全控型电力电子器件
- 格式:pptx
- 大小:1.06 MB
- 文档页数:27
全控型器件名词解释
全控型器件(英语:Fully Controlled Device),在电力电子学中,是一种可以在没有反向电压的情况下控制其电流的电子器件。
常见的全控型器件包括二极管、晶闸管、以及新发展的功率场效应管(Power Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)、绝缘栅双极性晶体管(Insulated Gate Bipolar Transistor, IGBT)等。
全控型器件在许多领域都有应用,包括**电力系统和电动机**。
在电力系统中,它们可以用来控制发电机的开关和电流的大小。
在电动机中,这些器件可以通过调节电压来控制电机的速度和方向。
此外,全控型器件还可以用于**电子设备和家用电器**的控制器中,例如电视、音响、照明设备等。
通过使用全控型器件,这些设备的电源和控制电路可以实现更加灵活和智能的控制。
除此之外,全控型器件还被广泛应用于**汽车工业**。
特别是在电动汽车中,全控型器件作为逆变器的一部分,可以将电池中的直流能转换成交流能,从而驱动车轮。
全控型器件特点
全控型器件是指可以在整个周期内对电流或电压进行控制的器件。
全控型器件的特点主要体现在以下几个方面:
1. 控制范围广:全控型器件可以对电流或电压进行全程控制,可以实现从零到最大值的连续调节。
这使得它在不同的应用场景中具有灵活性和适应性。
2. 精度高:全控型器件具有较高的控制精度,可以实现对电流或电压的精确控制。
这对于一些对电流或电压要求较高的应用来说十分重要,例如电力电子设备中的功率控制。
3. 响应速度快:全控型器件的响应速度较快,能够在很短的时间内实现对电流或电压的调节。
这使得全控型器件在实时控制和快速响应的应用中具有优势,例如交流调速系统和电力变换器。
4. 可靠性高:全控型器件的结构简单、稳定性好,能够在恶劣的环境条件下工作,具有较高的可靠性。
这使得全控型器件在一些对稳定性要求较高的应用中得到广泛应用,例如电力系统和工业自动化领域。
5. 控制灵活:全控型器件可以通过改变控制信号的幅值、频率和相位等参数来实现对电流或电压的控制。
这使得它具有灵活性,可以根据实际需求进行调节和变化。
6. 功能强大:全控型器件可以实现多种功能,例如电流调节、电压调节、功率调节和相位控制等。
这使得它在不同的应用场景中具有广泛的适用性和灵活性。
总的来说,全控型器件具有控制范围广、精度高、响应速度快、可靠性高、控制灵活和功能强大等特点。
这些特点使得全控型器件在电力电子、工业自动化、交通运输、通信等领域得到广泛应用,对于提高系统的控制性能和稳定性具有重要作用。
典型全控型器件的介绍班级学号 :姓名日期一.门极可关断晶闸管1.1门极可关断晶闸管的简介门极可关断晶闸管简称GTO,是一种全控型的晶闸管。
其主要特点为,当栅极加负向触发信号时晶闸管能自行关断,保留了普通晶闸管耐压高、电流大等优点,以具有自关断能力,使用方便,是理想的高压、大电流开关器件。
GTO的容量及使用寿命均超过巨型晶体管(GTR),只是工作频纺比GTR低。
目前,GTO 已达到3000A、4500V的容量。
大功率可关断晶闸管已广泛用于斩波调速、变频调速、逆变电源等领域,显示出强大的生命力。
1.2门极可关断晶闸管的结构和工作原理GTO是PNPN四层半导体结构,外部引出阳极,阴极和门极,是多元件的功率集成器件,内部由许多的GTO元的阳极和门极并联在一起。
其工作原理可用双晶体管来分析P1N1P1和N1P2N2构成的两个晶体管V1,V2分别具有共基极电流增益α1和α2,普通的晶体管分析,α1+α2=1是器件的临界导电条件,当α1+α2>1时2,当α1+α2<1时不能维持饱和导通而关断。
1.3 GTO的驱动方式及频率当信号要求可关断晶闸管导通时,驱动电路提供上升率足够大的正栅极脉冲电流(其幅度视晶闸管容量不同在0.1到几安培范围内),其正栅极脉冲宽度应保证门极关断晶闸管可靠导通。
当信号要求门极关断晶闸管关断时,驱动电路提供上升率足够大的负栅极脉冲电流,脉冲幅度要求大于可关断晶闸管阳极电流的五分之一,脉冲宽度应大于可关断晶闸管的关断时间和尾部时间。
根据对驱动门极关断晶闸管的特性、容量、应用场合、电路电压、工作频率、可靠性要求和性价比等方面的不同要求,有多种形式的栅极驱动电路。
1.4存在的问题及其最新的发展GTO在使用中,导通时的管压降较大,增加了通态损耗。
对关断负脉冲的要求较高,门极触发电路需要严格设计,否则易在关断过程中烧毁管子。
门极电流应大于元件的擎住电流IL;正负触发脉冲其前沿要陡,后沿要平缓,中小功率电路上升沿小于0.5μs ,大功率电路小于1μs ;门极电路电阻要小,以减小脉冲源内阻由于多元集成,对制造工艺提出极高的要求,它要求必须保持所有GTO元特性一致,开通或关断速度不一致,会使GTO元因电流过大而损坏。
四种典型的全控型器件班级学号:********* 姓名:***日期:2013.10.3四种典型的全控型器件全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件被称为全控型器件,又称为自关断器件。
四种典型全控型器件:只在汽车点火装置和电视机行扫描电路中进行试用。
自70年代中期开始,GTO的研制取得突破,相继出世了1300V/600A、2500V/1000A、4500V/2400A的产品,目前已达9kV/25kA/800Hz及6Hz/6kA/1kHz的水平。
(2)大功率晶体管(GTR)GTR是一种电流控制的双极双结电力电子器件,产生于本世纪70年代,其门极可关断晶闸管(Gate-Turn-Off Thyristor—GTO),电力晶体管(Giant Transistor-GTO),电力场效应晶体管(Power MOSFET),绝缘栅双极晶体管(Insulate-Gate Bipolar Transistor—IGBT)。
容量比较:(1)1964年,美国第一次试制成功了500V/10A的GTO。
在此后的近10年内,GTO的容量一直停留在较小水平,额定值已达1800V/800A/2kHz、1400v/600A/5kHz、600V/3A/100kHz。
(3)功率MOSFET目前制造水平大概是1kV/2A/2MHz和60V/200A/2MHz。
(4)绝缘门极双极型晶体管(IGBT)IGBT是由美国GE公司和RCA公司于1983年首先研制的,当时容量仅500V/20A,且存在一些技术问题。
目前,其研制水平已达4500V/1000A。
开关频率:GTO的延迟时间一般为1~2us;下降时间一般小于2us。
GTR的开关时间一般在几微秒以内,比晶闸管短很多,也短于GTO。
MOSFET的开关时间一般在10--100ns之间。
IGBT的开关时间要低于电力MOSFET。
驱动方式和驱动功率:GTO:电流驱动型,驱动功率大。
四种典型全控型器件的比较四种典型全控型器件的比较一、 对四种典型全控型器件的介绍1、门极可关断晶闸管(GTO ) 1)GTO 的结构与工作原理芯片的实际图形 GTO 结构的纵断面 GTO 结构的纵断面 图形符号GTO 的内部结构和电气图形符号2)工作原理:设计α2较大,使晶体管V2控 制灵敏。
导通时α1+α 2= 1.05更接近1,导通时接近临界饱和,有利门极控制关断,但导通时管压降增大。
多元集成结构,使得P2基区横向电阻很小,能从门极抽出较大电流。
下图为工作原理图。
22222、电力晶体管(GTR) 1)电力晶体管的结构:R NPNPNPA G SK E GI G E AI K I c2I c1I A V 1V 2b)内部结构电气图形符号NPN型电力晶体管的内部结构及电气图形符号2)工作原理:在电力电子技术中,GTR主要工作在开关状态。
晶体管通常连接成共发射极电路,GTR通常工作在正偏(I b>0)时大电流导通;反偏(I b<0)时处于截止状态。
因此,给GTR的基吸施加幅度足够大的脉冲驱动信号,它将工作于导通和截止的开关状态。
3、电力场效应晶体管(Power MOSFET)1)电力MOSFET的结构MOSFET元组成剖面图图形符号电力MOSFET采取两次扩散工艺,并将漏极D移到芯片的另一侧表面上,使从漏极到源极的电流垂直于芯片表面流过,这样有利于减小芯片面积和提高电流密度。
2)电力MOSFET的工作原理:当漏极接电源正极,源极接电源负极,栅源极之间电压为零或为负时,P型区和N-型漂移区之间的PN结反向,漏源极之间无电流流过。
如果在栅极和源极间加正向电压U GS,由于栅极是绝缘的,不会有电流。
但栅极的正电压所形成的电场的感应作用却会将其下面的P 型区中的少数载流子电子吸引到栅极下面的P型区表面。
当u GS大于某一电压值U GS(th)时,栅极下面的P型区表面的电子浓度将超过空穴浓度,使P型反型成N型,沟通了漏极和源极。
全控型器件1.通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件被称为全控型器件,又称为自关断器件;这类器件很多,门极可关断晶闸管(Gate-Turn-Off Thyristor—GTO),电力场效应晶体管(Power MOSFET),绝缘栅双极晶体管(Insulate-Gate Bipolar Transistor—IGBT)均属于此类。
●绝缘栅双极晶体管绝缘栅双极晶体管(Insulate-Gate Bipolar Transistor—IGBT)综合了电力晶体管(Giant Transistor—GTR)和电力场效应晶体管(PowerMOSFET)的优点,具有良好的特性,应用领域很广泛;IGBT也是三端器件:栅极,集电极和发射极。
●门极可关断晶闸管门极可关断晶闸管(Gate-Turn-Off Thyristor—GTO)也是晶闸管(Thyristor)的一种派生器件,但可以通过在门极施加负脉冲使其关断,因而属于全控型器件;它和普通晶闸管一样,也是PNPN四层结构,外部引出三个极,阳极,阴极和门极;工作条件同普通晶闸管;其主要用于兆瓦级以上的大功率场合。
●电力场效应晶体管电力场效应晶体管分为两种类型,结型和绝缘栅型,但通常所说的是绝缘栅型中的MOS型(Metal Oxide Semiconductor FET),简称电力MOSFET(Power MOSFET),P-MOSFET是用栅极电压来控制漏极电流,它的显著特点是驱动电路简单,驱动功率小,开关速度快,工作频率高;但是其电流容量小,耐压低,只用于小功率的电力电子装置,其工作原理与普通MOSFET一样。
●电力晶体管电力晶体管按英文Giant Transistor直译为巨型晶体管,是一种耐高电压、大电流的双极结型晶体管(Bipolar Junction Transistor—BJT),所以有时也称为Power BJT;其特性有:耐压高,电流大,开关特性好,但驱动电路复杂,驱动功率大;GTR和普通双极结型晶体管的工作原理是一样的。