器常见结构的设计计算方法常见结构的设计计算方法4.1 圆筒4.2 球壳 4.3 封头4.4 开孔与开孔补强 4.5 法兰4.6 检验中的强度校核4.1.1 内压圆筒 1)GB150中关于内压壳体的强度计算考虑的失效模式是结 构在一次加载下的塑性破坏,即弹性失效设计准则。
2)壁厚设计釆用材料力学解(中径公式)计算应力,利用第一强度理论作为控制。
轴向应力:环向应力:(取单位轴向长度的半个圆环)校核:σ1=σθ,σ2=σz ,σ1=0 σθ≤[σ]t ·φ对应的极限压力:2)弹性力学解(拉美公式)讨论:1)主应力方向?应力分布规律?径向、环向应力非线形分布(内壁应力绝对值最大),轴向应力均布; 2)K 对应力分布的影响?越大分布越不均匀,说明材料的利用不充分; 例如,k =1.1时,R =1.1内外壁应力相差10%; K =1.3时,R =1.35内外壁应力相差35%; 4 常见结构的设计计算方法 962)弹性力学解(拉美公式)主应力:σ1=σθ,σ2=σz ,σ3=σr 屈服条件:σⅠ=σ1=σθ=σⅡ=σ1-μ(σ2+σ3)=σⅢ=σ1-σ3=σⅣ=3)GB150规定圆筒计算公式(中径公式)的使用范围为:p/[σ]·φ≤0.4(即≤1.5)4.1.2 外压圆筒1)GB150中关于外压壳体的计算所考虑的失效模式:弹性失效准则和失稳失效准则(结构在横向外压作用下的横向端面失去原来的圆形,或轴向载荷下的轴向截面规则变化)2)失稳临界压力的计算长圆筒的失稳临界压力(按Bresse公式):长圆筒的失稳临界压力(按简化的Misse公式):失稳临界压力可按以下通用公式表示:圆筒失稳时的环向应力和应变:定义——外压应变系数于是取稳定系数m=3,有·应变系数A的物理意义-系数A是受外压筒体刚失稳时的环向应变,该系数仅与筒体的几何参数L、D。
、δe 有关,与材料性能无关·应力系数B的物理意义:与系数A之间反映了材料的应力和应变关系(应力),可将材料的δ-ε曲线沿σ轴乘以2/3而得到B-A曲线。
法兰标准及选用方法石油、化工上用的法兰标准有两类,一类是压力容器法兰标准,一个类是管法兰标准。
㈠压力容器法兰标准1.平焊法兰平焊法兰的两种类型的比较情况如下表所示,参见示意图。
因而使法兰盘进一步增大了刚性。
故规定用于更高的压力范围(PN 0.6MPa~6.4MPa)和直径范围(DN300mm~2000m m),适用温度范围为-20℃~450℃。
由表4-16中可看出,乙型平焊法兰中DN 2000mm以下的规格均已包括在长颈对焊法兰的规定范围之内。
这两种法兰的联接尺寸和法兰厚度完全一样。
所以DN2000mm以下的乙型平焊法兰,可以用轧制的长颈对焊法兰代替,以降低法兰的生产成本。
平焊与对焊法兰都有带衬环的与不带衬环的两种。
当设备是由不锈钢制作时,采用碳钢法兰7加不锈钢衬环,可以节省不锈钢。
示意图中所示为带衬环的甲型平焊法兰。
使用法兰标准确定法兰尺寸时,必须知道法兰的公称直径与公称压力。
压力容器法兰的公称直径与压力容器的公称直径取同一系列数值。
例如DN 1000mm的压力容器,应当配用DN 1000mm的压力容器法兰。
法兰公称压力的确定与法兰的最大操作压力、操作温度以及法兰材料有关。
因为在制定法兰尺寸系列、计算法兰厚度时,是以16MnR在200℃时的机械性能为基准制定的。
所以规定以此基准所确定的法兰尺寸,在200℃时,它的最大允许操作压力就认为是具有该尺寸法兰的公称压力。
例如,所谓公称压力PNO.6MPa的法兰,就是指具有这样一种具体尺寸的法兰,该法兰是用16MnR制造的,在200℃时,它的最大允许操作压力是0.6MPa。
如果把这个PN0.6MPa的法兰用在高于200℃的条件下,那么它的最大操作压力将低于它的公称压力0.6MPa。
反之,如果将它用于低于200℃的条件下,仍按200℃确定其最高工作压力。
如果把法兰的材料改为Q235-A,那么Q235一A钢的机械性能比16MnR差,这个公称压力PN0.6MPa的法兰,即使是在200℃时操作,它的最大允许操作压力也将低于它的公称压力。
| 151或管道引起的力和力矩等),这时仅按内压来设计或选用法兰是不安全的,应按如下公式计算当量设计压力32164P Pc G GM Fe D D ππ=++(2)NB/T 47041—2014中规定:塔壳各段采用法兰连接时,法兰应同时考虑内压,轴向力和外力矩的作用,其当量设计压力按下式计算32164P Pc G GM Fe D D ππ=++以上两处内容的表述大致相同,其对外载荷均是引入了“当量设计压力”的概念,且其计算方法相同。
目前压力容器设计中广泛使用的计算软件SW6中对法兰外载荷的处理也是采用了上述处理方法。
2.2 当量压力计算的适用范围HG 20582—2011《编制说明》中明确指出:(1)该方法主要推荐用于标准法兰的选用;(2)此方法明确仅限于平垫密封的法兰,不用于其他形式密封的法兰。
故,该当量压力计算方法并非适用于所有密封面形式,且该方法用于法兰设计计算可能是不完全合适的。
NB/T 47040-2014中公式则不区分法兰密封面形式,但大部分设备法兰都是以平垫密封为主。
2.3 当量设计压力公式的推导法兰的当量设计压力计算公式中由3部分组成即:1 绪论完整的设备设计条件通常会包含管道载荷,该值一般由管道专业提供。
在进行设计工作时,通常会用该载荷校核接管与壳体间的局部应力,以此防止接管与壳体连接部位的失效。
然而,是否应该将该载荷同样应用于法兰计算,可能是存在疑问的:(1)法兰规格(标准法兰)通常由管道给出,可能已经过了配管设计可以满足管道连接。
(2)管道选用的标准法兰本身具备一定的承受外载荷的能力。
(3)所提供的管道载荷可能是个前期预估的保守值,若以此条件设计法兰,需要的法兰会远大于配对法兰。
与此同时,考虑到法兰的失效形式,通常是泄露失效。
要保证法兰不会泄露,必须要保证垫片上存在一定的压紧力(强制密封法兰),因此,螺栓及法兰的设计时就必须要考虑到会导致垫片压紧力减小的各种情况,其中最主要的就是内压力(抵消部分螺栓上紧力)和外载荷(抵消部分螺栓上紧力,并且使得各螺栓力不再均衡)的影响。
压力容器、管道、阀门的公称通径及压力等级压力容器及管路的公称通径一.工程直径基本概念:公称直径(nominal diameter),又称平均外径(mean outside diameter)。
指标准化以后的标准直径,以DN表示,单位mm。
1.压力容器的公称直径用钢板卷焊制成的筒体,其公称直径指的是内径。
若容器直径较小,筒体可直接采用无缝钢管制作。
此时,公称直径指钢管外径。
封头的公称直径与筒体一致。
2.管子的公称直径一般来说,管子的直径可分为外径、内径、公称直径。
◆水煤气输送钢管(镀锌或非镀锌)、铸铁管等管材,管径宜以公称直径DN表示;◆无缝钢管、焊接钢管(直缝或螺旋缝)、铜管、不锈钢管等管材,管径宜以外径×壁厚表示;◆钢筋混凝土(或混凝土)管、陶土管、耐酸陶瓷管、缸瓦管等管材,管径宜以内径d表示;◆塑料管材,管径宜按产品标准的方法表示,按照行业习惯常用外径表示,如De63,我们简略称呼的20、25、32等管道均是指De(管道外径),而不是指DN;◆当设计均用公称直径DN表示管径时,应有公称直径DN与相应产品规格对照表。
◆如果在设计图纸中采用外径表示,也应该作出管道规格对照表,标明某种管道的公称直径,壁厚。
1)在设计图纸中一般采用公称直径来表示,公称直径是为了设计、制造和维修方便,人为地规定的一种标准,也叫公称通径,是管子(或者管件)的规格名称。
目的是为了根据公称直径可以确定管子、管件、阀门、法兰、垫片等结构尺寸与连接尺寸,为了使管子、管件连接尺寸统一,采用DN表示其公称直径(也称公称口径、公称通径)。
2)管子的公称直径和其内径、外径都不相等。
例如:公称直径为100MM的无缝钢管有102*5、108*5等好几种,108为管子的外径,5表示管子的壁厚,因此,该钢管的内径为(108-5-5)=98MM,但是它不完全等于钢管外径减两倍壁厚之差,也可以说,公称直径是接近于内径,但是又不等于内径的一种管子直径的规格名称。