润滑与密封
- 格式:doc
- 大小:138.84 KB
- 文档页数:3
机械工程中的润滑与密封技术应用研究随着现代机械工程的不断发展,润滑与密封技术在机械设备的设计和运行中起着至关重要的作用。
本文将从润滑技术和密封技术两个方面探讨其在机械工程中的应用与研究。
一、润滑技术的应用与研究润滑技术是机械设备中关键的一环,它可以减少机械零件之间的摩擦与磨损,降低能源损耗,延长机械设备的使用寿命。
润滑技术的应用与研究主要包括以下几个方面。
1.1 润滑油的选择和性能研究在机械设备中,合适的润滑油的选择对于保证机械设备的正常运行至关重要。
润滑油应具备良好的润滑性和降低摩擦系数的能力,同时还要有一定的抗氧化、抗腐蚀和抗磨损能力。
目前,研究人员通过实验研究和理论模拟,不断提升润滑油的性能,以适应高温、高压等恶劣工况下机械设备的润滑需求。
1.2 润滑脂的研究与改进除了润滑油外,润滑脂在机械设备中也有广泛的应用。
润滑脂可以填充机械设备中的空隙和缝隙,形成一层保护膜,减少摩擦和磨损。
近年来,研究人员对于润滑脂的成分、流动性、黏度等方面进行了深入的研究与改进,以提高润滑脂在机械设备中的效果和使用寿命。
1.3 润滑系统的设计与优化润滑系统对于机械设备的顺畅运行至关重要。
通过对润滑系统的设计和优化,可以提高润滑油的循环、过滤和冷却效果,保持润滑效果的稳定性。
同时,润滑系统的自动化控制也是研究的重点之一,通过智能化的控制手段,实时监测润滑状况,及时调整润滑参数,提高机械设备的运行效率和稳定性。
二、密封技术的应用与研究在机械工程中,有效的密封技术可以提高机械设备的工作效率和传动精度,减少能源消耗,防止外部杂质的进入,延长机械设备的使用寿命。
密封技术的应用与研究主要包括以下几个方面。
2.1 密封材料与结构的研究有效的密封技术离不开合适的密封材料和结构设计。
研究人员在密封材料方面通过深入研究材料的物理性能,如耐磨性、耐高温性、耐腐蚀性等,选择合适的密封材料。
在结构设计方面,通过优化密封结构,如采用双层密封、气体密封等方式,提高密封效果和密封的可靠性。
机械设计基础机械系统的润滑与密封设计机械系统的润滑和密封设计在机械工程领域中起着至关重要的作用。
合理的润滑设计可以减少机械零部件的摩擦和磨损,延长机械的使用寿命;而有效的密封设计则可以防止机械系统内外介质的泄漏,确保机械系统的正常运行。
本文将从润滑和密封两个方面进行讨论。
一、润滑设计润滑设计是指在机械系统中采用合适的润滑方式和润滑剂,以减小机械零部件的摩擦系数,降低机械磨损和能量损失的过程。
1.1 润滑方式的选择在润滑设计中,应根据机械系统的工作条件和要求选择合适的润滑方式,常见的润滑方式有干摩擦润滑、润滑膜润滑和混合润滑。
1.2 润滑剂的选择不同的机械系统需要选择不同的润滑剂,常见的润滑剂有液体润滑剂和固体润滑剂。
在选择液体润滑剂时,应考虑机械系统的工作温度、压力和速度等因素;而在选择固体润滑剂时,则应根据所需的耐磨性和耐高温性来选用。
二、密封设计密封设计是指在机械系统中采用合适的密封结构和材料,以防止介质的泄漏和外界物质的侵入。
2.1 密封结构的选择在密封设计中,应根据机械系统的工作条件和要求选择合适的密封结构。
常用的密封结构有梯形密封、O型密封和机械密封等。
不同的密封结构适用于不同的工作环境和工作压力。
2.2 密封材料的选择密封材料的选择直接影响到机械系统的密封性能和使用寿命。
在选择密封材料时,应根据介质的性质、温度和压力等因素来选择合适的材料。
常见的密封材料有橡胶、金属和高分子材料等。
三、润滑与密封的综合设计润滑和密封是机械系统中密切相关的两个方面,二者的综合设计可以取得更好的效果。
3.1 润滑与密封的协同作用在机械系统中,润滑剂有助于降低摩擦系数,从而减少能量损失和磨损。
而密封结构则可以防止润滑剂的泄漏和外界杂质的侵入,保证润滑效果的持久。
3.2 润滑与密封的优化设计通过合理的润滑与密封设计,可以提高机械系统的工作效率和使用寿命。
例如,在高速摩擦部位采用自润滑材料,并配备合适的密封结构,能够有效降低能量损失和磨损。
机械设计中的润滑与密封技术在机械设计中,润滑和密封技术被广泛应用于各种设备和机械系统中,以确保它们的正常运行和长期的可靠性。
润滑技术主要用于减少机械部件之间的摩擦和磨损,而密封技术则用于防止介质的泄漏和外界杂质的侵入。
本文将探讨机械设计中润滑与密封技术的重要性以及应用的各种方法。
1. 润滑技术的重要性润滑技术在机械设计中起着至关重要的作用。
首先,它能够减少机械部件之间的摩擦,从而减少能量损耗和热量的产生。
其次,润滑能够降低机械部件的磨损和腐蚀,延长机械系统的寿命。
此外,润滑还可以降低机械噪音和振动,提高机械系统的运行效率和平稳性。
2. 润滑技术的应用方法在机械设计中,有多种润滑技术可供选择。
常见的润滑方法包括干摩擦、边沿润滑、静压润滑、流体动压润滑等。
干摩擦是指在两个机械部件之间不使用润滑剂,而依靠表面的微小不平整度形成气体膜来减小摩擦。
边沿润滑则是通过在机械部件的边沿位置提供润滑剂,形成润滑膜来减少摩擦和磨损。
静压润滑和流体动压润滑是基于液体在机械部件的间隙内形成液膜来减小摩擦和磨损。
3. 密封技术的重要性密封技术在机械设计中同样具有重要的地位。
在很多机械系统中,需要保持介质的纯净性和防止外界杂质的侵入,以确保机械系统的正常运行。
此外,密封技术还能够防止介质的泄漏,保证生产过程的安全性和环境的卫生。
因此,密封技术在化工、石油、冶金、食品等行业中具有广泛的应用。
4. 密封技术的应用方法机械设计中有多种密封技术可供选择。
最常见的密封方法包括静态密封、动态密封和辅助密封。
静态密封是指在机械部件之间使用密封垫片或O型圈等零件进行密封,常用于管道连接、阀门和泵体等部件。
动态密封则是指在运动的机械部件之间使用轴封、活塞环等密封件,常见于发动机、液压缸等设备。
而辅助密封则是在静态和动态密封的基础上增加辅助密封元件,如密封油槽、密封腔等,以提供更可靠的密封效果。
5. 润滑与密封技术的创新与发展随着科技的进步和工程技术的不断发展,润滑与密封技术也在不断创新和改进。
机械润滑与密封一、润滑1、摩擦:摩擦现象是自然界中普遍存在的物理现象。
摩擦会使机器效率降低,温度升高,表面磨损。
过大磨损会使机器丧失精度,产生振动和噪音,缩短寿命。
世界上使用的能源大约有1/3-1/2 消耗于摩擦。
如果能够尽力减少无用的摩擦消耗,便可大量节省能源。
2、润滑的作用和润滑技术机械中的可动零、部件,在压力下接触而作相对运动时,其接触表面间就会产生摩擦,造成能量损耗和机械磨损,影响机械运动精度和使用寿命。
因此,在机械设计中,考虑降低摩擦,减轻磨损,是非常重要的问题,其措施之一就是采用润滑。
3、润滑的作用:(1)减少摩擦,减轻磨损加入润滑剂后,在摩擦表面形成一层油膜,可防止金属直接接触,从而大大减少摩擦磨损和机械功率的损耗。
(2)降温冷却摩擦表面经润滑后其摩擦因数大为降低,使摩擦发热量减少;当采用液体润滑剂循环润滑时,润滑油流过摩擦表面带走部分摩擦热量,起散热降温作用,保证运动副的温度不会升得过高。
(3)清洗作用润滑油流过摩擦表面时,能够带走磨损落下的金属磨屑和污物。
(4)防止腐蚀润滑剂中都含有防腐、防锈添加剂,吸附于零件表面的油膜,可避免或减少由腐蚀引起的损坏。
(5)缓冲减振作用润滑剂都有在金属表面附着的能力,且本身的剪切阻力小,所以在运动副表面受到冲击载荷时,具有吸振的能力。
(6)密封作用润滑脂具有自封作用,一方面可以防止润滑剂流失,另一方面可以防止水分和杂质的侵入。
润滑技术包括正确地选用润滑剂、采用合理的润滑方式并保持润滑剂的质量等。
二、润滑剂及其选用生产中常用的润滑剂包括润滑油、润滑脂、固体润滑剂、气体润滑剂及添加剂等几大类。
其中矿物油和皂基润滑脂性能稳定、成本低,应用最广。
固体润滑剂如石墨、二硫化钼等耐高温、高压能力强,常用在高压、低速、高温处或不允许有油、脂污染的场合,也可以作为润滑油或润滑脂的添加剂使用。
气体润滑剂包括空气、氢气及一些惰性气体,其摩擦因数很小,在轻载高速时有良好的润滑性能。
机械润滑与密封在机械工程领域中,润滑与密封技术是非常重要的环节,它们直接影响着机械设备的性能和寿命。
机械润滑和密封的目的是减少摩擦、磨损和泄漏,从而保证机械设备的正常运行。
本文将介绍机械润滑和密封的基本原理、常见应用以及技术革新。
一、机械润滑的基本原理机械润滑是通过在摩擦表面之间引入润滑油膜来减少摩擦和磨损。
润滑油膜可以起到分离两个摩擦表面的作用,阻止直接接触,从而减少摩擦力和磨损。
常见的润滑方式包括油润滑和脂润滑两种,选择合适的润滑方式取决于摩擦表面的要求以及工作环境的条件。
二、机械润滑的常见应用1. 轴承润滑:机械设备中的轴承是重要的部件,它们需要运行平稳、低噪音以及长寿命。
在轴承应用中,油润滑是最常用的润滑方式。
通过向轴承中注入合适的润滑油,可以在摩擦表面形成稳定的润滑油膜,保证轴承的正常工作。
2. 齿轮润滑:齿轮是机械设备中常见的传动部件,其润滑方式多样化,可以是油润滑、脂润滑或者干润滑。
油润滑在齿轮应用中较为常见,通过将润滑油引导至齿轮啮合区域,可以有效减小齿面间的磨损和摩擦。
3. 液压系统润滑:液压系统中的润滑主要是为了降低液压阀芯与阀体之间的摩擦,保证阀芯的灵活运动。
同时,液压系统的润滑也能够降低部件的磨损,提高系统的工作效率。
三、密封技术在机械工程领域的重要性机械设备中的密封技术是为了防止气体、液体或固体的泄漏,保证系统的正常运行。
合理的密封设计可以防止杂质的进入和能量的流失,提高机械设备的效率和可靠性。
常见的密封方式有静态密封和动态密封两种。
四、密封技术的应用领域1. 泵类设备:泵是常见的流体输送设备,在泵的密封设计中,常用的密封方式有填料密封、机械密封和磁力密封。
合适的密封方式能够有效减少泵的泄漏,延长设备使用寿命。
2. 阀门设备:阀门是流体控制的重要设备,其密封性能对于系统的正常运行至关重要。
合适的阀门密封技术可以确保阀门的开关性能和封闭性能,减少泄漏风险。
3. 汽车行业:密封技术广泛应用于汽车行业,如发动机的气缸垫片、轮胎的密封圈等。
润滑与密封
一、传动零件的润滑 1.齿轮传动润滑
υ≤12m/s ,采用浸油润滑,齿轮齿顶到油池底面距离不应小于(30—50)mm ,大齿轮浸油应超过1个全齿高,采用全损耗系统用油L-AN32。
2.滚动轴承的润滑
轴承内径圆周速度v<2m/s ,脂润滑,选用滚动轴承脂ZGN69-2 二、减速器密封
1、机座、机盖厚度、凸缘厚度 ,由于采用铸造,计算值若大于8mm ,按实际值圆整,若计算出小于8mm ,厚度可取8mm 。
2、为保证机盖与机座连接处密封,联接凸缘应有足够的宽度,联接表面应精创,
其表面粗糙度为∀3
.6。
凸缘联接螺栓间距,一般150—200mm ,均匀布置 。
3、由于凸缘式轴承端盖易于调整轴向游隙,轴承两端采用凸缘式端盖。
由于采用脂润滑,轴端采用间隙密封。
4、由于1、2、3轴与轴承接触处的线速度s m v 10<,所以采用毡圈密封。
箱体结构的设计
1、减速器的箱体采用铸造(HT200)制成,采用剖分式结构为了保证齿轮配合质
量,大端盖分机体采用67
is H 配合.
2、机体有足够的刚度,在机体为加肋,外轮廓为长方形,增强了轴承座刚度
3、机体结构有良好的工艺性。
铸件壁厚为10,圆角半径为R=3。
机体外型简单,拔模方便.
4、对附件设计
A 视孔盖和窥视孔
在机盖顶部开有窥视孔,能看到 传动零件齿合区的位置,并有足够的空间,以便于能伸入进行操作,窥视孔有盖板,机体上开窥视孔与凸缘一块,有便于机械加工出支承盖板的表面并用垫片加强密封,盖板用铸铁制成,用M6紧固 B 油螺塞:
放油孔位于油池最底处,并安排在减速器不与其他部件靠近的一侧,以便放油,放油孔用螺塞堵住,因此油孔处的机体外壁应凸起一块,由机械加工成螺塞头部的支承面,并加封油圈加以密封。
C 油标:
油标位在便于观察减速器油面及油面稳定之处。
油标安置的部位不能太低,以防油进入油标座孔而溢出。
D 通气孔:
由于减速器运转时,机体内温度升高,气压增大,为便于排气,在机盖顶部的窥视孔改上安装通气器,以便达到体内为压力平衡.
E 启盖螺钉:
启盖螺钉上的螺纹长度要大于机盖联结凸缘的厚度。
钉杆端部要做成圆柱形,以免破坏螺纹. F 定位销:
为保证剖分式机体的轴承座孔的加工及装配精度,在机体联结凸缘的长度方向各安装一圆锥定位销,以提高定位精度. G 吊钩:
在机盖上直接铸出吊钩和吊环,用以起吊或搬运较重的物体. 减速器机体结构尺寸如下: 名称 符号 计算公式 结果
箱座壁厚 σ 83025.0≥+=a σ 10
箱盖壁厚 1σ 8302.01≥+=a σ 9
箱盖凸缘厚度
1b
115.1σ=b
12 箱座凸缘厚度
b σ5.1=b
15
箱座底凸缘厚度
2b
σ5.22=b
25 地脚螺钉直径 f
d
12036.0+=a d f
M24
地脚螺钉数目 n
查手册
6 轴承旁联接螺栓直径
1d f
d d 72.01=
M12
机盖与机座联接螺栓直径
2d
2d =(0.5~0.6)f d
M10 轴承端盖螺钉直径
3d
3d =(0.4~0.5)f d
10 视孔盖螺钉直径 4d 4d =(0.3~0.4)f d 8 定位销直径
d
d =(0.7~0.8)2d
8
f
d ,1d ,2d 至外机壁距离
1C
查机械课程设计指导书表4 34 22
18
f
d ,2d 至凸缘边缘距离
2C
查机械课程设计指导书表4 28 16
外机壁至轴承座端面距离
1l
1l =1C +2C +(8~12)
50 大齿轮顶圆与内机壁距离
1∆ 1∆>1.2σ 15 齿轮端面与内机壁距离
2∆
2∆>σ
10
机盖,机座肋厚 m m ,1 σσ85.0,85.011≈≈m m ≈1m 9 ≈m 8.5
轴承端盖外径 2D D D =2+(5~5.5)3d 120(1轴)125(2轴)
150(3轴)
轴承旁联结螺栓距离
S
2D S ≈
120(1轴)125(2轴)
150(3轴)
设计总结
机械设计课程设计是我本科阶段要经历的一个重要环节,通过2周的课程设计,使我从各个方面都受到了机械设计的训练,对机械的有关各个零部件有机的结合在一起得到了深刻的认识。
让我明白一个简单机械设计的过程,知道一个设计所必须要准备些什么,要怎样去安排工作,并学习机械设计的一般方法,掌握机械设计的一般规律;也通过课程设计实践,培养了我综合运用机械设计课程和其他先修课程的理论与生产实际知识来分析和解决机械设计问题的能力;学会怎样去进行机械设计计算、绘图、查阅资料和手册、运用标准和规范。
还有就是激发了我的学习兴趣,能起到一种激励奋斗的作用,让我更加对课堂所学内容的更加理解和掌握。
由于在设计方面我们没有经验,理论知识学的不牢固,在设计中难免会出现这样那样的问题,如:在选择计算标准件是可能会出现误差,如果是联系紧密或者循序渐进的计算误差会更大,在查表和计算上精度不够准
在设计的过程中,培养了我综合应用机械设计课程及其他课程的理论知识和应用生产实际知识解决工程实际问题的能力,在设计的过程中还培养出了我们的团队精神,大家共同解决了许多个人无法解决的问题,在这些过程中我们深刻地认识到了自己在知识的理解和接受应用方面的不足,在今后的学习过程中我们会更加努力和团结。
由于本次设计是分组的,自己独立设计的东西不多,但在通过这次设计之后,我想会对以后自己独立设计打下一个良好的基础。
这次机械设计课程设计是我们一次进行的较长时间、较系统、 较全面的工程设计能力训练,很好地提高了我们实践能力和运用综合能力的水平。
我们可以通过设计,明白到学习的内容的目的,更加明确大学学习的目标方向,能激起学生学习激情,也让我们有学习的成就感,希望以后有更多合适实训教学安排。