抛物线最值问题求法备课讲稿
- 格式:ppt
- 大小:787.50 KB
- 文档页数:18
抛物线求最值问题(第一类)1.已知抛物线和一条直线,求抛物线上的一点到直线与(y 轴、准线、焦点)距离之和的最小值问题。
此类题常用方法转化为求焦点到直线的距离。
例题已知抛物线方程为x y 42=,直线l 的方程为04=+-y x ,在抛物线上有一动点P 到y 轴的距离为d1到直线l 的距离为d2,则d12的最小值为多少? 分析:如图点P 到y 轴的距离等于点P 到焦点F 的距离减1,过焦点F 作直线4=0的垂线,此时d12最小,依据抛物线方程求得F ,进而利用点到直线的距离公式求得d12的最小值.解:如图点P 到准线的距离等于点P 到焦点F 的距离,从而P 到y 轴的距离等于点P 到焦点F 的距离减1.过焦点F 作直线4=0的垂线,此时d122-1最小,∵F (1,0),则2,则d12的最小值为.抛物线求最值问题(其次类)2.已知抛物线和一个定点,①:定点在抛物线“内”,求抛物线上的一点到定点与(焦点、准线)距离之和的最值问题;②定点在抛物线“外”,求抛物线上的一点到定点与(焦点、准线)距离之差肯定值的最值问题。
此类题常用方法转化为三点共线或者顶点到直线问题。
例题已知点P在抛物线y2=4x上,则点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为()A.⎪⎭⎫⎝⎛-1,41B.⎪⎭⎫⎝⎛1,41C.(1,2)D.(1,-2)分析:先推断点Q与抛物线的位置,即点Q在抛物线内,再由点P到抛物线焦点距离等于点P到抛物线准线距离,依据图象知最小值在M,P,Q三点共线时取得,可得到答案.解:点P到抛物线焦点距离等于点P到抛物线准线距离,如图,故最小值在M,P,Q三点共线时取得,此时P,Q的纵坐标都是-1,抛物线求最值问题(第三类)3.已知抛物线和一条直线,求抛物线上的一点到直线距离最小值问题。
此类题常用方法:①设点转化成二次函数问题;②求导数,让抛物线上点的切线斜率等于直线斜率。
抛物线求最值问题(第一类)1.已知抛物线和一条直线,求抛物线上的一点到直线与(y 轴、准线、焦点)距离之和的最小值问题。
此类题常用方法转化为求焦点到直线的距离。
例题已知抛物线方程为x y 42=,直线l 的方程为04=+-y x ,在抛物线上有一动点P 到y 轴的距离为d1,P 到直线l 的距离为d2,则d1+d2的最小值为多少?分析:如图点P 到y 轴的距离等于点P 到焦点F 的距离减1,过焦点F 作直线x-y+4=0的垂线,此时d1+d2最小,根据抛物线方程求得F ,进而利用点到直线的距离公式求得d1+d2的最小值.解:如图点P 到准线的距离等于点P 到焦点F 的距离,从而P 到y 轴的距离等于点P 到焦点F 的距离减1.过焦点F 作直线x-y+4=0的垂线,此时d1+d2=|PF|+d2-1最小, ∵F (1,0),则|PF|+d2==,则d1+d2的最小值为.抛物线求最值问题(第二类)2.已知抛物线和一个定点,①:定点在抛物线“内”,求抛物线上的一点到定点与(焦点、准线)距离之和的最值问题;②定点在抛物线“外”,求抛物线上的一点到定点与(焦点、准线)距离之差绝对值的最值问题。
此类题常用方法转化为三点共线或者顶点到直线问题。
例题已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为()A.⎪⎭⎫⎝⎛-1,41B.⎪⎭⎫⎝⎛1,41C.(1,2)D.(1,-2)分析:先判断点Q与抛物线的位置,即点Q在抛物线内,再由点P 到抛物线焦点距离等于点P到抛物线准线距离,根据图象知最小值在M,P,Q三点共线时取得,可得到答案.解:点P到抛物线焦点距离等于点P到抛物线准线距离,如图PF+PQ=PM+PQ,故最小值在M,P,Q三点共线时取得,此时P,Q的纵坐标都是-1,抛物线求最值问题(第三类)3.已知抛物线和一条直线,求抛物线上的一点到直线距离最小值问题。
抛物线中的最值问题
例题:如图,已知抛物线y =ax 2
+bx +c (a ≠0)的对称轴为x =1,且抛物线经过A (—1,0)、C (0,—3)两点,与x 轴交于另一点B .
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x =1上求一点P ,使点P 到点A 的距离与到点C 的距离之和最小,并求出此时点P 的坐标;
图1
(3)在抛物线的对称轴x =1上求一点Q ,使点Q 到点A 的距离与到点C 的距离之差的绝对值最大,并求出此时点Q 的坐标;
(4)若P 是抛物线上位于直线BC 下方的一个动点,求△BCP 的面积的最大值..
练习:(2012•扬州)若抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点Q是直线l上的一个动点,当△QAC的周长最小时,求点P的坐标;
(3)在抛物线的对称轴上找一点M,使|MB-MC|的值最大,求出点M的坐标.
(4)若P是抛物线上位于直线BC上方的一个动点,求△BCP的面积的最大值.
图1 图2。
抛物线中的最值问题的解法授课人:彭春齐第1课时一.考情分析:最值问题是高中数学教学中的常见问题,而圆锥曲线中的最值问题是一类综合性强、变量多、涉及知识面广的题目,是解析几何中难点问题,也是高考中热点问题。
学习圆锥曲线的过程中,在适当的时机引导学生去探求与之相关的最值问题,可以“培养学生的思维能力,使学生在掌握基础知识的过程中,学会感知、观察、归纳、类比、想象、抽象、概括、转化、推理、证明和反思等逻辑思考的基本方法。
二.教学目标:掌握抛物线中最值问题的基本方法:定义法、函数思想法、数形结合法(第2课时) 三.教学重点:化归转化思想、分类讨论思想在求解抛物线最值问题中应用。
四、教学过程:1.利用抛物线的定义求最值例1已知点()2,4-A ,F 为抛物线x y 82=的焦点,点M 在抛物线上移动,当MF MA +取最小值时,点M 坐标为( D )()00.,A ()22,1.-B ()2,2.-C ⎪⎭⎫⎝⎛-2,21.D 解析:如图,易知点A 在抛物线内,抛物线准线方程为2-=x 由抛物线定义可将点MF转化为点M 到准线的距离,由点M 作准线的垂线,垂足为N ,即MN MF =,MNMA MF MA +=+∴.这样就转化成求MNMA +的最小值,又 在AMN ∆中,ANMN MA >+,只有当A 、M 、N 三点共线时,MNMA +有最小值AN,即此时MF MA +取得最小值AN。
易求得此时点M 坐标为⎪⎭⎫⎝⎛-2,21,故选D 。
规律总结:在圆锥曲线中已知一定点A 和焦点F ,点M 为圆锥曲线上一动点,求MF e MA 1+的最小值时,要利用圆锥曲线统一定义将MF e 1转化为到相应准线的距离,再求相应折线段和的最小值,当折线变成一条直线时取最小值。
变式训练:.已知点P 是抛物线x y 22=上的动点,点P 在y 轴上的射影是M ,点A 的坐标是⎪⎭⎫ ⎝⎛4,27,则PMPA +的最小值是 29。