第15章全控型电力电子器件及其应用
- 格式:pptx
- 大小:2.14 MB
- 文档页数:50
《电力牵引交流传动及其控制系统》报告——各种电力电子器件技术特点的比较及其应用电力电子器件及其应用装置已日益广泛,这与近30 多年来电力电子器件与电力电子技术的飞速发展和电力电子的重要作用密切相关。
20 世纪80 年代以后,电力电子技术等)的飞速发展,给世界科学技术、经济、文化、军事等各方面带来了革命性的影响。
电子技术包含两大部分:信息电子技术(包括:微电子、计算机、通信等)是实施信息传输、处理、存储和产生控制指令;电力电子技术是实施电能的传输、处理、存储和控制,保障电能安全、可靠、高效和经济地运行,将能源与信息高度地集成在一起。
事实表明,无论是电力、机械、矿冶、交通、石油、能源、化工、轻纺等传统产业,还是通信、激光、机器人、环保、原子能、航天等高技术产业,都迫切需要高质量、高效率的电能。
而电力电子正是将各种一次能源高效率地变为人们所需的电能,实现节能环保和提高人民生活质量的重要手段,它已经成为弱电控制与强电运行之间、信息技术与先进制造技术之间、传统产业实现自动化、智能化改造和兴建高科技产业之间不可缺少的重要桥梁。
而新型电力电子器件的出现,总是带来一场电力电子技术的革命。
电力电子器件就好像现代电力电子装置的心脏,它对装置的总价值,尺寸、重量、动态性能,过载能力,耐用性及可靠性等,起着十分重要的作用。
因此,新型电力电子器件及其相关新型半导体材料的研究,一直是电力电子领域极为活跃的主要课题之一。
一个理想的功率半导体器件,应当具有下列理想的静态和动态特性:在阻断状态,能承受高电压;在导通状态,能导通高的电流密度并具有低的导通压降;在开关状态和转换时,具有短的开、关时间,能承受高的d i/d t 和d u/d t,具有低的开关损耗;运行时具有全控功能和良好的温度特性。
自20 世纪50 年代硅晶闸管问世以后,功率半导体器件的研究工作者为达到上述理想目标做出了不懈努力,并已取得了世人瞩目的成就。
早期的大功率变流器,如牵引变流器,几乎都是基于晶闸管的。
第1章电力电子器件主要内容:各种二极管、半控型器件-晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,器件的选取原则,典型全控型器件:GTO、电力MOSFET、IGBT,功率集成电路和智能功率模块,电力电子器件的串并联、电力电子器件的保护,电力电子器件的驱动电路。
重点:晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,器件的选取原则,典型全控型器件。
难点:晶闸管的结构、工作原理、伏安特性、主要静态、动态参数。
基本要求:掌握半控型器件-晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,熟练掌握器件的选取原则,掌握典型全控型器件,了解电力电子器件的串并联,了解电力电子器件的保护。
1 电力电子器件概述(1) 电力电子器件的概念和特征主电路(main power circuit)--电气设备或电力系统中,直接承担电能的变换或控制任务的电路;电力电子器件(power electronic device)--可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件;广义上电力电子器件可分为电真空器件和半导体器件两类。
两类中,自20世纪50年代以来,真空管仅在频率很高(如微波)的大功率高频电源中还在使用,而电力半导体器件已取代了汞弧整流器(Mercury Arc Rectifier)、闸流管(Thyratron)等电真空器件,成为绝对主力。
因此,电力电子器件目前也往往专指电力半导体器件。
电力半导体器件所采用的主要材料仍然是硅。
同处理信息的电子器件相比,电力电子器件的一般特征:a. 能处理电功率的大小,即承受电压和电流的能力,是最重要的参数;其处理电功率的能力小至毫瓦级,大至兆瓦级,大多都远大于处理信息的电子器件。
b. 电力电子器件一般都工作在开关状态;导通时(通态)阻抗很小,接近于短路,管压降接近于零,而电流由外电路决定;阻断时(断态)阻抗很大,接近于断路,电流几乎为零,而管子两端电压由外电路决定;电力电子器件的动态特性(也就是开关特性)和参数,也是电力电子器件特性很重要的方面,有些时候甚至上升为第一位的重要问题。
典型全控型器件的介绍班级学号 :姓名日期一.门极可关断晶闸管1.1门极可关断晶闸管的简介门极可关断晶闸管简称GTO,是一种全控型的晶闸管。
其主要特点为,当栅极加负向触发信号时晶闸管能自行关断,保留了普通晶闸管耐压高、电流大等优点,以具有自关断能力,使用方便,是理想的高压、大电流开关器件。
GTO的容量及使用寿命均超过巨型晶体管(GTR),只是工作频纺比GTR低。
目前,GTO 已达到3000A、4500V的容量。
大功率可关断晶闸管已广泛用于斩波调速、变频调速、逆变电源等领域,显示出强大的生命力。
1.2门极可关断晶闸管的结构和工作原理GTO是PNPN四层半导体结构,外部引出阳极,阴极和门极,是多元件的功率集成器件,内部由许多的GTO元的阳极和门极并联在一起。
其工作原理可用双晶体管来分析P1N1P1和N1P2N2构成的两个晶体管V1,V2分别具有共基极电流增益α1和α2,普通的晶体管分析,α1+α2=1是器件的临界导电条件,当α1+α2>1时2,当α1+α2<1时不能维持饱和导通而关断。
1.3 GTO的驱动方式及频率当信号要求可关断晶闸管导通时,驱动电路提供上升率足够大的正栅极脉冲电流(其幅度视晶闸管容量不同在0.1到几安培范围内),其正栅极脉冲宽度应保证门极关断晶闸管可靠导通。
当信号要求门极关断晶闸管关断时,驱动电路提供上升率足够大的负栅极脉冲电流,脉冲幅度要求大于可关断晶闸管阳极电流的五分之一,脉冲宽度应大于可关断晶闸管的关断时间和尾部时间。
根据对驱动门极关断晶闸管的特性、容量、应用场合、电路电压、工作频率、可靠性要求和性价比等方面的不同要求,有多种形式的栅极驱动电路。
1.4存在的问题及其最新的发展GTO在使用中,导通时的管压降较大,增加了通态损耗。
对关断负脉冲的要求较高,门极触发电路需要严格设计,否则易在关断过程中烧毁管子。
门极电流应大于元件的擎住电流IL;正负触发脉冲其前沿要陡,后沿要平缓,中小功率电路上升沿小于0.5μs ,大功率电路小于1μs ;门极电路电阻要小,以减小脉冲源内阻由于多元集成,对制造工艺提出极高的要求,它要求必须保持所有GTO元特性一致,开通或关断速度不一致,会使GTO元因电流过大而损坏。
电力系统中的电力电子器件及其应用在当今高度依赖电力的社会中,电力系统的稳定运行和高效发展至关重要。
电力电子器件作为电力系统中的关键组成部分,正发挥着日益重要的作用。
它们的出现和应用,为电力系统的优化、控制和能源转换带来了革命性的变化。
电力电子器件是一种能够对电能进行高效控制和转换的半导体器件。
常见的电力电子器件包括二极管、晶闸管、晶体管(如 MOSFET 和IGBT)等。
这些器件具有不同的特性和性能,适用于各种不同的电力系统应用场景。
二极管是最简单的电力电子器件之一,它只允许电流单向通过。
在电力系统中,二极管常用于整流电路,将交流电转换为直流电。
例如,在电源适配器中,二极管将交流市电整流为直流电,为电子设备提供稳定的电源。
晶闸管则是一种具有可控导通特性的器件。
通过施加合适的触发信号,可以控制晶闸管的导通和关断。
晶闸管在电力系统中的应用非常广泛,如用于高压直流输电系统中的换流器、无功补偿装置等。
通过控制晶闸管的导通角,可以实现对交流电压和电流的调节,从而达到控制无功功率和提高电能质量的目的。
MOSFET(金属氧化物半导体场效应晶体管)和 IGBT(绝缘栅双极型晶体管)是现代电力电子系统中常用的晶体管器件。
它们具有开关速度快、导通电阻小、驱动功率低等优点。
MOSFET 适用于高频、小功率的应用场景,如开关电源、电动汽车充电器等。
IGBT 则在中大功率的电力变换领域表现出色,如变频器、新能源发电系统中的逆变器等。
在电力系统中,电力电子器件的应用范围十分广泛。
首先,在发电环节,可再生能源的开发和利用离不开电力电子技术。
例如,太阳能光伏发电系统中,通过电力电子逆变器将太阳能电池板产生的直流电转换为交流电并并入电网。
风力发电系统中,电力电子变流器用于控制风机转速,实现最大功率跟踪,同时将风机发出的交流电转换为符合电网要求的电能。
在输电环节,高压直流输电技术凭借其输电距离远、输电容量大、损耗低等优势,成为了远距离大容量输电的重要手段。
第一章电力电子器件一、本章主要内容及重点与难点【主要内容】本章主要讨论电力电子器件的分类以及典型电力电子器件的结构、电气符号、工作原理、基本特性与主要参数。
在学习过程中,主要应掌握以下内容:1.电力电子器件的概念与特征;2. 电力电子器件的分类;3. 电力二极管的工作原理、基本特性与主要参数;4. 晶闸管(SCR)的工作原理、基本特性与主要参数;5. 几种典型全控型电力电子器件(GTO;GTR;PowerMOSFET;IGBT)的工作原理、基本特性与主要参数;6. 上述全控型电力电子器件的性能比较。
【重点与难点】本章重点在于半控型器件——晶闸管,要重点掌握晶闸管的的结构、电气符号、开关规律、静态特性以及主要参数。
(重点应该再加上MOS和IGBT,因为这2种器件应用应用很广很重要。
)本章难点在于晶闸管额定电流、额定电压的定义以及实际使用中如何选择晶闸管的参数。
二、典型习题解析例1-1 下列对晶闸管特性的叙述中,正确的是()。
A 晶闸管属于电流驱动双极型器件 C 晶闸管触发导通后,门极就失去了控制作用B 晶闸管具有单向导电性 D 晶闸管的擎住电流大于维持电流【答案】A、B、C、D【解析】本题主要考察对晶闸管特性的熟悉程度,四个选项的描述均正确。
A选项考察晶闸管的分类;B选项考察半导体器件的特点;C选项考察晶闸管的开关特性;D选项考察晶闸管的主要参数例1-2 双向晶闸管的额定电流是以()定义的;GTO的额定电流是以()定义的。
A 平均值B 有效值C 最大值D 瞬时值【答案】B,C【解析】本题主要考察双向晶闸管与GTO额定电流的定义,双向晶闸管的正向伏安特性与反向伏安特性相同,用于交流电路中,其额定电流是以有效值定义的。
GTO的阳极电流如过大,可能会出现无法由门极控制关断的情况,因此其额定电流是以最大可关断阳极电流定义的。
例1-3 下列电力电子器件中,存在电导调制效应的是()。
A GTOB GTRC PowerMOSFETD IGBT【答案】A、B、D【解析】本题主要考察对电导调制效应的理解,电导调制效应仅在双极型器件中起作用,单极型器件仅有一种载流子参与导电,因此不存在电导调制效应。
电子行业电力电子器件及应用引言电子行业是一个快速发展的行业,在电子设备中,电力电子器件是不可或缺的关键组成部分。
电力电子器件是指用于调整和转换电能的器件,广泛应用于交流和直流电网、电动机驱动、电源供应等领域。
本文将介绍电子行业中常见的电力电子器件及其应用。
一、开关器件1.整流二极管 (Rectifier Diode)整流二极管是一种常见的开关器件,用于将交流电转换为直流电。
它具有正向导通和反向截止的特性,常用于交流电桥式整流器、逆变器等电路中。
2.IGBT (Insulated Gate Bipolar Transistor) IGBT 是一种高压高频开关器件,兼具了普通晶体管和普通MOSFET的特点。
它可以控制高电压和高电流的通断,并且具有低开关损耗和快速切换速度的特点。
IGBT广泛用于工业设备、交通工具和电力传输中。
3.MOSFET (Metal-Oxide-SemiconductorField-Effect Transistor)MOSFET 是一种常见的开关器件,可以通过调节栅极电压来控制导通和截止。
它具有低导通电阻、低开关损耗和高开关速度的特点。
MOSFET 常用于直流转换器、电机驱动和太阳能发电逆变器等应用中。
二、功率模块1.IGBT模块IGBT模块是由多个IGBT芯片、隔离驱动电路和散热器组成的集成模块。
它可以方便地实现高压高频电路的设计和构建,广泛应用于电力传输、电机驱动和可再生能源领域。
2.整流桥模块整流桥模块是由多个整流二极管组成的集成模块。
它常用于交流电源的整流和直流电源供应的设计中。
3.功率放大模块功率放大模块是用于放大低功率信号为高功率信号的模块。
它常用于音频放大器、无线电频率放大器等应用中。
三、电力电子器件的应用1.交流调速电力电子器件在交流调速中起着重要作用。
例如,交流调压器使用电力电子器件的开关特性来调节交流电压的大小,实现电压调节和稳定。
2.无线充电利用电力电子器件的功率转换特性,可以实现无线充电技术。
全控型器件1.通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件被称为全控型器件,又称为自关断器件;这类器件很多,门极可关断晶闸管(Gate-Turn-Off Thyristor—GTO),电力场效应晶体管(Power MOSFET),绝缘栅双极晶体管(Insulate-Gate Bipolar Transistor—IGBT)均属于此类。
●绝缘栅双极晶体管绝缘栅双极晶体管(Insulate-Gate Bipolar Transistor—IGBT)综合了电力晶体管(Giant Transistor—GTR)和电力场效应晶体管(PowerMOSFET)的优点,具有良好的特性,应用领域很广泛;IGBT也是三端器件:栅极,集电极和发射极。
●门极可关断晶闸管门极可关断晶闸管(Gate-Turn-Off Thyristor—GTO)也是晶闸管(Thyristor)的一种派生器件,但可以通过在门极施加负脉冲使其关断,因而属于全控型器件;它和普通晶闸管一样,也是PNPN四层结构,外部引出三个极,阳极,阴极和门极;工作条件同普通晶闸管;其主要用于兆瓦级以上的大功率场合。
●电力场效应晶体管电力场效应晶体管分为两种类型,结型和绝缘栅型,但通常所说的是绝缘栅型中的MOS型(Metal Oxide Semiconductor FET),简称电力MOSFET(Power MOSFET),P-MOSFET是用栅极电压来控制漏极电流,它的显著特点是驱动电路简单,驱动功率小,开关速度快,工作频率高;但是其电流容量小,耐压低,只用于小功率的电力电子装置,其工作原理与普通MOSFET一样。
●电力晶体管电力晶体管按英文Giant Transistor直译为巨型晶体管,是一种耐高电压、大电流的双极结型晶体管(Bipolar Junction Transistor—BJT),所以有时也称为Power BJT;其特性有:耐压高,电流大,开关特性好,但驱动电路复杂,驱动功率大;GTR和普通双极结型晶体管的工作原理是一样的。