八年级因式分解分式与分式方程
- 格式:doc
- 大小:499.00 KB
- 文档页数:11
分式方程教案(初二因式分解题100道)“关注初中生数学核心素养的单元整合教学实践研究”推介会纪实2018年11月26日,在2018年晋江区师范学校的指导下,育才七中数学组(方水晶校区)开展了以初中生“数学学科核心素养”单元整合教学实践研究为重点的专题推广活动。
活动由陈颖老师、刘智言老师、程艳老师交流汇报。
活动分为三个环节。
首先,程艳在2021年带领12班的孩子们学习了《整式方程》。
程老师通过一段有趣的视频介绍题目,并巧妙地与内容衔接,激发了学生的学习兴趣。
然后,他研究了一元线性方程、一元高阶方程和多元方程的概念,定义了积分方程和分数方程的概念。
在教学过程中,程老师引导孩子层层探索、合作、交流,设计的问题串直接针对学生核心素养的培养,从而表演出优质高效的精品课。
方程的概念学习是同源的。
这种一体化教学使学生自然生成知识点,形成良好的教学生态。
学生兴趣浓厚,对方程组和积分方程有更清晰的认识。
学生的反馈在教学设计中表现出高度的适应性。
随后,刘智言先生交流并汇报了课题的研究过程和成果。
刘先生从选题的初衷、选题的具体背景、研究的操作框架、实际行动、成果与效果、反思与不足六个方面做了报告。
她提到在初中数学教学中,核心素养的培养离不开具体的知识建构,核心素养与课程知识的关系可以比喻为“汤里有盐”。
通过单元整合教学优化数学知识建构过程,可以保证核心素养得到更好的培养。
刘老师在《从——到——到——》项目探索过程中,围绕数学核心素养,详细讲解了单元整合教学的模块化操作过程,并通过典型的课堂实例进行了讲解。
课题组探索了有价值的理论和实践成果:对知识、方法和核心素养的层次关系提出了科学的观点;在教学中整合“整体性、结构性、关联性、活动性、应用性”五大特征;单元整合教学应遵循“系统化、模块化、综合化”三大原则;构建了单元整合教学的操作框架和整合维度。
通过课题组的探索可以看出,课堂教学行为的实施是以一个整体的视野来组织的,使学生核心素养的培养有了一个把握和具体的落地;在研究过程中,教师提高了自己解读教材和教学衔接的能力,提高了自己的数学素养和教学理念。
八年级数学下册北师大版期中概念、公式、定理归纳第一章三角形的证明一、全等三角形判定、性质:1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)2.全等三角形的对应边相等、对应角相等。
二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。
(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;三、等腰三角形的判定1. 有关的定理及其推论定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。
)推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
2. 反证法:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
这种证明方法称为反证法四、直角三角形1、直角三角形的性质直角三角形的两锐角互余直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。
2、直角三角形判定如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.五、线段的垂直平分线、角平分线1、线段的垂直平分线。
性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
八年级下册数学教材分析_初二数学下册知识点数学教材分析是根据教材分析的一般模式从整体和局部两个层面进行八年级数学教材的分析,为大家整理了八年级下册数学教材分析,欢迎大家阅读!一、本册教材内容简析本学期教学内容总计六章。
第一章《三角形的证明》本章将证明与等腰三角形和直角三角形的性质及判定有关的一些结论,证明线段垂直平分线和角平分线的有关性质,将研究直角三角形全等的判定,进一步体会证明的必要性。
第二章《一元一次不等式和一元一次不等式组》本章通过具体实例建立不等式,探索不等式的基本性质,了解一般不等式的解、解集、解集在数轴上的表示,一元一次不等式的解法及应用;通过具体实例渗透一元一次不等式、一元一次方程和一次函数的内在联系.最后研究一元一次不等式组的解集和应。
第三章《图形的位移与转动》本章将在小学自学的基础上进一步重新认识平面图形的位移与转动,积极探索位移,转动的性质,重新认识并观赏位移,中心对称在自然界和现实生活中的应用领域。
第四章《分解因式》本章通过具体实例分析分解因式与整式的乘法之间的关系揭示分解因式的实质,最后学习分解因式的几种基本方法。
第五章《分式与分式方程》本章通过分数的有关性质的总结创建了分式的概念、性质和运算法则,并在此基础上自学分式的化简表达式、求解分式方程及列于分式方程求解应用题,能够化解直观的实际应用领域问题。
第六章《平行四边形》本章将研究平行四边形的性质与认定,以及三角形中位线的性质,还将积极探索多边形的内角和,外角和的规律;经历操作方式,实验等几何辨认出之旅,享用证明之美。
二、各章教学目标及重点难点第一章、三角形的证明目标:1、经历积极探索、悖论、证明的过程,进一步体会证明的必要性,发展推理小说能力。
2、进一步了解作为证明基础的几条基本事实的内容,掌握综合法的证明方法;结合具体实例体会反证法的含义。
3、证明等腰三角形、等边三角形、直角三角形、线段的垂直平分线、角平分线的性质及定理和认定定理。
八年级数学上册第十五章第3节分式方程解答题专题训练(8)一、解答题1.解方程:^1x + 3 2x + 62.(1)分解因式:x(a-b)+y(a-b)3 4(2)解分式方程: ----- =—X-1 X3.在争创全国卫生城市的活动中,我县一青年突击队决定清运一重达50吨的垃圾,请根据以下信息,帮小刚计算青年突击队的实际清运速度。
(1)清运开工后,由于附近居民主动参加义务劳动,清运速度比原计划提高了一倍。
(2)结果比原计划提前了 2小时完成任务。
4.超市老板大宝第一次用1000元购进某种商品,由于畅销,这批商品很快售完,第二次去进货时发现批发价上涨了 5元,购买与第一次相同数量的这种商品需要1250元.(1)求第一次购买这种商品的进货价是多少元?(2)若这两批商品的售价均为32元,问这两次购进的商品全部售完(不考虑其它因素)能赚多少元钱?5.解方程:2-x 1 ,(1) ---- + ---- = 1x — 3 3 — x3 x + 2八(2) --------------- = 0%-1 %(% -1)6.根据以下信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg产品,可列方程为—小惠同学设甲型机器人搬运800kg 所用时间为v小时,可列方程为一(2)请你按照(1)中小华同学的解题思路,写出完整的解答过程.7.计算:(1)sin30° - (2)解方程;8.新冠肺炎疫情防控期间,学校为做好预防性消毒工作,开学初购进A、8两种消毒10.解方程: 6 x 2-l液,其中A 消毒液的单价比3消毒液的单价多40元,用3200元购买3消毒液的数量是用 2400元购买A 消毒液数量的2倍.(1) 求两种消毒液的单价;(2) 学校准备用不多于6800元的资金购买A 、3两种消毒液共70桶,问最多购买A 消 毒液多少桶?9. 甲乙两名工人各承包了一段500米的道路施工工程,已知甲每天可完成的工程比乙多5 米.两人同时开始施工,当乙还有100米没有完成时,甲已经完成全部工程.(1) 求甲、乙每天各可完成多少米道路施工工程?(2) 后来两人又承包了新的道路施工工程,施工速度均不变,乙承包了 500米,甲比乙多 承包了 100米,乙想:这次我们一定能同时完工了!请通过计算说明乙的想法正确吗?若 正确,求出两人的施工时间;若不正确,则应该如何调整其中一人的施工速度才能使两人 同时完工,请通过计算给出调整方案.3x+2y = -12x + 3y = T-9 1 4(2) -- = ------------- .4 — x 2 + 尤 2 — x11. 某商厦分别用600元购进甲、乙两种糖果,因为甲糖果的进价是乙糖果进价的1.2倍,所以进回的甲糖果的重量比乙糖果少10kg.(1) 甲、乙两种糖果的进价分别是多少?(2) 若两种糖果的销售利润率均为10%,则两种糖果的售价分别是多少?(3) 如果将两种糖果混合在一起销售,总利润不变,那么混合后的糖果单价应定为多少 元?12. 王老师从学校出发,到距学校2000m 的某商场去给学生买奖品,他先步行了 800m后,换骑上了共享单车,到达商场时,全程总共刚好花了 15min .已知王老师骑共享单车 的平均速度是步行速度的3倍(转换出行方式时,所需时间忽略不计).(1) 求王老师步行和骑共享单车的平均速度分别为多少?(2) 买完奖品后,王老师原路返回,为按时上班,路上所花时间最多只剩10分钟,若王 老师仍采取先步行,后换骑共享单车的方式返回,问:他最多可步行多少米?13. 某市从今年1月1日起调整居民用水价格,每立方米水费上涨S ,小丽家去年12月 的水费是15元,而今年7月的水费则是30元.已知小丽家今年7月的用水量比去年12 月的用水量多5m 3,求小丽家今年7月的用水量.14. 小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较 拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比 走路钱一少用10分钟到达.求小明走路线一时的平均速度./ 、 “、e x 1 2x + 215. (1)解万程:一+1 = ---------X+1 X, 7 3(2)解方程: -- C ------ 2x+x x-x记者:你们是用9天完成4800长的高架桥铺设任务的?眼(2)解方程:土 +: = 上19. (1)化、1 4 (1) ----- =—;x-2 x2 -4 (2) 1 -----3x-l 6x-222 . (本题共10当a为何值x-1x-2x-2_ 2x+ax + 1 (x-2)(x+ l)的解是负16.“绿水青山就是金山银山”,为了进一步优化河道环境,甲乙两工程队承担河道整治任务,甲、乙两个工程队每天共整治河道1500米,甲工程队整治3600米所用的时间与乙工程队整治2400米所用时间相等。
第一讲 分解方法的延拓——换元法与主元法因式分解是针对多项式的一种恒等变形,提公因式法、公式法,分组分解法是因式分解的基本方法,通常根据多项式的项数来选择分解的方法.一些复杂的因式分解问题.常用到换元法和主元法.所谓换元,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化、明朗化,在减少多项式项数,降低多项式结构复杂程度等方面有独到作用.所谓主元,即在解多变元问题时,选择其中某个变元为主要元素,视其他变元为常量,将原式重新整理成关于这个字母的按降幂排列的多项式,则能排除字母间的干扰,简化问题的结构.例题求解【例1】分解因式:10)3)(4(2424+++-+x x x x = .(第12届“五羊杯”竞赛题)思路点拨 视24x x +为一个整体.用一个新字母代替,从而能简化式子的结构.【例2】 多项式xyz y z x y z x x z z y y x 2222222-++-+-因式分解后的结果是( ).A .(y -z)(x+y)(x -z)B .(y -z)(x -y)(x +z)C . (y+z)(x 一y)(x+z)D .(y 十z)(x+y)(x 一z) (上海市竞赛题)思路点拨 原式是一个复杂的三元三次多项式,直接分解有一定困难,把原式整理成关于某个字母按降幂排列的多项式,改变其结构,寻找分解的突破口.【例3】把下列各式分解因式:(1)(x+1)(x +2)(x+3)(x+6)+ x 2; (天津市竞赛题)(2)1999x 2一(19992一1)x 一1999; (重庆市竞赛题)(3)(x+y -2xy)(x+y -2)+(xy -1)2; (“希望杯”邀请赛试题)(4)(2x -3y)3十(3x -2y)3-125(x -y)3. (第13届“五羊杯”竞赛题)思路点拔 (1)是形如abcd+e 型的多项式,分解这类多项式时,可适当把4个因式两两分组,使得分组相乘后所得的有相同的部分;(2)式中系数较大,不妨把数用字母表示;(3)式中x+y ;xy 多次出现,可引入两个新字母,突出式子特点;(4)式前两项与后一项有密切联系.【例4】把下列各式分解因式:(1)a 2(b 一c)+b 2(c -a)+c 2 (a 一b); (2)x 2+xy -2y 2-x+7y -6.思路点拨 (1)式字母多次数高,可尝试用主元法;(2)式是形如ax 2+bxy+cy 2+dx+ey+f 的二元二次多项式,解题思路宽,用主元法或分组分解法或用待定系数法分解.【例5】证明:对任何整数 x 和y ,下式的值都不会等于33.x 5+3x 4y -5x 3y 2一15x 2y 3+4xy 4+12y 5.(莫斯科奥林匹克八年级试题)思路点拨 33不可能分解为四个以上不同因数的积,于是将问题转化为只需证明原式可分解为四个以上因式的乘积即可.注:分组分解法是因式分解的量本方法,体现了化整体为局部、又统揽全局的思想.如何恰当分组是解题的关键,常见的分组方法有:(1)按字母分组;(2)按次数分组; (3)按系数分组.为了能迅速解决一些与代教式恒等变形相关的问题,读者因熟悉如下多项式分解因式后的结果:(1)))((2233b ab a b a b a +±=± ;(2)))((3222333ac bc ab c b a c b a abc c b a ---++++=-++学历训练1.分解因式:(x 2+3x)2-2(x 2+3x)-8= .2.分解因式:(x 2+x+1)(x 2+x+2)-12= .3.分解因式:x 2-xy -2y 2-x -y= .4.已知二次三项式82--mx x 在整数范围内可以分解为两个一次因式的积,则整数m 的可能取值为 .5.下列各式分解因式后,可表示为一次因式乘积的是( ).A .2727923-+-x x xB .272723-+-x x xC .272734-+-x x xD .279323-+-x x x (第13届“希望杯”邀请赛试题)6.若51-=+b a ,13=+b a ,则53912322+++b ab a 的值为( ). A .92 B .32 C .54 D .0 7.分解因式:(1)(x 2+4x+8)2+3x(x 2+4x+8)+2x 2; (2)(2x 2-3x+1)2一22x 2+33x -1;(3)x 4+2001x 2+2000x+2001; (4)(6x -1)(2 x -1)(3 x -1)( x -1)+x 2;(5)bc ac ab c b a 54332222+++++; (6)613622-++-+y x y xy x .8.分解因式:22635y y x xy x ++++= .9.分解因式:333)()2()2(y x y x -----= .10.613223+-+x x x 的因式是( )A .12-xB .2+xC .3-xD .12+xE .12+x11.已知c b a >>,M=a c c b b a 222++,N=222ca bc ab ++,则M 与N 的大小关系是( )A .M<NB .M> NC .M =ND .不能确定12.把下列各式分解因式:(1)22212)16)(1(a a a a a ++-++; (2)91)72)(9)(52(2---+a a a ; (黄冈市竞赛题)(3)2)1()21(2)3()1(-+-++-+++y x y x xy xy xy ; (天津市竞赛题)(4)4242410)13)(14(x x x x x ++++-;(第13届“五羊杯”竞赛题)(5)z y xy xyz y x z x x 222232242-++--. (天津市竞赛题)17.已知乘法公式:))((43223455b ab b a b a a b a b a +-+-+=+; ))((43223455b ab b a b a a b a b a ++++-=-. 利用或者不利用上述公式,分解因式:12468++++x x x x (“祖冲之杯”邀请赛试题)18.已知在ΔABC 中,010616222=++--bc ab c b a (a 、b 、c 是三角形三边的长).求证:b c a 2=+第二讲 分解方法的延拓——配方法与待定系数法在数学课外活动中,配方法与待定系数法也是分解因式的重要方法。
八年级数学下第一章三角形证明1.等腰三角形2.直角三角形3.线段的垂直平分线4.角平分线4在中考中会出1道大题,分值在8—10分,还会和其他知识点结合出现;1—2道选择题或填空题,分值在3—8分,主要考察等腰三角形的相关概念、性质和判定,线段垂直平分线的性质,直角三角形的勾股定理及其逆定理,角平分线的性质。
不定第二章一元一次不等式与一元一次不等式组1.不等式关系2.不等式的基本性质3.不等式的解集4一元一次不等式5.一元一次不等式与一次函数6.一元一次不等式组4在中考中会出现1道选择题或填空题,分值在3—4分,主要考察不等式及其性质,一元一次不等式组及其解法,一元一次不等式的应用。
3-4分第三章图形的平移与旋转1.图形的平移2.图形的旋转3.中心对称4.简单的图案设计2在中考中最多出一道选择题或填空题,分值3—4分,主要考察图形的平移、旋转,中心对称3-4分第四章因式分解1.因式分解2.提公因式法3.公式法3中考中会出现1道填空题或在计算题中出现,分值4分,主要考察用提公因式法和公式法进行因式分解不定第五章分式与分式方程1.认识分式2.分式的乘除法3.分式的加减法4.分式方程4中考中会出现1道填空题,分值在4分,主要考察通分和约分以及分式的计算4分第六章平行四边形1.平行四边形的性质2.平行四边形的判定3.三角形的中位线4.多边形的内角和与外角和4中考中会出现1—2道大题,分值在8—20分;1—2道选择题或填空题分值在3—8分,主要考察平行四边形的概念和性质以及平行四边形的判定不定。
北师大版八年级下册数学大纲一、三角形的证明。
1. 等腰三角形。
- 理解等腰三角形的性质和判定定理。
- 性质包括“等边对等角”以及“三线合一”(等腰三角形底边上的中线、底边上的高和顶角平分线互相重合)。
- 判定定理:等角对等边。
- 能运用这些定理进行简单的计算和证明。
2. 直角三角形。
- 掌握直角三角形的性质,如直角三角形两锐角互余。
- 直角三角形斜边上的中线等于斜边的一半。
- 勾股定理及其逆定理。
勾股定理:直角三角形两直角边的平方和等于斜边的平方a^2+b^2=c^2(a,b为直角边,c为斜边);逆定理:如果三角形的三边长a,b,c满足a^2+b^2=c^2,那么这个三角形是直角三角形。
- 会运用这些定理解决实际问题,如求直角三角形的边长、判断三角形是否为直角三角形等。
3. 线段的垂直平分线。
- 理解线段垂直平分线的性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等。
- 掌握其判定定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
- 能利用这些定理进行相关的作图和证明。
4. 角平分线。
- 角平分线的性质定理:角平分线上的点到这个角的两边的距离相等。
- 判定定理:在一个角的内部,且到角的两边距离相等的点在这个角的平分线上。
- 学会用尺规作角的平分线,并能运用角平分线的性质和判定进行证明。
二、不等式与不等式组。
1. 不等式的基本性质。
- 理解不等式的基本性质,如不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变。
- 能根据不等式的基本性质对不等式进行变形。
2. 一元一次不等式。
- 掌握一元一次不等式的概念,能将实际问题抽象为一元一次不等式。
- 会解一元一次不等式,其步骤与解一元一次方程类似,但要注意不等号方向的变化。
- 能在数轴上表示一元一次不等式的解集。
3. 一元一次不等式组。
北师大版八年级下册数学目录第一章三角形的证明1. 等腰三角形2. 直角三角形3. 线段的垂直平分线4. 角平分线回顾与思考复习题第二章一元一次不等式与一元一次不等式组1. 不等关系2. 不等式的基本性质3. 不等式的解集4.一元一次不等式5.一元一次不等式与一次函数6.一元一次不等式组回顾与思考复习题第三章图形的平移与旋转1. 图形的平移2. 图形的旋转3. 中心对称4. 简单的图案设计回顾与思考第四章因式分解1. 因式分解2. 提公因式法3. 公式法回顾与思考复习题第五章分式与分式方程1. 认识分式2. 分式的乘除法3. 分式的加减法4. 分式方程回顾与思考复习题第六章平行四边形1. 平行四边形的性质2. 平行四边形的判定3. 三角形的中位线4. 多边形的内角和与外角和回顾与思考复习题综合与实践⊙ 生活中的“一次模型”综合与实践⊙ 平面图形的镶嵌一、不等关系定义:一般地,用符号“<”或“≤”,“>”或“≥”连接的式子叫做不等式.与方程的区别:方程表示的是相等的关系;不等式表示的是不相等的关系.备注:准确“翻译”不等式,正确理解“非负数”“不小于”“不大于”“至多”“至少”等数学术语.二、不等式的基本性质●不等式的两边都加或减同一个整式,不等号的方向不变,即如果a>b,那么a c>b c;●不等式的两边都乘或除以同一个正数,不等号的方向不变,即如果a>b,c>0,那么ac>bc或>;●不等式的两边都乘或除以同一个负数,不等号的方向改变,即如果a>b,c<0,那么ac三、不等式的解集1、能使不等式成立的未知数的值,叫做不等式的解.一个含有未知数的不等式的所有解,组成这个不等式的解集.求不等式解集的过程叫做解不等式.2、不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:1边界:有等号的实心圆点,无等号的空心圆圈;2方向:大于向右,小于向左.四、一元一次不等式定义:不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次是1,像这样的不等式叫做一元一次不等式.解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.列不等式解应用题的基本步骤:①审,②设,③列,④解,⑤答.备注:解一元一次不等式特别要注意,当不等式两边都乘一个负数时,不等号要改变方向.五、一元一次不等式与函数设一次函数y kx b,则有一次函数的图像在x轴的上方kx b>0;一次函数的图像在x轴的下方kx b<0.六、一元一次不等式组解一元一次不等式组的方法:“分开解,集中判”备注:几个不等式解集的公共部分,通常是利用数轴来确定.感谢您的阅读,祝您生活愉快。
因式分解、分式复习一、知识梳理知识点一 因式分解1.分解因式:把一个多项式化成 的形式,这种变形叫做把这个多项式分解因式.2.分解困式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.⑵运用公式法:平方差公式: ; 完全平方公式: ;3.分解因式的步骤:(1)分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解.(2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。
4.分解因式时常见的思维误区:提公因式时,其公因式应找字母指数最低的,而不是以首项为准.若有一项被全部提出,括号内的项“ 1”易漏掉.分解不彻底,如保留中括号形式,还能继续分解等【课前练习】1.下列各组多项式中没有公因式的是( )A .3x -2与 6x 2-4x B.3(a -b )2与11(b -a )3C .mx —my 与 ny —nxD .ab —ac 与 ab —bc 2. 下列各题中,分解因式错误的是( ) 3. 列多项式能用平方差公式分解因式的是()22222222.949 .949.949 .(949)A x y B x y C x y D x y ---+-+4. 分解因式:x 2+2xy+y 2-4 =_____5. 分解因式:(1)()229=n ;()222=a(2)22x y -= ;(3)22259x y -= ; (4)22()4()a b a b +--;(5)以上三题用了 公式222222.1(1)(1) ;.14(12)(12).8164(98)(98);.(2)(2)(2)A x x x B y y y C x y x y x y D y x y x y x -=+--=+--=+---=-+-【经典考题剖析】 例 1. 分解因式:(1)33x y xy -;(2)3231827x x x -+;(3)()211x x ---;(4)()()2342x y y x ---分析:①因式分解时,无论有几项,首先考虑提取公因式。
提公因式时,不仅注意数,也要注意字母,字母可能是单项式也可能是多项式,一次提尽。
②当某项完全提出后,该项应为“1” ③注意()()22nn a b b a -=-,()()2121n n a b b a ++-=--④分解结果(1)不带中括号;(2)数字因数在前,字母因数在后;单项式在前,多项式在后;(3)相同因式写成幂的形式;(4)分解结果应在指定范围内不能再分解为止;若无指定范围,一般在有理数范围内分解。
例2. 分解因式:(1)22310x xy y --;(2)32232212x y x y xy +-;(3)()222416x x +-分析:对于二次三项齐次式,将其中一个字母看作“末知数”,另一个字母视为“常数”。
首先考虑提公因式后,由余下因式的项数为3项,可考虑完全平方式或十字相乘法继续分解;如果项数为2,可考虑平方差、立方差、立方和公式。
(3)题无公因式,项数为2项,可考虑平方差公式先分解开,再由项数考虑选择方法继续分解。
例3. 计算:(1)⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⋅⋅⋅⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-22221011911311211 (2)22222221219981999200020012002-+⋅⋅⋅-+-+-分析:(1)此题先分解因式后约分,则余下首尾两数。
(2)分解后,便有规可循,再求1到2002的和。
例4. 分解因式:(1)22244z y xy x -+-;(2)b a b a a 2322-+-分析:对于四项或四项以上的多项式的因式分解,一般采用分组分解法,例5. (1)在实数范围内分解因式:44-x ;(2)已知a 、b 、c 是△ABC 的三边,且满足222a b c ab bc ac ++=++,求证:△ABC 为等边三角形。
分析:此题给出的是三边之间的关系,而要证等边三角形,则须考虑证a b c ==, 从已知给出的等式结构看出,应构造出三个完全平方式()()()2220a b b c c a -+-+-=, 即可得证,将原式两边同乘以2即可。
略证:2220a b c ab bc ac ++---=022*******=---++ac bc ab c b a ()()()0222=-+-+-a c c b b a∴c b a == 即△ABC 为等边三角形。
知识点二 分式1.分式有关概念(1)分式:分母中含有字母的式子叫做分式。
对于一个分式来说:①当____________时分式有意义。
②当____________时分式没有意义。
③只有在同时满足____________,且____________这两个条件时,分式的值才是零。
(2)最简分式:一个分式的分子与分母______________时,叫做最简分式。
(3)约分:把一个分式的分子与分母的_____________约去,叫做分式的约分。
将一个分式约分的主要步骤是:把分式的分子与分母________,然后约去分子与分母的_________。
(4)通分:把几个异分母的分式分别化成与____________相等的____________的分式叫做分式的通分。
通分的关键是确定几个分式的___________ 。
(5)最简公分母:通常取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
求几个分式的最简公分母时,注意以下几点:①当分母是多项式时,一般应先 ;②如果各分母的系数都是整数时,通常取它们的系数的 作为最简公分母的系数;③最简公分母能分别被原来各分式的分母整除;④若分母的系数是负数,一般先把“-”号提到分式本身的前边。
2.分式性质:(1)基本性质:分式的分子与分母都乘以(或除以)同一个 ,分式的值 .即:(0)A A M A M M B B M B M⨯÷==≠⨯÷其中(2)符号法则:____ 、____ 与__________的符号, 改变其中任何两个,分式的值不变。
即:a a a ab b b b--==-=--- 3.分式的运算: 注意:为运算简便,运用分式 的基本性质及分式的符号法 则: ①若分式的分子与分母的各项 系数是分数或小数时,一般要化为整数。
②若分式的分子与分母的最高次项系数是负数时,一般要化为正数。
(1)分式的加减法法则:(1)同分母的分式相加减, ,把分子相加减;(2)异分母的分式相加减,先 ,化为 的分式,然后再按 进行计算(2)分式的乘除法法则:分式乘以分式,用_________做积的分子,___________做积的分母,公式:_________________________;分式除以分式,把除式的分子、分母__________后,与被除式相乘,公式: ; (3)分式乘方是____________________,公式_________________。
4.分式的混合运算顺序,先 ,再算 ,最后算 ,有括号先算括号内。
5.对于化简求值的题型要注意解题格式,要先化简,再代人字母的值求值. 【课前练习】1. 判断对错:①如果一个分式的值为0,则该分式没有意义( ) ②只要分子的值是0,分式的值就是0( ) ③当a ≠0时,分式1a =0有意义( ); ④当a =0时,分式1a=0无意义( ) 2.在2221123,0,,,,,323x y x x x x x x y π+-中,整式和分式的个数分别为( ) A .5,3 B .7,1 C .6,2 D .5,2 3. 若将分式a bab+ (a 、b 均为正数)中的字母a 、b 的值分别扩大为原来的2倍,则分式的值为( )A .扩大为原来的2倍 ;B .缩小为原来的12;C .不变;D .缩小为原来的144.分式22969x x x --+约分的结果是 。
5. 分式,,7(2)4()(2)6()(2)x yy x y y y x y +-+-+的最简公分母是 。
()nn a b a b c c a c ad bc d bd a c ac d bd a c a d ad d b c bc a a n b⎧±⎧±=⎪⎪⎪⎪⎨±⎪⎪±=⎪⎪⎩⎪⎧⎪⋅=⎪⎪⎪⎨⎨⎪⎪÷=⋅=⎪⎪⎩⎪⎪=⎪⎪⎪⎩n 同分母c 加减异分母b 乘b 分式运算乘除除b 乘方()为整数b【经典考题剖析】 例1. 已知分式25,45x x x ---当x ≠______时,分式有意 义;当x=______时,分式的值为0.例2. 若分式221x x x --+的值为0,则x 的值为( )A .x=-1或x=2B 、x=0C .x=2D .x=-1 例3.(1) 先化简,再求值:231()11x xx x x x---+,其中2x =.(2)先将221(1)1x x x x-⋅++化简,然后请你自选一个合理的x 值,求原式的值。
(3)已知0346x y z==≠,求x y z x y z +--+的值 例4.计算(1)()241222a a a a -÷-⨯+-;(2)222x x x ---;(3)2214122x x x x x x++⎛⎫+-÷ ⎪--⎝⎭ (4)x yx y x x y x y x x -÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--++-3232;(5)4214121111x x x x ++++++-分析:(1)题是分式的乘除混合运算,应先把除法化为乘法,再进行约分,有乘方的要先算乘方,若分式的分子、分母是多项式,应先把多项式分解因式;(2)题把()2x -+当作整体进行计算较为简便;(3)题是分式的混合运算,须按运算顺序进行,结果要化为最简分式或整式。
对于特殊题型,可根据题目特点,选择适当的方法,使问题简化。
(4)题可以将y x --看作一个整体()y x +-,然后用分配律进行计算;(5)题可采用逐步通分的方法,即先算xx ++-1111,用其结果再与221x +相加,依次类推。
例5. 阅读下面题目的计算过程:23211x x x ---+=()()()()()2131111x x x x x x ---+-+- ① =()()321x x --- ②=322x x --+ ③ =1x -- ④(1)上面计算过程从哪一步开始出现错误,请写出该步的代号 。
(2)错误原因是 。
(3)本题的正确结论是 。
知识点三 分式方程1.分式方程:分母中含有 的方程叫做分式方程.2.分式方程的解法:解分式方程的关键是 (即方程两边都乘以最简公分母),将分式方程转化为整式方程;3.分式方程的增根问题:⑴ 增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根的增根;⑵ 验根:因为解分式方程可能出现增根,所以解分式方程必须验根。