第3章回归分析方法2
- 格式:ppt
- 大小:3.91 MB
- 文档页数:106
回归分析法分析某些原因能够对目标造成“多大程度”的影响。
回归分析法 1回归分析:确定两个或多个变量之间数量关系的统计分析方法。
•按照涉及的变量的多少,分为一元回归和多元回归分析;•按照因变量的多少,可分为简单回归分析和多重回归分析;•根据自变量和因变量之间的关系,可分为线性回归分析和非线性回归分析。
相关分析研究现象是否相关,相关的方向和紧密程度,一般不区分自变量或因变量。
回归分析要分析现象之间相关的具体形式,确定它们之间的因果关系,用数学模型来表示它们之间的具体关系。
e.g.,从相关分析中可以得知“答疑效果”和“复购率”变量高度相关,但是这两个变量之间到底是哪个变量受哪个变量的影响,影响程度如何,则需要通过回归分析方法来确定。
回归分析法 2解决问题时,用分析的方法找出问题的原因。
在决策阶段,可以利用“回归分析”来计算出某个原因能够对目标造成“多大程度”的影响,从而合理分配资源。
e.g.,1.已知y(目标)的值,预测x(原因)的值。
课程的平均复购率(目标)在下半年里跌至约50%,公司决策层提出的要求是,在3个月以内平均复购率恢复到60%(目标)。
这时候就需要“回归分析”来计算出各种影响复购率的原因能够对复购率(目标)造成“多大程度”的影响,来预测需要投入多少到解决问题中。
1.已知x(原因)的值,预测y(目标)的值。
x是投入广告的费用,y是产生的收益,在推广前就可以利用回归分析,投入的成本(x,广告费用)能预期产生多少收益(y,产生的收益)。
当决策者有多种推广方案要选择的时候,可以根据回归分析知道,把有限的资源投入到哪里才能发挥出最好的效果。
回归分析法 3在回归分析中,把变量分为两类:•一类是因变量,它们通常是实际问题中所关心的一类指标,通常用Y表示;•而影响因变量取值的的另一类变量称为自变量,用X来表示。
回归分析研究的主要问题是:1)确定Y与X间的定量关系表达式,这种表达式称为回归方程;2)对求得的回归方程的可信度进行检验;3)判断自变量X对因变量Y有无影响;4)利用得到的回归方程进行预测和控制。
回归分析法2篇第一篇:回归分析法的基本概念和应用回归分析法是一种统计学方法,用于确定两个变量之间的关系,并用一条或多条线性方程来表示这种关系。
它通常用于预测和解释自变量对因变量的影响。
在本文中,我们将介绍回归分析法的基本概念,包括线性回归和多元回归,以及它们在实际应用中的使用。
一、线性回归线性回归是回归分析法中最简单和最常见的类型,它通过找到最能够预测因变量的线性方程来描述两个变量之间的关系。
线性回归的方程可以表示为:y = b0 + b1x1 + e其中y表示因变量,x1表示自变量,b0和b1是常数,e是误差项。
b1是斜率,表示因变量在自变量的变化下每增加一个单位时的变化量。
b0是截距,它表示当自变量等于0时,因变量的预测值。
线性回归通过最小二乘法来确定b0和b1的值,它是一种优化方法,用于确定最合适的直线方程。
最小二乘法的基本思想是使残差的平方和最小化。
二、多元回归多元回归是一种用于分析多个自变量和因变量之间关系的方法。
它可以帮助我们确定多个自变量对因变量的相对重要性,以及它们之间的交互作用。
多元回归的方程可以表示为:y = b0 + b1x1 + b2x2 + b3x3 + ... + e在多元回归中,我们可以添加任意数量的自变量。
多元回归通过与线性回归类似的最小二乘法来确定每个自变量的系数和截距。
三、应用回归分析法在实际应用中具有广泛的应用,特别是在市场研究、经济学、人口统计学和社会科学领域。
以下是一些常见的应用:1.预测销售回归分析法可以用来预测销售,它可以帮助我们确定哪些因素对销售的影响最大,并预测未来销售的趋势。
在这种情况下,自变量可以是广告开支、季节性因素或经济指标等。
2.评估产品回归分析法可以用来评估产品和服务。
它可以帮助我们确定哪些因素对消费者满意度的影响最大,并帮助制定针对客户需求的营销策略。
3.分析投资回归分析法可以用来分析投资,它可以帮助我们确定哪些因素对投资回报率的影响最大,并帮助投资者做出更明智的决策。
#第3章 多元线性回归思考与练习参考答案讨论样本容量n 与自变量个数p 的关系,它们对模型的参数估计有何影响答:在多元线性回归模型中,样本容量n 与自变量个数p 的关系是:n>>p 。
如果n<=p 对模型的参数估计会带来很严重的影响。
因为: 1. 在多元线性回归模型中,有p+1个待估参数β,所以样本容量的个数应该大于解释变量的个数,否则参数无法估计。
2. 解释变量X 是确定性变量,要求()1rank p n =+<X ,表明设计矩阵X 中的自变量列之间不相关,即矩阵X 是一个满秩矩阵。
若()1rank p <+X ,则解释变量之间线性相关,1()X X -'是奇异阵,则β的估计不稳定。
证明 随机误差项ε的方差2的无偏估计。
证明:@22122222111112221111ˆ(),111()()(1)(1)()(1)1ˆ()()1ni i n n nnnii ii iiii i i i i i ni i SSE e e e n p n p n p E e D e h h n h n p E E e n p σσσσσσσ======='===------∴==-=-=-=--∴==--∑∑∑∑∑∑∑一个回归方程的复相关系数R=,样本决定系数R 2=,我们能判断这个回归方程就很理想吗答:不能断定这个回归方程理想。
因为:1. 在样本容量较少,变量个数较大时,决定系数的值容易接近1,()1ˆ2--=p n SSE σ而此时可能F 检验或者关于回归系数的t 检验,所建立的回归方程都没能通过。
2. 样本决定系数和复相关系数接近于1只能说明Y 与自变量X1,X2,…,Xp 整体上的线性关系成立,而不能判断回归方程和每个自变量是显著的,还需进行F 检验和t 检验。
3. 在应用过程中发现,在样本容量一定的情况下,如果在模型中增加解释变量必定使得自由度减少,使得 R 2往往增大,因此增加解释变量(尤其是不显著的解释变量)个数引起的R 2的增大与拟合好坏无关。
第三章 回歸分析 §1 一元線性回歸 一、回歸模型設隨機變數y 與引數x 之間存在線性關係,它們的第i 次觀測數據是:(xi,yi)(i=1,2,…,n)那麼這組數據可以假設具有如下的數學結構式:i i i x y εββ++=0(i=1,…,n ),其中β0, β為待估參數,),0(~2σεN i ,且n εεε,,,21 相互獨立,這就是一元線性回歸的數學模型。
二、參數估計 1.回歸係數設b0和b 分別是參數β0, β的最小二乘估計,於是一元線性回歸方程為:i i bx b y+=0ˆ (i=1,2,…,n ) b0,b 叫做回歸係數,它使偏差平方和∑∑==--=-=ni i i ni i i bx b y yy Q 12012)()ˆ(取最小值。
由 ⎝⎛=---=∂∂=---=∂∂∑∑==0)(20)(210100ni i i i ni i i x bx b y b Q bx b y b Q整理得正規方程組: 020()()()i ii i i inb x b y x b x b x y +∑=∑⎛∑+∑=∑⎝解得 xx xy S S b x b y b /,0=-= 其中 222)(x n x x x S i i xx -∑=-∑=y x n y x y y x x S i i i i xy -∑=--∑=))((另外 y n y y y S i i yy -∑=-∑=22)( 2.最小二乘估計b0,b 的統計性質 (1)E(b)= β,E(b0)= β0即b0,b 分別是β0,β的無偏估計 (2)22()/()i D b x x σ=∑-22201()[/()]i D b x x x nσ=+∑-即回歸係數b0,b 與σ2,x 的波動大小有關,b0還與n 有關,這就是說,x 值越分散,數據越多,估計b0,b 越精確。
三、假設檢驗 1.回歸方程顯著性檢驗欲檢驗y 與x 之間是否有線性關係,即檢驗假設H0:β=0。
§1回归分析1.1回归分析1.2相关系数1.3可线性化的回归分析1.了解回归分析的思想和方法.(重点)2.掌握相关系数的计算和判断线性相关的方法.(重点)3.了解常见的非线性回归模型转化为线性回归模型的方法.(难点)[基础·初探]教材整理1回归分析阅读教材P73~P75,完成下列问题.设变量y对x的线性回归方程为y=a+bx,由最小二乘法知系数的计算公式为:b=l xyl xx=∑i=1n(x i-x)(y i-y)∑i=1n(x i-x)2=∑i=1nx i y i-n x y∑i=1nx2i-n x2,a=y-b x.教材整理2相关系数阅读教材P76~P78,完成下列问题.1.相关系数r的计算假设两个随机变量的数据分别为(x1,y1),(x2,y2),…,(x n,y n),则变量间线性相关系数r=l xyl xx l yy=∑i=1n(x i-x)(y i-y)∑i=1n(x i-x)2∑i=1n(y i-y)2=∑i=1nx i y i-n x y∑i=1nx2i-n x2∑i=1ny2i-n y2.2.相关系数r与线性相关程度的关系(1)r的取值范围为[-1,1];(2)|r|值越大,误差Q越小,变量之间的线性相关程度越高;(3)|r|值越接近0,误差Q越大,变量之间的线性相关程度越低.3.相关性的分类(1)当r>0时,两个变量正相关;(2)当r<0时,两个变量负相关;(3)当r=0时,两个变量线性不相关.判断(正确的打“√”,错误的打“×”)(1)两个变量的相关系数r>0,则两个变量正相关.()(2)两个变量的相关系数越大,它们的相关程度越强.()(3)若两个变量负相关,那么其回归直线的斜率为负.()【答案】(1)√(2)×(3)√教材整理3可线性化的回归分析阅读教材P79~P82,完成下列问题.1.非线性回归分析对不具有线性相关关系的两个变量做统计分析,通过变量代换,转化为线性回归模型.2.非线性回归方程A.y =2+13x B .y =2e x C .y =2e 1xD .y =2+ln x【解析】 分别将x 的值代入解析式判断知满足y =2+ln x . 【答案】 D[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1: 解惑: 疑问2: 解惑:[小组合作型]i i 3-1-1①,对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图②.由这两个散点图可以判断()图3-1-1A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关(2)两个变量x,y与其线性相关系数r有下列说法:①若r>0,则x增大时,y也随之相应增大;②若r<0,则x增大时,y也相应增大;③若r=1或r=-1,则x与y的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上,其中正确的有()A.①②B.②③C.①③D.①②③(3)有五组变量:①汽车的重量和汽车每消耗1升汽油所行驶的平均路程;②平均日学习时间和平均学习成绩;③某人每日吸烟量和其身体健康情况;④正方形的边长和面积;⑤汽车的重量和百公里耗油量.其中两个变量成正相关的是A.①③B.②④C.②⑤D.④⑤【精彩点拨】可借助于线性相关概念及性质作出判断.【自主解答】(1)由这两个散点图可以判断,变量x与y负相关,u与v正相关,故选C.(2)根据两个变量的相关性与其相关系数r之间的关系知,①③正确,②错误,故选C.(3)其中①③成负相关关系,②⑤成正相关关系,④成函数关系,故选C.【答案】(1)C(2)C(3)C1.线性相关系数是从数值上来判断变量间的线性相关程度,是定量的方法.与散点图相比较,线性相关系数要精细得多,需要注意的是线性相关系数r的绝对值小,只是说明线性相关程度低,但不一定不相关,可能是非线性相关.2.利用相关系数r 来检验线性相关显著性水平时,通常与0.75作比较,若r >0.75,则线性相关较为显著,否则为不显著.[再练一题]1.下列两变量中具有相关关系的是( )【导学号:62690052】A .正方体的体积与边长B .人的身高与体重C .匀速行驶车辆的行驶距离与时间D .球的半径与体积【解析】 选项A 中正方体的体积为边长的立方,有固定的函数关系;选项C 中匀速行驶车辆的行驶距离与时间成正比,也是函数关系;选项D 中球的体积是43π与半径的立方相乘,有固定函数关系.只有选项B 中人的身高与体重具有相关关系.【答案】 Bx (℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:(1)(2)气象部门预测下个月的平均气温约为6 ℃,据此估计该商场下个月毛衣的销售量.【精彩点拨】 (1)可利用公式求解; (2)把月平均气温代入回归方程求解.【自主解答】 (1)由散点图易判断y 与x 具有线性相关关系.x=(17+13+8+2)÷4=10,y=(24+33+40+55)÷4=38,∑4i=1x i y i=17×24+13×33+8×40+2×55=1 267,∑4i=1x2i=526,b=∑4i=1x i y i-4x y ∑4i=1x2i-4x2=1 267-4×10×38526-4×102≈-2.01,a=y-b x≈38-(-2.01)×10=58.1,所以线性回归方程为y=-2.0x+58.1.(2)气象部门预测下个月的平均气温约为6 ℃,据此估计,该商场下个月毛衣的销售量为y=-2.0 x+58.1=-2.0×6+58.1≈46(件).1.回归分析是定义在具有相关关系的两个变量基础上的,因此,在作回归分析时,要先判断这两个变量是否相关,利用散点图可直观地判断两个变量是否相关.2.利用回归直线,我们可以进行预测.若回归直线方程y=a+bx,则x=x0处的估计值为y0=a+bx0.3.线性回归方程中的截距a和斜率b都是通过样本估计而得到的,存在着误差,这种误差可能导致预报结果的偏差,所以由线性回归方程给出的是一个预报值而非精确值.4.回归直线必过样本点的中心点.[再练一题]2.某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据:(1)(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y=bx+a;(3)试根据求出的线性回归方程,预测记忆力为9的同学的判断力.【解】(1)如图:(2)∑4i=1x i y i=6×2+8×3+10×5+12×6=158,x=6+8+10+124=9,y=2+3+5+64=4,∑4i=1x2i=62+82+102+122=344,b=158-4×9×4344-4×92=1420=0.7,a=y-b x=4-0.7×9=-2.3,故线性回归方程为y=0.7x-2.3.(3)由(2)中线性回归方程得当x=9时,y=0.7×9-2.3=4,预测记忆力为9的同学的判断力约为4.[探究共研型]探究1【提示】非线性回归问题有时并不给出经验公式.这时我们可以画出已知数据的散点图,把它与学过的各种函数(幂函数、指数函数、对数函数等)图象作比较,挑选一种跟这些散点拟合得最好的函数,然后采用适当的变量变换,把问题化为线性回归分析问题,使之得到解决.其一般步骤为:探究2已知x和y之间的一组数据,则下列四个函数中,模拟效果最好的为哪一个?①y=32③y=4x; ④y=x2.【提示】观察散点图中样本点的分布规律可判断样本点分布在曲线y=3×2x-1附近.所以模拟效果最好的为①.某地区不同身高的未成年男性的体重平均值如下表:(2)如果一名在校男生身高为168 cm,预测他的体重约为多少?【精彩点拨】先由散点图确定相应的拟合模型,再通过对数变换将非线性相关转化为线性相关的两个变量来求解.【自主解答】(1)根据表中的数据画出散点图,如下:由图看出,这些点分布在某条指数型函数曲线y=c1e c2x的周围,于是令z=ln y,列表如下:作出散点图,如下:由表中数据可求得z与x之间的回归直线方程为z^=0.693+0.020x,则有y =e0.693+0.020x.(2)由(1)知,当x=168时,y=e0.693+0.020×168≈57.57,所以在校男生身高为168 cm,预测他的体重约为57.57 kg.两个变量不具有线性关系,不能直接利用线性回归方程建立两个变量的关系,可以通过变换的方法转化为线性回归模型,如y=c1e c2x,我们可以通过对数变换把指数关系变为线性关系,令z=ln y,则变换后样本点应该分布在直线z=bx+a(a=ln c1,b=c2)的周围.[再练一题]3.在一次抽样调查中测得样本的5个样本点,数据如下表:【解】作出变量y与x之间的散点图如图所示.由图可知变量y与x近似地呈反比例函数关系.设y=kx,令t=1x,则y=kt.由y与x的数据表可得y与t的数据表:作出y 与t 的散点图如图所示.由图可知y 与t 呈近似的线性相关关系.又t =1.55,y =7.2,∑i =15t i y i =94.25,∑i =15t 2i =21.312 5,b =∑i =15t i y i -5t y∑i =15t 2i -5t 2=94.25-5×1.55×7.221.312 5-5×1.552≈4.134 4,a =y -b t =7.2-4.134 4×1.55≈0.8, ∴y =4.134 4t +0.8.所以y 与x 的回归方程是y =4.134 4x+0.8.[构建·体系]1.下列结论正确的是( )①函数关系是一种确定性关系;②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法;④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.A .①②B .①②③C .①②④D .①②③④【解析】 函数关系和相关关系的区别是前者是确定性关系,后者是非确定性关系,故①②正确;回归分析是对具有相关关系的两个变量进行统计分析的一种方法,故③错误,④正确.【答案】 C2.下表是x 和y 之间的一组数据,则y 关于x 的线性回归方程必过点( )C.(2.5,4) D.(2.5,5)【解析】线性回归方程必过样本点的中心(x,y),即(2.5,4),故选C.【答案】 C3.对具有线性相关关系的变量x和y,由测得的一组数据求得回归直线的斜率为6.5,且恒过(2,3)点,则这条回归直线的方程为________.【导学号:62690053】【解析】由题意知x=2,y=3,b=6.5,所以a=y-b x=3-6.5×2=-10,即回归直线的方程为y=-10+6.5x.【答案】y=-10+6.5x4.部门所属的10个工业企业生产性固定资产价值与工业增加值资料如下表(单位:百万元):【解析】x=3+3+5+6+6+7+8+9+9+1010=6.6.y=15+17+25+28+30+36+37+42+40+4510=31.5.∴r=∑10i=1(x i-x)(y i-y)∑10i=1(x i-x)2∑10i=1(y i-y)2=0.991 8.【答案】0.991 85.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y =bx +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)【解】 (1)x =16(8+8.2+8.4+8.6+8.8+9)=8.5, y =16(90+84+83+80+75+68)=80, ∵b =-20,a =y -b x , ∴a =80+20×8.5=250, ∴回归直线方程为y =-20x +250.(2)设工厂获得的利润为L 元,则L =x (-20x +250)-4(-20x +250)=-20⎝ ⎛⎭⎪⎫x -3342+361.25, ∴该产品的单价应定为334元时,工厂获得的利润最大.我还有这些不足:(1) (2)我的课下提升方案: (1) (2)。