2电力电子器件(3)-全控型器件
- 格式:pptx
- 大小:1011.72 KB
- 文档页数:45
电力电子技术(区分)电力电子器件按照控制特性分类:1)不可控型器件(不具有开关性能):功率二极管;2)半控型器(只能控制导通不能控制其关断):晶闸管及其大部分晶闸管派生器件;3)全控型器件(既能控制导通又能控制其关断):可关断晶闸管、双极型功率晶体管、功率场效应晶体管和绝缘栅双极晶体管等。
变换器按照电能变换功能分为:1)交流—直流变换器(AD-DC Converter);2)直流—交流变换器(DC-AD Converter);3)交流—交流变换器(AD-AD Converter);4)直流—直流变换器(DC-DC Converter)。
晶闸管导通需要具备的条件:1)在晶闸管的阳极与阴极之间加上正向电压(即在阳极加正向电压);2)在晶闸管的门极与阴极之间加上正向电压和电流(即在门极加正控制信号)。
区分维持电流和擎住电流:1)维持电流I H:在室温和门极断路时,晶闸管已经处于通态后,从较大的通态电流降至维持通态所必需的最小阳极电流。
2)擎住电流I L:晶闸管从断态转换到通态时移去的触发信号之后,要保持器件维持通态所需要的最小阳极电流。
对于同一个晶闸管来说,通常擎住电流为维持电流的(2~4)倍。
晶闸管的通态平均电流I T(AV)和正弦电流最大值I m之间的关系:I T(AV)= ;正弦半波电流的有效值I T:I T= 。
绝缘栅双极型晶体管IGBT兼有MOSFET的快速响应、高输入阻抗和BJT的低通态压降、高电流密度的特性。
由栅极电压来控制IGBT的导通或关断。
晶闸管对驱动电路的基本要求:1)驱动信号可以是交流、直流或脉冲;2)驱动信号应有足够的功率;3)驱动信号应有足够的宽度和陡度。
晶闸管串联时必须解决其均压问题,均压包括静态均压和动态均压两种。
器件的容量从高到低的顺序:SCR、GTO、IGBT、BJT、功率MOSFET;器件的频率从高到低的顺序:功率MOSFET、IGBT、BJT、GTO、SCR。
第二章:触发角a也称触发延迟角或控制角,是指晶闸管从承受电压开始到导通之间角度。
典型全控型器件的介绍班级学号 :姓名日期一.门极可关断晶闸管1.1门极可关断晶闸管的简介门极可关断晶闸管简称GTO,是一种全控型的晶闸管。
其主要特点为,当栅极加负向触发信号时晶闸管能自行关断,保留了普通晶闸管耐压高、电流大等优点,以具有自关断能力,使用方便,是理想的高压、大电流开关器件。
GTO的容量及使用寿命均超过巨型晶体管(GTR),只是工作频纺比GTR低。
目前,GTO 已达到3000A、4500V的容量。
大功率可关断晶闸管已广泛用于斩波调速、变频调速、逆变电源等领域,显示出强大的生命力。
1.2门极可关断晶闸管的结构和工作原理GTO是PNPN四层半导体结构,外部引出阳极,阴极和门极,是多元件的功率集成器件,内部由许多的GTO元的阳极和门极并联在一起。
其工作原理可用双晶体管来分析P1N1P1和N1P2N2构成的两个晶体管V1,V2分别具有共基极电流增益α1和α2,普通的晶体管分析,α1+α2=1是器件的临界导电条件,当α1+α2>1时2,当α1+α2<1时不能维持饱和导通而关断。
1.3 GTO的驱动方式及频率当信号要求可关断晶闸管导通时,驱动电路提供上升率足够大的正栅极脉冲电流(其幅度视晶闸管容量不同在0.1到几安培范围内),其正栅极脉冲宽度应保证门极关断晶闸管可靠导通。
当信号要求门极关断晶闸管关断时,驱动电路提供上升率足够大的负栅极脉冲电流,脉冲幅度要求大于可关断晶闸管阳极电流的五分之一,脉冲宽度应大于可关断晶闸管的关断时间和尾部时间。
根据对驱动门极关断晶闸管的特性、容量、应用场合、电路电压、工作频率、可靠性要求和性价比等方面的不同要求,有多种形式的栅极驱动电路。
1.4存在的问题及其最新的发展GTO在使用中,导通时的管压降较大,增加了通态损耗。
对关断负脉冲的要求较高,门极触发电路需要严格设计,否则易在关断过程中烧毁管子。
门极电流应大于元件的擎住电流IL;正负触发脉冲其前沿要陡,后沿要平缓,中小功率电路上升沿小于0.5μs ,大功率电路小于1μs ;门极电路电阻要小,以减小脉冲源内阻由于多元集成,对制造工艺提出极高的要求,它要求必须保持所有GTO元特性一致,开通或关断速度不一致,会使GTO元因电流过大而损坏。
2—11试列举您所明白的电力电子器件,并从不同的角度对这些电力电子器件进行分类。
目前常用的控型电力电子器件有哪些?答:1、依照器件能够被控制的程度,分为以下三类:(1)半控型器件:晶闸管及其派生器件(2)全控型器件:IGBT,MOSFET,GTO,GTR(3)不可控器件:电力二极管2。
依照驱动信号的波形(电力二极管除外)(1)脉冲触发型:晶闸管及其派生器件(2)电平控制型: (全控型器件)IGBT,MOSFET,GTO,GTR3、依照器件内部电子和空穴两种载流子参与导电的情况分为三类:(1) 单极型器件:电力MOSFET,功率 SIT,肖特基二极管(2) 双极型器件:GTR,GTO,晶闸管,电力二极管等(3) 复合型器件:IGBT,MCT,IGCT 等4。
依照驱动电路信号的性质,分为两类:(1)电流驱动型:晶闸管,GTO,GTR 等(2)电压驱动型:电力 MOSFET,IGBT 等常用的控型电力电子器件:门极可关断晶闸管, 电力晶闸管,电力场效应晶体管,绝缘栅双极晶体管。
2-15 对晶闸管触发电路有哪些基本要求?晶闸管触发电路应满足下列要求:1)触发脉冲的宽度应保证晶闸管的可靠导通;2)触发脉冲应有足够的幅度,对户外寒冷场合,脉冲电流的幅度应增大为器件最大触发电流的3-5倍,脉冲前沿的陡度也需增加,一般需达到1-2A/US。
3)所提供的触发脉冲应不超过晶闸管门极的电压、电流和功率定额,且在门极伏安特性的可靠出发区域之内。
4)应有良好的抗干扰性能、温度稳定性及与主电路的电气隔离。
2—18 IGBT、GTR、GTO和电力MOSFET的驱动电路各有什么特点?IGBT驱动电路的特点是:驱动电路具有较小的输出电阻,IGBT是电压驱动型器件,IGBT的驱动多采纳专用的混合集成驱动器。
GTR驱动电路的特点是:驱动电路提供的驱动电流有足够陡的前沿,并有一定的过冲,如此可加速开通过程,减小开通损耗;关断时,驱动电路能提供幅值足够大的反向基极驱动电流,并加反偏截止电压,以加速关断速度。
1.电力电子器件的分类a.按照电力电子器件能被控制电路信号所控制的程度可分为三类:(1)不可控器件:不能用控制信号来控制其通断的电力电子器件,因此不需要驱动电路,这就是电力二极管。
只有两个端子,器件的导通和关断是由其在主电路中承受的电压和电流决定的。
(2)半控型器件:通过控制信号可以控制其导通而不能控制其关断的电力电子器件。
晶闸管及其大部分派生器件,器件的关断是由其在主电路中所承受的电压和电流决定的。
(3)全控型器件(自关断器件):通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件。
常用的是电力场效应晶体管(MOSFET)、绝缘栅双极晶体管(IGBT)。
GTO(门极可关断晶闸管)、GTR(电力晶体管)b.按照驱动电路加在电力电子器件控制端和公共端间信号的性质分两类:(1)电流驱动型:通过从控制端注入或抽出电流来实现导通或者关断的控制。
(晶闸管、GTO 、GTR )(2)电压驱动型:通过在控制端和公共端之间施加一定的电压信号就可实现导通或关断的控制。
(IGBT 、MOSFET )c.按照器件内部电子和空穴两种载流子参与导电的情况可分三类:(1)单极型器件:由一种载流子参与导电的器件。
(电力MOSFET 、功率SIT 、肖特基二极管)(2)双极型器件:由电子和空穴两种载流子参与导电的器件。
(电力二极管、晶闸管、GTO 、GTR )(3)复合型器件:由单极型器件和双极型器件集成混合而成的器件。
(MCT (MOS 控制晶闸管)、IGBT 、SITH )d.根据驱动电路加在电力电子器件控制端和公共端之间的有效信号波形分类:(1)脉冲触发型(晶闸管及其派生器件)(2)电平控制型((全控型器件IGBT 、GTO 、MOSFET 、GTR )2、使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。
或:uAK>0且uGK>0。
维持晶闸管导通的条件是:使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。