2020年上海市七年级(上)第一次月考数学试卷
- 格式:docx
- 大小:25.21 KB
- 文档页数:8
人教版七年级上学期数学第一次月考试卷A卷姓名:________ 班级:________ 成绩:________考试须知:1、请首先按要求在本卷的指定位置填写您的姓名、班级等信息。
2、请仔细阅读各种题目的回答要求,在指定区域内答题,否则不予评分。
一、选择题(每题3分,共30分) (共10题;共30分)1. (3分)下列结论,其中正确的为()①圆柱由3个面围成,这3个面都是平面②圆锥由2个面围成,这2个面中,1个是平的,1个不是平的③球仅由1个面围成,这1个面是平的④正方体由6个面围成,这6个面都是平的A . ①②B . ②③C . ②④D . ③④2. (3分)如图,是某种几何体表面展开图的图形.这个几何体是()A . 圆锥B . 球C . 圆柱D . 棱柱3. (3分)下列图形中,不是正方体表面展开图的图形的个数是()A . 1个B . 2个C . 3个D . 4个4. (3分) (2018七上·临河期中) 下列各数:3,0,﹣5,0.48,﹣(﹣7),﹣|﹣8|,(﹣4)2中,负数有()A . 1个B . 2个C . 3个D . 4个5. (3分)有理数a、b在数轴上的位置如图所示,则a+b的值()A . 大于0B . 小于0C . 大于等于0D . 小于等于06. (3分)一个数是8,另一个数比8的相反数小2,这两个数的和是()A . +2B . 14C . -2D . 187. (3分) (2018七上·兰州期中) 下列各个平面图形中,属于圆锥的表面展开图的是()A .B .C .D .8. (3分) (2019七上·江都月考) 对于实数a,b,若b<a<0,则下列四个数中,一定是负数的是()A . a-bB . abC .D . a+b9. (3分) (2018七上·河南期中) 下列所述物体中,是球体的是()A . 铅笔B . 打足气的自行车内胎C . 乒乓球D . 电视机10. (3分) (2019七上·黑龙江期末) 如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是()A . a+b>0B . ab >0C . a-b>0D . <二、填空题(每题3分,共18分) (共6题;共18分)11. (3分) (2016七上·临海期末) 写出一个在﹣1 和1 之间的整数________.12. (3分) (2019七上·蚌埠月考) 世界上最高的山峰是珠穆朗玛峰,其海拔高度大约是8844.43米,而吐鲁番盆地的海拔高度大约是-155米,两处高度大约相差________米。
2024-2025学年七年级数学上学期第一次月考卷02(考试时间:120分钟;满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:第一章---第二章。
5.难度系数:0.69。
第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.《九章算术》中注“今两算得失相反,要令正负以名之”,意思是:有两数若其意义相反,则分别叫做正数和负数.若气温为零上10℃记作+10℃,则﹣8℃表示气温为()A.零上8℃B.零下8℃C.零上2℃D.零下2℃【解答】解:若气温为零上10℃记作+10℃,则﹣8℃表示气温为零下8℃.故选:B.2.将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的是()A.B.C.D.【解答】解:A、绕轴旋转一周可得到圆柱,故此选项不合题意;B、绕轴旋转一周,可得到球体,故此选项不合题意;C、绕轴旋转一周,可得到一个中间空心的几何体,故此选项不合题意;D、绕轴旋转一周,可得到图中所示的立体图形,故此选项符合题意;故选:D.3.中国信息通信研究院测算,2020~2025年,中国5G商用带动的信息消费规模将超过8万亿元,直接带动经济总产出达10.6万亿元.其中数据10.6万亿用科学记数法表示为()A.10.6×104B.1.06×1013C.10.6×1013D.1.06×108【解答】解:10.6万亿=106000 0000 0000=1.06×1013.故选:B.4.用一个平面去截下列几何体,截面不可能是圆形的是()A. B.C. D.【解答】解:长方体用一个平面去截,可得出三角形、四边形、五边形、六边形的截面,不可能出现圆形的截面,因此选项A符合题意;圆锥体用平行于底面的一个平面去截,可得到圆形、因此选项B不符合题意,球体用一个平面去截可以得到圆形的截面,因此选项C不符合题意;圆锥体用平行于底面的平面去截,可得到圆形的截面,因此选项D不符合题意;故选:A.5.将一把刻度尺按如图所示的方式放在数轴上(数轴的单位长度是1cm),刻度尺上的“1cm”和“6cm”分别对应数轴上“﹣1.2cm”和“xcm”,则x的值为()A.3.8B.2.8C.4.8D.6【解答】解:根据数轴可知:x﹣(﹣1.2)=6﹣1,解得:x=3.8,故选:A.6.乐乐在数学学习中遇到了神奇的“数值转换机”,按如图所示的程序运算,若输入一个有理数x,则可相应的输出一个结果y.若输入x的值为﹣1,则输出的结果y为()A.6B.7C.10D.12【解答】解:把x=﹣1代入运算程序得:(﹣1)×(﹣3)﹣8=3﹣8=﹣5<0,把x=﹣5代入运算程序得:(﹣5)×(﹣3)﹣8=15﹣8=7>0,故输出的结果y为7.故选:B.7.如图是一个正方体的表面展开图,则在原正方体中,相对两个面上的数字之和的最小值是()A.5B.6C.7D.8【解答】解:根据题意,1与4相对,2与6相对,3与5相对,∴1+4=5,2+6=8,3+5=8,∴相对两个面上的数字之和的最小值是5.故选:A.8.若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则a2024+2023b﹣c2023的值为()A.2024B.2022C.2023D.0【解答】解:∵a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,∴a=﹣1,b=0,c=1,∴a2024+2023b﹣c2023=(﹣1)2024+2023×0﹣12023=1+0﹣1=0.故选:D.9.实数a,b满足a<0,a2>b2,下列结论:①a<b,②b>0,③1aa<1bb,④|a|>|b|.其中所有正确结论的序号是()A.①③B.①④C.②③D.②④【解答】解:∵a<0,a2>b2,∴|a|>|b|,∴a<b,故①符合题意,④符合题意;当a=﹣2,b=﹣1时,a2=4,b2=1,故②不符合题意;当a=﹣2,b=﹣1时,1aa=−12,1bb=−1,1aa>1bb,故③不符合题意;故选:B.10.若|m|=3,n2=4,且|m﹣n|=n﹣m,则m+n的值为()A.﹣1B.﹣1或5C.1或﹣5D.﹣1或﹣5【解答】解:∵|m|=3,n2=4,∴m=±3,n=±2,∵|m﹣n|=n﹣m,∴n﹣m≥0,即n≥m,∴n=2,m=﹣3或n=﹣2,m=﹣3,∴m+n=﹣1或m+n=﹣5,故选:D.第Ⅱ卷二、填空题(本大题共53分,共15分)11.若2m+1与﹣2互为相反数,则m的值为.【解答】解:∵2m+1与﹣2互为相反数,∴2m+1﹣2=0,∴m=12.故答案为:12.12.如图是由6个棱长均为1的正方体组成的几何体,该几何体的表面积为.【解答】解:主视图上有5个正方形,左视图和俯视图上有4个正方形,表面积为(5+4+4)x2=26.故答案为:26.13.高明区皂幕山某一天早晨的气温为16℃,中午上升了8℃,夜间又下降了10℃,则这天夜间皂幕山的气温是℃.【解答】解:16+8﹣10=14℃.故答案为:14.14.彰武县市场监督管理局规定我县出租车收费标准为:起步价2.50公里5.00元(即2.50公里内收费5.00元),超过2.50公里部分每超过0.60公里加收1.00元(不足0.60公里按0.60公里计算).周末小明和妈妈乘坐出租车去高山台森林公园游玩,已知小明家到高山台森林公园的里程是5.50公里,那么应付车费元.【解答】解:根据题意,得5+(5.50﹣2.50)÷0.6×1=10(元).故答案为:10.15.定义一个新运算ff(aa,bb)=�aa+bb(aa<bb)aa−bb(aa>bb),已知a2=4,b=1,则f(a,b)=.【解答】解:∵a2=4,∴a=±2,当a=2,b=1时,f(a,b)=f(2,1)=2﹣1=1;当a=﹣2,b=1时,f(a,b)=f(﹣2,1)=﹣2+1=﹣1;由上可得,f(a,b)的值为1或﹣1,故答案为:1或﹣1.三、解答题(本大题共9小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(每小题4分,共8分)计算:(1)(﹣1)2÷12+(7﹣3)×34−|﹣2|;(2)﹣14﹣0.5÷14×[1+(﹣2)2].【解答】解:(1)(﹣1)2÷12+(7﹣3)×34−|﹣2|=1×2+4×34−2=2+3﹣2=5﹣2=3;……………………4分(2)﹣14﹣0.5÷14×[1+(﹣2)2]=﹣1﹣0.5×4×(1+4)=﹣1﹣0.5×4×5=﹣1﹣10=﹣11.……………………8分17.(8分)把下列各数填在相应的大括号里(将各数用逗号分开):+8.3,﹣4,﹣0.8,﹣(﹣10),0,﹣13%,−343,﹣|﹣24|,π,﹣14.整数:{ …};非负数:{ …};分数:{ …};负有理数:{ …};【解答】解:﹣(﹣10)=10,﹣|﹣24|=﹣24,﹣14=﹣1,整数:{﹣4,﹣(﹣10),0,﹣|﹣24|,﹣14…};……………………2分非负数:{+8.3,﹣(﹣10),0,π…};……………………4分分数:{+8.3,﹣0.8,﹣13%,−343⋯};……………………6分负有理数:{﹣4,﹣0.8,﹣13%,−343,﹣|﹣24|,﹣14…}.……………………8分18.(7分)如图,直线上的相邻两点的距离为1个单位,如果点A、B表示的数是互为相反数,请回答下列问题:(1)那么点C表示的数是多少?(2)把如图的直线补充成一条数轴,并在数轴上表示:314,﹣3,﹣(﹣1.5),﹣|﹣1|.(3)将(2)中各数按由小到大的顺序用“<”连接起来.【解答】解:(1)∵点A、B表示的数是互为相反数,∴AB中点是原点,∴点C表示的数是﹣4;……………………1分(2)……………………4分(3)﹣3<﹣|﹣1|<﹣(﹣1.5)<314.……………………7分19.(8分)小车司机李师傅某天下午的营运全是在东西走向的常青公路上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+18,﹣7,+7,﹣3,+11,﹣4,﹣5,+11,+6,﹣7,+9(1)李师傅这天最后到达目的地时,距离下午出车时的出发地多远?(2)李师傅这天下午共行车多少千米?(3)若每千米耗油0.6升,则这天下午李师傅用了多少升油?【解答】解:(1)18﹣7+7﹣3+11﹣4﹣5+11+6﹣7+9=36(千米),所以李师傅这天最后到达目的地时,距离下午出车时的出发地36千米远;……………………2分(2)18+7+7+3+11+4+5+11+6+7+9=88(千米),所以李师傅这天下午共行车88千米;……………………5分(3)88×0.6=52.8(升),所以这天下午李师傅用了52.8升油.……………………8分20.(8分)如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.(1)直接写出这个几何体的表面积(包括底部):;(2)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.【解答】解:(1)(5+4+4)×2=26(cm2),故答案为:26cm2;……………………2分(2)根据三视图的画法,画出相应的图形如下:……………………8分21.(8分)根据下列条件求值:(1)若a、b互为相反数,c、d互为倒数,m的绝对值为6,求aa+bb mm+cccc−mm的值.(2)已知a2b>0,ab<0,a2=9,|b|=1,求a+b的值.【解答】解:(1)∵a、b互为相反数,c、d互为倒数,m的绝对值为6,∴a+b=0,cd=1,m=6或﹣6,当m=6时,原式=1﹣6=﹣5;当m=﹣6时,原式=1+6=7.综上所述:原式的值是﹣5或7.……………………4分(2)∵a2b>0,ab<0,∴b>0,a<0,∵a2=9,|b|=1,∴a=﹣3,b=1,∴a+b=﹣3+1=﹣2.……………………8分22.(8分)某自行车厂为了赶进度,一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负):星期一二三四五六日增减+4﹣2﹣4+13﹣11+15﹣9(1)根据记录可知第二天生产多少辆?(2)产量最多的一天比产量最少的一天多生产多少辆?(3)赶进度期间该厂实行计件工资加浮动工资制度.即:每生产一辆车的工资为60元,超过计划完成任务每辆车则在原来60元工资上再奖励15元;比计划每少生产一辆则在应得的总工资上扣发15元(工资按日统计,每周汇总一次),求该厂工人这一周的工资总额是多少?【解答】解:(1)200-2=198(辆),答:第二天生产198辆;……………………2分(2)15﹣(﹣11)=15+11=26(辆),答:产量最多的一天比产量最少的一天多生产26辆;……………………5分(3)60×[200×7+4+(﹣2)+(﹣4)+13+(﹣11)+15+(﹣9)]+15×[4+(﹣2)+(﹣4)+13+(﹣11)+15+(﹣9)]=60×1406+15×6=84450(元),答:该厂工人这一周的工资总额是84450元.……………………8分 23.(9分)已知13=1=14×12×22,13+23=9=14×22×32,13+23+33=36=14×32×42,…,按照这个规律完成下列问题:(1)13+23+33+43+53= =14× 2× 2. (2)猜想:13+23+33+…+n 3= .(3)利用(2)中的结论计算:(写出计算过程)113+123+133+143+153+163+…+393+403. 【解答】解:(1)13+23+33+43+53=225=14×52×62,……………………3分 (2)猜想:13+23+33+…+n 3=14×n 2×(n +1)2. ……………………5分(3)利用(2)中的结论计算:113+123+133+143+153+163+…+393+403.解:原式=13+23+33+…+393+403﹣(13+23+33+…+103) =14×402×412−14×102×112 =672400﹣3025=669375. ……………………9分24.(11分)如图,在数轴上点A 表示的数是8,若动点P 从原点O 出发,以2个单位/秒的速度向左运动,同时另一动点Q 从点A 出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t 秒.(1)当0.5=t 时,求点Q 到原点O 的距离; (2)当 2.5t =时,求点Q 到原点O 的距离;(3)当点Q 到点A 的距离为4时,求点P 到点Q 的距离.【答案】(1)解:当0.5=t 时,440.52t =×=,826−=, 当0.5=t 时,点Q 到原点O 的距离为6.………………………(2分)(2)解:当 2.5t =时,点Q 运动的距离为44 2.510t =×=, ∵点A 到原点的距离为8,点Q 从点A 出发,到达原点后再返回, ∴点Q 到原点O 的距离为2;………………………(4分) (3)解:点Q 到点的A 距离为4时,分三种情况讨论:①点Q 向左运动4个单位长度,此时运动时间:441t =÷=(秒),P 点表示的数是2−,Q 点表示的数是4;此时P 点到Q 点之间的距离是6.………………………(6分) ②点Q 向左运动8个单位长度到原点,再向右运动4个单位长度,则点Q 运动的距离为:8412+=,运动时间:1243t =÷=(秒) P 点表示的数是6−,Q 点表示的数是4;此时P 点到Q 点之间的距离是10.………………………(8分) ③点Q 向左运动8个单位长度到原点,再向右运动12个单位长度,则点Q 运动的距离为:81220+=,运动时间:2045t ÷(秒) P 点表示的数是10−,Q 点表示的数是12;此时P 点到Q 点之间的距离是22.综上,点P 到点Q 的距离为6或10或22.………………………(11分)。
2020-2021学年北师版七年级上期数学第一次月考预备卷 (满分: 100 时间: 90 分钟)一、选择题(每小题3分,共30分)1. -2021的倒数是( )A .-2021B .-12021C .12021D .20212. 下列说法正确的是( )A .一个有理数不是正数就是负数B .0是最小的数C .一个有理数不是整数就是分数D .1是最小的整数3.4月24日,以“弘扬航天精神 拥抱星辰大海”为主题的2020年“中国航天日”系列活动依托网络平台举办,来自多国多地区累计超过40000000人次收看了线上启动仪式,数据40000000用科学记数法表示为( )A .40×106B .4×108C .0.4×107D .4×1074. 如图,一个有盖的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,则水面的形状不可能是( )5. 四位同学画数轴如下图所示,你认为正确的是( )A .B .C .D . 6.若m 满足方程m m +=-20192019,则2020-m 等于( ).A .2020-mB .2020--mC .2020+mD .2020+-m7. 如图所示,正方体的展开图为( )A .B .C .D .8. 用平面截一个长方体,下列截面中:①正三角形;②长方形:③平行四边形;④正方形;⑤等腰梯形;⑥七边形.其中一定能够截出的有( )A . 2个B . 3个C . 4个D . 5个9. 有理数a ,b 在数轴上的位置如图所示,则下列各式成立的是( )A .b -a >0B .-b >0C .a >-bD .-ab <010. 定义一种对正整数n 的“F ”运算:①当n 为奇数时,结果为3n +5;②当n 为偶数时,结果为2kn ;(其中k 是使2kn 为奇数的正整数),并且运算可以重复进行,例如,取n =26.则:6516若n=49,则第449次“F运算”的结果是()A.98 B.88 C.78 D.68二、填空题(每小题3分,共15分)11.子弹从枪膛中射出去的轨迹、汽车的雨刷把玻璃上的雨水刷干净,可分别看作是、的实际应用.12.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是_________.13. 已知19a-=,26b+=,且a+b<0,则a−b的值为__________.14. 如图所示是计算机某计算程序,若开始输入x=-1,则最后输出的结果是.15. 数学著作《算术研究》一书中,对于任意实数,通常用[x]表示不超过x的最大整数,如:[π]=3,[2]=2,[-2.1]=-3,给出如下结论:①[-x]=-x;②若[x]=n,则x的取值范围是n≤x<n+1;③当-1<x<1时,[1+x]+[1-x]的值为1或2;④x=-2.75是方程4x-2[x]+5=0的唯一一个解.其中正确的结论有.三、解答题: (共55分)16.计算(6分)⑴(-81)÷124×49-(-136)÷(23-14-56) ⑵()511120201924463⎡⎤⎛⎫⎛⎫--⨯÷-+⨯-+÷-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦17.(5分)画一条数轴,在数轴上表示下列各数:0,|-2.5|,-22,-2,+5,并用“<”号把这些数连接起来.18.(6分)用小立方块搭成的几何体如下,问这样的几何体有多少可能?它最多需要多少小立方块,最少需要多少小立方块,请画出最少和最多时的左视图.19. (6分) a、b互为相反数,c、d互为倒数,数轴上表示m的点到原点距离为6,n是最大负整数.(1)求m和n的值(2)求2018(a+b)-cd+m+n2的值.20.(8分)出租车司机小王“十一”长假期间的一天下午,全是在一条南北走向的大道上营运,规定从出车点出发,向北为正,向南为负,这天下午的行车里程(单位:km)如下:-11,-5,+9,-15,+10,-12,+17,-9,-8,+15.(1)将最后一位乘客送到目的地后,小王在下午出车地点的什么地方?与下午出车地点相距多少千米?(2)若一辆出租车的耗油量是0.18L/km,则这天下午这辆出租车的耗油量是多少升?21. (8分)小明学习了“面动成体”之后,他用一个边长为3cm,4cm和5cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.⑴请画出肯能得到的几何体简图(标上数据).⑵分别计算出这些几何体的体积(不取近似值). (锥体体积=13底面积×高)22. (8分)我们知道:在研究和解决数学问题时,当问题所给对象不能进行统一研究时,我们就需要根据数学对象的本质属性的相同点和不同点,将对象区分为不同种类,然后逐类进行研究和解决,最后综合各类结果得到整个问题的解决,这一思想方法,我们称之为“分类讨论的思想”这一数学思想用处非常广泛,我们经常用这种方法解决问题.例如:我们在讨论|a |的值时,就会对a 进行分类讨论,当a ≥0时,|a |=a ;当a <0时,|a |=-a .现在请你利用这一思想解决下列问题:(1)8|8|= .3|3|--= (2)||a a =(a ≠0),||a a +||b b = .(其中a >0,b ≠0) (3)若abc ≠0,试求||a a + ||b b +||c c +||abc abc 的所有可能的值.23.(8分) 如图,A ,B 两点在数轴上对应的数分别为a ,b ,且点A 在点B 的左边,|a |=10,a +b =80,ab <0.(1)求出a ,b 的值;(2)现有一只电子蚂蚁P 从点A 出发,以3个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q 从点B 出发,以2个单位长度/秒的速度向左运动.①设两只电子蚂蚁在数轴上的点C 相遇,求出点C 对应的数是多少?②经过多长时间两只电子蚂蚁在数轴上相距20个单位长度?2020-2021学年七年级上期数学第一次月考预备卷答案(满分: 100分时间: 90 分钟)一、选择题(每小题3分,共30分)1.B2.C3.D4.D5.C6.D7.A8.D9.A10.A二、填空题(每小题3分,共15分)11. 点动成线、线动成面12.-4 13. -12或0 14.-14 15.②③三、解答题:16. (1)11615(2)−417. 解:-22<-2<0<|-2.5|<+5.18. 解:如图所示:用小立方块搭成的几何体,这样的几何体有5可能,它最多需要13小立方块,最少需要9小立方块.故答案为:13,9.19. 解:(1)∵表示m的点到原点距离为6,n是最大负整数,∴m=6或m=-6、n=-1;(2)根据题意知a+b=0、cd=1,当m=6时,原式=0-1+6+1=6;当m=-6时,原式=0-1-6+1=-6.20. 解:(1)-11-5+9-15+10-12+17-9-8+15=-9.所以小王在下午出车点的南边,与下午出车地点相距9 km.(2)|-11|+|-5|+|+9|+|-15|+|+10|+|-12|+|+17|+|-9|+|-8|+|+15|=111,111×0.18=19.98(L).答:这天下午这辆出租车的耗油量为19.98L.21. 解:(1)以4cm为轴,得;以3cm为轴,得;以5cm为轴,得;(2)以4cm 为轴体积为13×π×32×4=12π, 以3cm 为轴的体积为13×π×42×3=16π, 以5cm 为轴的体积为13×π(125)2×5=9.6π. 22. 解:(1)8|8|=1,3|3|--=-1, 故答案为:1,-1; (2)当a >0时,||a a =1;当a <0时,||a a =-1; 当b >0时,||a a +||b b =1+1=2;当b <0时,||a a +||b b =1-1=0; 故答案为:1或-1,2或0; (3)①当a 、b 、c 中没有负数时,||a a + ||b b +||c c +||abc abc =1+1+1+1=4, ②当a ,b ,c 三个字母中有一个字母小于0,其它两个字母大于0时,||a a + ||b b +||c c +||abc abc =-1+1+1-1=0, ③当a ,b ,c 三个字母中有一个字母大于0,其它两个字母小于0时,||a a + ||b b +||c c +||abc abc =1-1-1+1=0, ④当a <0,b <0,c <0时,||a a + ||b b +||c c +||abc abc =-1-1-1-1=-4, 综上所述,||a a + ||b b +||c c +||abc abc 的所有可能的值为±4,0. 23. 解:(1)∵A ,B 两点在数轴上对应的数分别为a ,b ,且点A 在点B 的左边,|a |=10,a +b =80,ab <0,∴a =-10,b =90,即a 的值是-10,b 的值是90;(2)①由题意可得,点C 对应的数是:90-[90-(-10)]÷(3+2)×2=90-100÷5×2=90-40=50,即点C 对应的数为:50;②设相遇前,经过m 秒时间两只电子蚂蚁在数轴上相距20个单位长度,[90-(-10)-20]÷(3+2)=80÷5=16(秒),设相遇后,经过n 秒时间两只电子蚂蚁在数轴上相距20个单位长度,[90-(-10)+20]÷(3+2)=120÷5=24(秒),由上可得,经过16秒或24秒的时间两只电子蚂蚁在数轴上相距20个单位长度.。
上海市2020年〖人教版〗七年级数学下册期末复习考试试卷第一次月考数学试卷一、选择题(3×8=24)1.下列现象:①电梯的升降运动,②飞机在地面上沿直线滑行,③风车的转动,④冷水加热过程中气泡的上升.其中属于平移的是()A.①②B.①③C.②③D.③④2.下面的说法正确的是()A.三角形的角平分线、中线和高都在三角形内B.直角三角形的高只有一条C.三角形的高至少有一条在三角形内D.钝角三角形的三条高都在三角形外面3.下列所示的四个图形中,∠1和∠2是同位角的是()A.②③B.①②③ C.①②④ D.①④4.下列各组数据中,能构成三角形的是()A.1cm、2cm、3cm B.2cm、3cm、4cm C.4cm、9cm、4cm D.2cm、1cm、4cm5.下列计算:(1)a n•a n=2a n,(2)a6+a6=a12,(3)c•c5=c5,(4)26+26=27,(5)(3xy3)3=9x3y9中,正确的个数为()A.0个B.1个C.2个D.3个6.若a、b、c是△ABC的三边的长,则化简|a﹣b﹣c|﹣|b﹣c﹣a|+|a+b﹣c|=()A.a+b+c B.﹣a+3b﹣c C.a+b﹣c D.2b﹣2c7.如图,AD⊥BC,GC⊥BC,CF⊥AB,D,C,F是垂足,下列说法中错误的是()A.△ABC中,AD是BC边上的高B.△ABC中,GC是BC边上的高C.△GBC中,GC是BC边上的高D.△GBC中,CF是BG边上的高8.如图,一条公路修到湖边时,需拐弯绕湖而过,若第一次拐角∠A=120°,第二次拐角∠B=150°.第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C为()A.120°B.130°C.140°D.150°二、填空题(2×10=20)9.一个等腰三角形的两边长分别是3cm和7cm,则它的周长是cm.10.计算:(﹣x4)2•x3=x9÷x5•x5=.11.如图,两条平行线a、b被直线c所截.若∠1=150°,则∠2=°.12.将矩形ABCD沿折线EF折叠后点B恰好落在CD边上的点H 处,且∠CHE=40°,则∠EFB=.13.如图,BC∥DE,AD⊥DF,∠l=30°,∠2=50°,则∠A=.14.如果x+4y﹣3=0,那么2x•16y=.15.一个同学在进行多边形的内角和计算时,所得的内角和为1125°,当发现错了以后,重新检测发现少了一个内角,则这个内角是度.16.如图,小亮从A点出发前进10m,向右转18°,再前进10m,又向右转18°,…,这样一直走下去,他第一次回到出发点A时,一共走了m.17.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF﹣S△BEF=.三、简答题18.计算(1)﹣t3•(﹣t)4•(﹣t)5(2)(3a3)3+a3•a6﹣3a9(3)(4)(p﹣q)4÷(q﹣p)3•(p﹣q)2.19.一个多边形,它的内角和比外角和的3倍多180°,求这个多边形的边数及内角和度数.20.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.(1)△ABC的面积为;(2)将△ABC经过平移后得到△A′B′C′,图中标出了点B的对应点B′,补全△A′B′C′;(3)若连接AA′,BB′,则这两条线段之间的关系是;(4)在图中画出△ABC的高CD.21.已知a m=2,a n=4,求①a m+n的值;②a4m﹣2n的值.22.如图,在△ABC中,∠BAC=50°,∠B=60°,AE⊥BC于点E,CD平分∠ACB且分别与AB、AE交于点D、F,求∠AFC的度数.23.如图,AD是△ABC的角平分线,DE∥CA,交AB于点E,DF∥BA,交AC于点F.∠1与∠2相等吗?为什么?24.∠1=∠2,∠3=∠B,FG⊥AB于G,猜想CD与AB的关系,并证明你的猜想.25.我们知道,任何一个三角形的三条内角平分线相交于一点,如图,若△ABC 的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E.(1)请你通过画图、度量,填写右上表(图画在草稿纸上,并尽量画准确)(2)从上表中你发现了∠BIC与∠BDI之间有何数量关系,请写出来,并说明其中的道理.∠BAC的度40°60°90°120°数∠BIC的度数∠BDI的度数26.Rt△ABC中,∠C=90°,点D,E分别是边AC,BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图①,且∠α=50°,则∠1+∠2=;(2)若点P在斜边AB上运动,如图②,则∠α、∠1、∠2之间的关系为;(3)如图③,若点P在斜边BA的延长线上运动(CE<CD),请直接写出∠α、∠1、∠2之间的关系:;(4)若点P运动到△ABC形外(只需研究图④情形),则∠α、∠1、∠2之间有何关系?并说明理由.参考答案与试题解析一、选择题(3×8=24)1.下列现象:①电梯的升降运动,②飞机在地面上沿直线滑行,③风车的转动,④冷水加热过程中气泡的上升.其中属于平移的是()A.①②B.①③C.②③D.③④【考点】生活中的平移现象.【分析】根据平移是图形沿某一直线方向方向移动一定的距离,可得答案.【解答】解;:①电梯的升降运动,②飞机在地面上沿直线滑行是平移,故选:A.2.下面的说法正确的是()A.三角形的角平分线、中线和高都在三角形内B.直角三角形的高只有一条C.三角形的高至少有一条在三角形内D.钝角三角形的三条高都在三角形外面【考点】三角形的角平分线、中线和高.【分析】根据三角形的角平分线、中线、高的概念可知.【解答】解:A、三角形的三条高不一定都在三角形的内部,错误;B、直角三角形有两条高就是两条直角边,错误;C、锐角三角形的三条高都在内部;直角三角形有两条是直角边,另一条高在内部;钝角三角形有两条在外部,一条在内部,正确;D、钝角三角形有两条高在外部,一条在内部,错误.故选C.3.下列所示的四个图形中,∠1和∠2是同位角的是()A.②③B.①②③ C.①②④ D.①④【考点】同位角、内错角、同旁内角.【分析】此题在于考查同位角的概念,在截线的同侧,并且在被截线的同一方的两个角是同位角,所以①②④符合要求.【解答】解:图①、②、④中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;图③中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选:C.4.下列各组数据中,能构成三角形的是()A.1cm、2cm、3cm B.2cm、3cm、4cm C.4cm、9cm、4cm D.2cm、1cm、4cm【考点】三角形三边关系.【分析】看哪个选项中两条较小的边的和大于最大的边即可.【解答】解:A、1+2=3,不能构成三角形;B、3+2>4,能构成三角形;C、4+4<9,不能构成三角形;D、1+2<4,不能构成三角形.故选B.5.下列计算:(1)a n•a n=2a n,(2)a6+a6=a12,(3)c•c5=c5,(4)26+26=27,(5)(3xy3)3=9x3y9中,正确的个数为()A.0个B.1个C.2个D.3个【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同底数幂的乘法的性质,合并同类项的法则,积的乘方的性质,对各式分析判断后利用排除法求解.【解答】解:(1)a n•a n=a2n,错误;(2)a6+a6=2a6,错误;(3)c•c5=c6,错误;(4)26+26=2×26=27,正确;(5)(3xy3)3=27x3y9中,错误.故选B.6.若a、b、c是△ABC的三边的长,则化简|a﹣b﹣c|﹣|b﹣c﹣a|+|a+b﹣c|=()A.a+b+c B.﹣a+3b﹣c C.a+b﹣c D.2b﹣2c【考点】三角形三边关系;绝对值;整式的加减.【分析】根据三角形的三边关系定理可得a﹣b﹣c<0,b﹣c﹣a <0,a+b﹣c>0,再根据绝对值的性质去掉绝对值符号,再合并同类项即可.【解答】解:|a﹣b﹣c|﹣|b﹣c﹣a|+|a+b﹣c|,=﹣a+b+c﹣(﹣b+c+a)+(a+b﹣c),=﹣a+b+c+b﹣c﹣a+a+b﹣c,=﹣a+3b﹣c,故选:B.7.如图,AD⊥BC,GC⊥BC,CF⊥AB,D,C,F是垂足,下列说法中错误的是()A.△ABC中,AD是BC边上的高B.△ABC中,GC是BC边上的高C.△GBC中,GC是BC边上的高D.△GBC中,CF是BG边上的高【考点】三角形的角平分线、中线和高.【分析】根据三角形的一个顶点到对边的垂线段叫做三角形的高,对各选项分析判断后利用排除法求解.【解答】解:A、△ABC中,AD是BC边上的高正确,故本选项错误;B、△GBC中,CF是BG边上的高正确,故本选项错误;C、△ABC中,GC是BC边上的高错误,故本选项正确;D、△GBC中,GC是BC边上的高正确,故本选项错误.故选C.8.如图,一条公路修到湖边时,需拐弯绕湖而过,若第一次拐角∠A=120°,第二次拐角∠B=150°.第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C为()A.120°B.130°C.140°D.150°【考点】平行线的性质.【分析】首先过B作BE∥AM,根据AM∥CN,可得AM∥BE∥CN,进而得到∠A=∠1,∠2+∠C=180°,然后可求出∠C的度数.【解答】解:过B作BE∥AM,∵AM∥CN,∴AM∥BE∥CN,∴∠A=∠1,∠2+∠C=180°,∵∠A=120°,∴∠1=120°,∵∠ABC=150°,∴∠2=150°﹣120°=30°,∴∠C=180°﹣30°=150°.故选D.二、填空题(2×10=20)9.一个等腰三角形的两边长分别是3cm和7cm,则它的周长是17 cm.【考点】等腰三角形的性质;三角形三边关系.【分析】等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17cm.故答案为:17.10.计算:(﹣x4)2•x3= x11x9÷x5•x5= x9.【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法、除法,幂的乘方,即可解答.【解答】解:(﹣x4)2•x3=x8•x3=x11,x9÷x5•x5=x4•x5=x9,故答案为:x11,x9.11.如图,两条平行线a、b被直线c所截.若∠1=150°,则∠2= 30 °.【考点】平行线的性质.【分析】首先根据两直线平行,同位角相等可得∠1=∠3=150°,再根据邻补角互补可得∠2的度数.【解答】解:∵a∥b,∴∠1=∠3=150°,∵∠3+∠2=180°,∴∠2=180°﹣150°=30°,故答案为:30.12.将矩形ABCD沿折线EF折叠后点B恰好落在CD边上的点H 处,且∠CHE=40°,则∠EFB= 25°.【考点】翻折变换(折叠问题).【分析】根据直角三角形的两个锐角互余,求得∠CEH的度数,再根据平角定义和折叠的性质求得∠BEF的度数,再根据直角三角形的两个锐角互余即可求得∠EFB的度数.【解答】解:在直角三角形CHE中,∠CHE=40°,则∠CEH=90°﹣40°=50°,根据折叠的性质,得∠BEF=∠FEH=÷2=65°,在直角三角形BEF中,则∠EFB=90°﹣65°=25°.故答案为:25°.13.如图,BC∥DE,AD⊥DF,∠l=30°,∠2=50°,则∠A= 70°.【考点】平行线的性质.【分析】先根据垂直的定义得出∠ADE的度数,再由平行线的性质求出∠ABC的度数,由三角形内角和定理即可得出∠A的度数.【解答】解:∵AD⊥DF,∴∠ADF=90°.∵∠1=30°,∴∠ADE=90°﹣30°=60°.∵BC∥DE,∴∠ABC=∠ADE=60°,∵△ABC中,∠ABC=60°,∠2=50°,∴∠A=180°﹣60°﹣50°=70°.故答案为:70°.14.如果x+4y﹣3=0,那么2x•16y= 8 .【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】由x+4y﹣3=0,即可得x+4y=3,又由2x•16y=2x•24y=2x+4y,即可求得答案.【解答】解:∵x+4y﹣3=0,∴x+4y=3,∴2x•16y=2x•24y=2x+4y=23=8.故答案为:8.15.一个同学在进行多边形的内角和计算时,所得的内角和为1125°,当发现错了以后,重新检测发现少了一个内角,则这个内角是135 度.【考点】多边形内角与外角.【分析】本题首先由题意找出不等关系列出不等式,进而求出这一内角的取值范围;然后可确定这一内角的度数,进一步得出这个多边形是九边形.【解答】解:设此多边形的内角和为x,则有1125°<x<1125°+180°,即180°×6+45°<x<180°×7+45°,因为x为多边形的内角和,所以它是180°的倍数,所以x=180°×7=1260°.所以7+2=9,1260°﹣1125°=135°.因此,漏加的这个内角是135°.故答案为:135°.16.如图,小亮从A点出发前进10m,向右转18°,再前进10m,又向右转18°,…,这样一直走下去,他第一次回到出发点A时,一共走了200 m.【考点】多边形内角与外角.【分析】第一次回到出发点A时,所经过的路线正好构成一个外角是18度的正多边形,求得边数,即可求解.【解答】解:360÷18=20,则一共走了20×10=200m.故答案为:200.17.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF﹣S△BEF= 2 .【考点】三角形的面积.【分析】S△ADF﹣S△BEF=S△ABD﹣S△ABE,所以求出三角形ABD的面积和三角形ABE的面积即可,因为EC=2BE,点D是AC的中点,且S△ABC=12,就可以求出三角形ABD的面积和三角形ABE的面积.【解答】解:∵点D是AC的中点,∴AD=AC,∵S△ABC=12,∴S△ABD=S△ABC=×12=6.∵EC=2BE,S△ABC=12,∴S△ABE=S△ABC=×12=4,∵S△ABD﹣S△ABE=(S△ADF+S△ABF)﹣(S△ABF+S△BEF)=S△ADF﹣S△BEF,即S△ADF﹣S△BEF=S△ABD﹣S△ABE=6﹣4=2.故答案为:2.三、简答题18.计算(1)﹣t3•(﹣t)4•(﹣t)5(2)(3a3)3+a3•a6﹣3a9(3)(4)(p﹣q)4÷(q﹣p)3•(p﹣q)2.【考点】整式的混合运算.【分析】(1)根据同底数幂的乘法进行计算即可;(2)根据幂的乘方、同底数幂的乘法、合并同类项进行计算即可;(3)根据积的乘方进行计算即可;(4)根据同底数幂的乘方进行计算即可.【解答】解:(1)﹣t3•(﹣t)4•(﹣t)5=t3+4+5=t12;(2)(3a3)3+a3•a6﹣3a9=27a9+a9﹣3a9=25a9;(3)===;(4)(p﹣q)4÷(q﹣p)3•(p﹣q)2.=﹣(p﹣q)4÷(p﹣q)3•(p﹣q)2=﹣(p﹣q)4﹣3+2=﹣(p﹣q)3.19.一个多边形,它的内角和比外角和的3倍多180°,求这个多边形的边数及内角和度数.【考点】多边形内角与外角.【分析】设多边形边数有n条,由题意得可得方程180(n﹣2)=3×360+180,解出n的值,再根据内角和公式计算出内角和即可.【解答】解:设多边形边数有n条,由题意得:180(n﹣2)=3×360+180,解得:n=9,内角和度数:180°×(9﹣2)=1260°.答:这个多边形的边数为9;内角和度数为1260°.20.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.(1)△ABC的面积为10 ;(2)将△ABC经过平移后得到△A′B′C′,图中标出了点B的对应点B′,补全△A′B′C′;(3)若连接AA′,BB′,则这两条线段之间的关系是平行且相等;(4)在图中画出△ABC的高CD.【考点】作图-平移变换.【分析】(1)根据三角形的面积公式求解即可;(2)根据平移前后对应点联系互相平行且相等,即可找到A'、C'的位置,从而补全△A′B′C′;(3)根据平移的性质即可作出判断;(4)利用格点图形作出即可.【解答】解:(1)S△ABC=×5×4=10;(2)如图所示:.(3)平行且相等;(4)如图所示:.21.已知a m=2,a n=4,求①a m+n的值;②a4m﹣2n的值.【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】①根据同底数幂的乘法底数不变指数相加,可得答案;②根据幂的乘方底数不变指数相乘,可得同底数幂的除法,根据同底数幂的除法底数不变指数相减,可得答案.【解答】解:①a m+n=a m•a n=2×4=8;②a4m=(a m)4=16,a2n=(a n)2=16,a4m﹣2n=a4m÷a2n=1.22.如图,在△ABC中,∠BAC=50°,∠B=60°,AE⊥BC于点E,CD平分∠ACB且分别与AB、AE交于点D、F,求∠AFC的度数.【考点】三角形内角和定理;角平分线的定义;三角形的外角性质.【分析】先根据垂直的定义求∠BAE的度数,再结合图形根据角的和差求出∠CAE的度数,利用三角形的内角和求∠ACB,因CD 平分∠ACB,所以可得∠ACD,最后利用△AFC的内角和为180°,求得∠AFC的度数.【解答】解:∵AE⊥BC,∴∠AEB=90°.∵∠B=60°,∴∠BAE=90°﹣60°=30°.∴∠CAE=50°﹣30°=20°∵∠BAC+∠B+∠ACB=180°,∴∠ACB=180°﹣∠BAC﹣∠B=70°.又∵CD平分∠ACB,∴∠ACD=∠ACB=35°.∴∠AFC=180°﹣35°﹣20°=125°.23.如图,AD是△ABC的角平分线,DE∥CA,交AB于点E,DF∥BA,交AC于点F.∠1与∠2相等吗?为什么?【考点】平行线的性质.【分析】先根据角平分线的定义得出∠BAD=∠CAD,再由平行线的性质即可得出结论.【解答】解:相等.理由:∵AD是△ABC的角平分线,∴∠BAD=∠CAD.∵DE∥CA,∴∠1=∠CAD.∵DF∥BA,∴∠2=∠BAD,∴∠1=∠2.24.∠1=∠2,∠3=∠B,FG⊥AB于G,猜想CD与AB的关系,并证明你的猜想.【考点】平行线的判定与性质.【分析】已知∠3=∠B,根据同位角相等,两直线平行,则DE∥BC,通过平行线的性质和等量代换可得∠2=∠DCB,从而证得CD∥GF,又因为FG⊥AB,所以CD与AB的位置关系是垂直.【解答】解:CD⊥AB.理由如下:∵∠3=∠B,∴DE∥BC,∴∠1=∠DCB;∵∠1=∠2,∴∠2=∠DCB,∴CD∥GF;∵GF⊥AB,∴CD⊥AB.25.我们知道,任何一个三角形的三条内角平分线相交于一点,如图,若△ABC 的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E.(1)请你通过画图、度量,填写右上表(图画在草稿纸上,并尽量画准确)(2)从上表中你发现了∠BIC与∠BDI之间有何数量关系,请写出来,并说明其中的道理.∠BAC的度40°60°90°120°数∠BIC的度数∠BDI的度数【考点】三角形的角平分线、中线和高;三角形内角和定理.【分析】(1)通过画图、度量,即可完成表格;(2)先从上表中发现∠BIC=∠BDI,再分别证明∠BIC=90°+∠BAC,∠BDI=90°+∠BAC.【解答】解:(1)填写表格如下:∠BAC的度40°60°90°120°数∠BIC的度110°120° 135°150°数∠BDI的度110°120°135°150°数(2)∠BIC=∠BDI,理由如下:∵△ABC的三条内角平分线相交于点I,∴∠BIC=180°﹣(∠IBC+∠ICB)=180°﹣(∠ABC+∠ACB)=180°﹣=90+∠BAC;∵AI平分∠BAC,∴∠DAI=∠DAE.∵DE⊥AI于I,∴∠AID=90°.∴∠BDI=∠AID+∠DAI=90°+∠BAC.∴∠BIC=∠BDI.26.Rt△ABC中,∠C=90°,点D,E分别是边AC,BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图①,且∠α=50°,则∠1+∠2= 140°;(2)若点P在斜边AB上运动,如图②,则∠α、∠1、∠2之间的关系为∠1+∠2=90°+∠α;(3)如图③,若点P在斜边BA的延长线上运动(CE<CD),请直接写出∠α、∠1、∠2之间的关系:∠2﹣∠1=90°+∠α;∠2=∠1+90°;∠1﹣∠2=∠α﹣90°;(4)若点P运动到△ABC形外(只需研究图④情形),则∠α、∠1、∠2之间有何关系?并说明理由.【考点】三角形内角和定理;三角形的外角性质.【分析】(1)连接PC,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,再表示出∠1+∠2即可;(2)利用(1)中所求得出答案即可;(3)利用三角外角的性质分三种情况讨论即可;(4)利用三角形内角和定理以及邻补角的性质可得出.【解答】解:(1)如图,连接PC,∵∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,∴∠1+∠2=∠PCD+∠CPD+∠PCE+∠CPE=∠DPE+∠C,∵∠DPE=∠α=50°,∠C=90°,∴∠1+∠2=50°+90°=140°,故答案为:140°;(2)连接PC,∵∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,∴∠1+∠2=∠PCD+∠CPD+∠PCE+∠CPE=∠DPE+∠C,∵∠C=90°,∠DPE=∠α,∴∠1+∠2=90°+∠α;故答案为:∠1+∠2=90°+∠α;(3)如图1,∵∠2=∠C+∠1+∠α,∴∠2﹣∠1=90°+∠α;如图2,∠α=0°,∠2=∠1+90°;如图3,∵∠2=∠1﹣∠α+∠C,∴∠1﹣∠2=∠α﹣90°.故答案为;∠2﹣∠1=90°+∠α;∠2=∠1+90°;∠1﹣∠2=∠α﹣90°.(4)∵∠PFD=∠EFC,∴180°﹣∠PFD=180°﹣∠EFC,∴∠α+180°﹣∠1=∠C+180°﹣∠2,∴∠2=90°+∠1﹣α.故答案为:∠2=90°+∠1﹣α.。
2022-2023学年初中七年级上数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:115 分考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;卷I(选择题)一、选择题(本题共计 10 小题,每题 5 分,共计50分)1. ${2\dfrac{1}{3}}$中有________个${\dfrac{1}{3}}$.2. 下列方程中,不是一元一次方程的是()A.${\dfrac{7}{y}+ 12= 0}$B.${2x+ 8= 0}$C.${3z= 0}$D.${3x= - 2- x}$3. 下列几何图形中,有${3}$个面的是( )A.B.C.D.4. 今年“五一”小长假期间,我市共接待游客${99.6}$万人次,旅游收入${516000000}$元.数据${516000000}$科学记数法表示为( )A.${5.16 \times 10^{8}}$B.${0.516 \times 10^{9}}$C.${51.6 \times 10^{7}}$D.${5.16 \times 10^{9}}$5. 小明要把${1}$张${50}$元的压岁钱兑换成面额为${5}$元和${10}$元的人民币(假设两种面额的人民币都需要),兑换方式有${(}$ ${)}$A.${1}$种B.${2}$种C.${3}$种D.${4}$种6. 单项式${-2\pi x^{2}y^{3}}$的系数是( )A.${-2}$B.${-2\pi }$C.${5}$D.${6}$7. 若代数式${4x- 5}$的值比${3x}$的值小${7}$,则${x}$的值是${(}$ ${)}$A.${- \dfrac{12}{7}}$B.${-12}$C.${2}$D.${-2}$8. 已知方程组的解是,则的解是( )A.C.D.9. 我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:现有几个人共同购买一件物品,每人出${8}$钱,则多${3}$钱;每人出${7}$钱,则差${4}$钱,求物品的价格和共同购买该物品的人数.设该物品的价格是${x}$钱,共同购买该物品的有${y}$人,则根据题意,列出的方程组是( )A.${\left\{ \begin{matrix} 8y - x = 3 \\ 7y - x = - 4 \\ \end{matrix} \right.\ }$B.${\left\{ \begin{matrix} 8y - x = 3 \\ 7y - x = 4 \\ \end{matrix} \right.\ }$C.${\left\{ \begin{matrix} y - 8x = - 3 \\ 7y - x = - 4 \\ \end{matrix} \right.\ }$D.${\left\{ \begin{matrix} 8x - y = 3 \\ 7x - y = 4 \\ \end{matrix} \right.\ }$10. 如图,每个图案均由边长相等的黑白两色正方形按规律拼接而成,照此规律,第${n}$个图案中白色正方形比黑色正方形多${(}$ ${)}$个.A.${n}$B.${(5n+3)}$C.${(5n+2)}$D.${(4n+3)}$卷II(非选择题)二、填空题(本题共计 4 小题,每题 5 分,共计20分)12. ${2019}$年国内航空公司规定:旅客乘机时,免费携带行李箱的重量不超过${20\rm kg}$. 若超过${20\rm kg}$,则超出的重量每千克要按飞机票原价的${1.5\%}$购买行李票. 小明的爸爸从长春飞到北京,机票原价是${m}$元,他带了${40\rm kg}$行李,小明的爸爸应付的行李票是________元(用含${m}$的代数式表示).13. 长方形${ABCD}$中放置了${6}$个形状、大小都相同的小长方形,所标尺寸如图所示,则图中阴影部分的面积是________${cm^{2}}$.14. 已知点${A}$,${B}$,${C}$都在直线${l}$上, ${AB=3BC}$,点${D}$,${E}$分别为${AC}$,${BC}$的中点,${DE=6}$,则${AC=}$________.三、解答题(本题共计 9 小题,每题 5 分,共计45分)15. 计算:${| 2-3 | +2\times \left(-4\right)-}$${\left(-3\right)^{2}\div 9}$.16. 解方程:${{\dfrac{0.03+0.02x}{0.03}}+{\dfrac{2x-5}5}={\dfrac{x-1}2}}$.17. 按要求作图如图,在同一平面内有四个点${A}$,${B}$,${C}$,${D}$ .①画射线${CD}$ ;②画直线${AD}$ ;③连结${AB}$ ;④直线${BD}$与直线${AC}$相交于点${O}$.18. 已知${y_{1}=}$${6-x}$,${y_{2}=}$${2+ 7x}$,解答下列问题:${(1)}$当${y_{1}=}$${2y_{2}}$时,求${x}$的值;${(2)}$当${x}$取何值时,${y_{2}}$比${y_{1}}$小${3}$.19. 已知${A=x^{2}+3xy-12}$,${B=2x^{2}-xy+y}$.${(1)}$当${x=y=-2}$时,求${2A-B}$的值;${(2)}$若${2A-B}$的值与${y}$的取值无关,求${x}$的值.【运用】${(1)}$①${ -2x= 4 }$,②${ 3x= -4.5 }$,③${ \dfrac{1}{2}x= -1 }$三个方程中,为“友好方程”的是________(填写序号);${(2)}$若关于${ x }$的一元一次方程${ 3x= b }$是“友好方程”,求${ b }$的值;${(3)}$若关于${ x }$的一元一次方程${ -2x= mn+ n(n\ne 0) }$是“友好方程”,且它的解为${ x= n}$,求${ m }$与${ n }$的值.21. 解方程组:.22. 观察下列各式:${\begin{matrix} - 1 \times \dfrac{1}{2} = - 1 + \dfrac{1}{2}; \\ - \dfrac{1}{2} \times \dfrac{1}{3} = - \dfrac{1}{2} + \dfrac{1}{3} ; \\ - \dfrac{1}{3} \times \dfrac{1}{4} = - \dfrac{1}{3} + \dfrac{1}{4} ;\\ \end{matrix}}$${\cdots}$${(1)}$你能探索出什么规律?(用含${n}$的式子表达);${(2)}$试运用你发现的规律计算:${( - 1 \times \dfrac{1}{2}) + ( - \dfrac{1}{2} \times \dfrac{1}{3}) + ( - \dfrac{1}{3} \times \dfrac{1} {4}) + \cdots + ( - \dfrac{1}{2018} \times \dfrac{1}{2019}) + ( - \dfrac{1}{2019} \times \dfrac{1} {2020})}$.23. 某汽车制造厂开发了一款新式电动汽车,计划一年生产安装${240}$辆.工厂决定招聘一些新工人.生产开始后,调研部门发现:${1}$名熟练工和${2}$名新工人每月可安装${8}$辆电动汽车;${2}$名熟练工和${3}$名新工人每月可安装${14}$辆电动汽车.${(1)}$每名熟练工和新工人每月分别可以安装多少辆电动汽车?${(2)}$如果工厂招聘${n(0\lt n\lt 10)}$名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有几种招聘新工人的方案?${(3)}$在${(2)}$的条件下,工厂给安装电动汽车的每名熟练工每月发${4000}$元的工资,给每名新工人每月发${2400}$元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额${W}$(元)尽可能的少?参考答案与试题解析2022-2023学年初中七年级上数学月考试卷一、选择题(本题共计 10 小题,每题 5 分,共计50分)1.【答案】${7}$【考点】有理数的除法【解析】用 ${2\dfrac{1}{3}}$除以${\dfrac{1}{3}}$即可得到答案.【解答】解:${2\dfrac13\div\dfrac13=\dfrac73\div\dfrac13=7}$.故答案为:${7}$.2.【答案】A【考点】一元一次方程的定义【解析】此题暂无解析【解答】解:一元一次方程是指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,${\rm A}$中${y}$的最高次幂是${-1}$,不符合一元一次方程的定义,故选${\rm A}$.3.【答案】D认识立体图形【解析】根据立体图形的概念逐一判断可得.【解答】${A}$、球只有${1}$个面;${B}$、三棱锥有${4}$个面;${C}$、正方体有${6}$个面;${D}$、圆柱体有${3}$个面;4.【答案】A【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解:${516000000}$用科学计数法表示为${5.16 \times 10^{8}}$,故选${\rm A}$.5.【答案】D【考点】二元一次方程的解【解析】先设面值${5}$元的有${x}$张,面值${10}$元的${y}$张,根据${1}$张${50}$元的人民币兑换成面额为${5}$元和${10}$元的人民币列出方程求解即可.【解答】解:设面值${5}$元的有${x}$张,面值${10}$元的${y}$张,根据题意得:${5x+10y=50}$,由于两种面额的人民币都需要,当${x=6}$时,${y=2}$;当${x=8}$时,${y=1}$.有${4}$种方案.故选${\rm D}$.6.【答案】B【考点】单项式【解析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.【解答】解:单项式${-2\pi x^{2}y^{3}}$的系数是${-2\pi }$,故选:${B}$.7.【答案】D【考点】解一元一次方程【解析】此题暂无解析【解答】解:因为代数式${4x- 5}$的值比${3x}$的值小${7}$,所以${4x-5=3x-7}$,解得:${x=-2}$.故选${\rm D}$.8.【答案】D【考点】加减消元法解二元一次方程组代入消元法解二元一次方程组【解析】此题暂无解析【解答】此题暂无解答9.【答案】A【考点】由实际问题抽象出二元一次方程组【解析】设该物品的价格是${x}$钱,共同购买该物品的有${y}$人,由“每人出${8}$钱,则多${3}$钱;每人出${7}$钱,则差${4}$钱”,即可得出关于${x}$,${y}$的二元一次方程组,此题得解.【解答】解:设该物品的价格是${x}$钱,共同购买该物品的有${y}$人,依题意,得:${\left\{ \begin{matrix} 8y - x = 3 \\ 7y - x = - 4 \\ \end{matrix} \right.\ }$.故选${\rm A}$.10.【答案】D【考点】规律型:图形的变化类【解析】根据题意,第一个图形白色正方形为${8}$个,第二个图形白色正方形为${13}$个,第三个图形白色正方形为${18}$个,后一个图形比前一个图形多${5}$个白色正方形,则第${n}$个图形白色正方形的个数为${5n+ 3}$,即可推出第${5}$个图形白色正方形的个数.【解答】解:∵${n= 1}$时,白色正方形的个数为${8}$,白色正方形的个数为${13}$,黑色正方形个数为${2}$;${n= 3}$时,白色正方形的个数为${18}$,黑色正方形个数为${3}$;∴第${n}$个图形白色正方形的个数为${5n+ 3}$,黑色正方形个数为${n}$;∴第${n}$个图案中白色正方形比黑色正方形多${4n+3}$个.故选${\rm D}$.二、填空题(本题共计 4 小题,每题 5 分,共计20分)11.【答案】${-1}$【考点】二元一次方程的定义【解析】本题主要考查二元一次方程的定义,根据定义即可解得 .【解答】解:由题知${\begin{cases} |k|=1, \\k-1≠0, \end{cases}}$解得${k=-1}$.故答案为:${-1}$.12.【答案】${0.3m}$【考点】列代数式【解析】此题暂无解析【解答】解:由题意可得,小明的爸爸应付的行李票是: ${\left(40-20\right)m\times 1.5\% =0.3m}$(元).故答案为:${0.3m}$.13.${67}$.【考点】二元一次方程组的应用——几何问题【解析】设小长方形的长为${x\rm cm}$,宽为${y \rm cm}$,根据图中给定的数据可得出关于${x}$,${y}$的二元一次方程组,解之即可得出${x}$,${y}$的值,再利用阴影部分的面积${= }$大长方形的面积${-6\times }$小长方形的面积,即可求出结论.【解答】解:设小长方形的长为${x\rm cm}$,宽为${ym}$依题意,得:${\left\{ \begin{array} {l}{x+ 3y= 19} \\ {x+ y-2y= 7}\end{array} \right.}$解得:${\left\{ \begin{array} {l}{x= 10} \\ {y= 3}\end{array} \right.}$…图中阴影部分的面积${= 19\times \left(7+ 2\times 3\right)-6\times 10\times 3= 67\left( \rm cm ^{2}\right)}$故答案为:${67}$.14.【答案】${8}$或${16}$【考点】线段的和差线段的中点【解析】利用线段的比例关系,列式,注意对${B}$点的位置分类讨论.【解答】解:设${BC=x}$,当${C}$在线段${AB}$外面时,${AC=4x}$,由条件可得${\dfrac32x=6}$,解得${x=4}$,则${AC=4x=16}$,当${C}$在线段${AB}$中间时,${AC=2x}$,由条件可得${\dfrac32x=6}$,解得${x=4}$,则${AC=2x=8}$.故答案为:${8}$或${16}$.三、解答题(本题共计 9 小题,每题 5 分,共计45分)15.【答案】解:原式${=1+(-8)-1}$${=-8}$.【考点】有理数的混合运算有理数的乘方绝对值【解析】【解答】解:原式${=1+(-8)-1}$${=-8}$.16.【答案】解:${\dfrac{0.03+0.02x}{0.03}+\dfrac{2x-5}5=\dfrac{x-1}2}$去分母,得${10\left(3+2x\right)+6\left(2x-5\right)=15\left(x-1\right)}$,去括号,得${30+20x+12x-30=15x-15}$,移项、合并同类项,得${17x=-15}$,系数化为${1}$,得${x=-\dfrac{15}{17}}$.【考点】解一元一次方程【解析】根据去分母、去括号、移项、合并同类项、系数化为${1}$等几个步骤进行解答即可.【解答】解:${\dfrac{0.03+0.02x}{0.03}+\dfrac{2x-5}5=\dfrac{x-1}2}$去分母,得${10\left(3+2x\right)+6\left(2x-5\right)=15\left(x-1\right)}$,去括号,得${30+20x+12x-30=15x-15}$,移项、合并同类项,得${17x=-15}$,系数化为${1}$,得${x=-\dfrac{15}{17}}$.17.【答案】解:如图所示,【考点】直线、射线、线段作图—几何作图【解析】根据直线、射线、线段的定义作图即可得.【解答】解:如图所示,18.【答案】解:${(1)}$由题意,得${6-x=2(2+7x)}$,解得${x=\dfrac{2}{15}}$.${(2)}$由题意,得${\left(6-x\right)-(2+7x)=3}$,解得${x=\dfrac{1}{8}}$.【考点】解一元一次方程列代数式由实际问题抽象出一元一次方程【解析】无无【解答】解:${(1)}$由题意,得${6-x=2(2+7x)}$,解得${x=\dfrac{2}{15}}$.${(2)}$由题意,得${\left(6-x\right)-(2+7x)=3}$,解得${x=\dfrac{1}{8}}$.19.【答案】解:${(1)}$${2A-B=2(x^2+3xy-12)-(2x^2-xy+y)}$${=2x^2+6xy-24-2x^2+xy-y}$${=7xy-y-24}$,当${x=y=-2}$时,原式${=28+2-24=6}$.${(2)}$由${(1)}$知,${2A-B=(7x-1)y-24}$,若${2A-B}$的值与${y}$的取值无关,则${7x-1=0}$,${x=\dfrac{1}{7}}$.【考点】整式的加减——化简求值整式的加减【解析】先化简多项式,再代入求值;合并含${y}$的项,因为${2A-B}$的值与${y}$的取值无关,所以${y}$的系数为${0}$.【解答】解:${(1)}$${2A-B=2(x^2+3xy-12)-(2x^2-xy+y)}$${=2x^2+6xy-24-2x^2+xy-y}$${=7xy-y-24}$,当${x=y=-2}$时,原式${=28+2-24=6}$.${(2)}$由${(1)}$知,${2A-B=(7x-1)y-24}$,若${2A-B}$的值与${y}$的取值无关,则${7x-1=0}$,${x=\dfrac{1}{7}}$.20.【答案】②${(2)}$方程${ 3x= b }$的解为${ x= \dfrac{b}{3} }$,∵关于${x}$的一元一次方程${ 3x= b }$是“友好方程”,∴${ \dfrac{b}{3}= b+ 3 }$,解得${ b= -\dfrac{9}{2}}$.${(3)}$∵方程${ -2x= mn+ n(n\ne 0) }$是“友好方程”,且它的解为${ x= n }$,∴${ n= mn+ n-2 }$,${ mn= 2 }$,解方程${ -2x= mn+ n(n\ne 0) }$,解得${ x= -\dfrac{mn+ n}{2} }$,即${ n= -\dfrac{mn+ n}{2} }$,整理得${ -2n= mn+ n }$,解得${ m= -3}$.由${ mn= 2 }$得${ n= -\dfrac{2}{3} }$,∴${ m= -3 }$,${ n= -\dfrac{2}{3}}$.【考点】一元一次方程的解解一元一次方程【解析】(${1}$)求出方程的解,依次进行判断即可;(${2}$)求出方程的解${x=\dfrac{b}{3}}$,根据“友好方程”的定义,得到${\dfrac{b}{3}=b+3}$即可求出占的值;(${3}$)根据“友好方程”的定义以及解为${x=n}$,得到${n= \rm mm +n-2}$,解方程${-2x=mn+n\left(n\ne 0\right)}$,得到${x=-\dfrac{m+n}{2}}$,即${n=-\dfrac{mn+}{2}}$,通过上面两个式子整理化简即可求出${m}$和${n}$的值.【解答】解:${(1)}$①方程${-2x=4}$的解为${x=-2}$,而${-2\ne 4-2}$,因此方程${-2x=4}$不是“友好方程”;②方程${3x=-4.5}$的解为${x=-1.5}$,而${-1.5=-4.5+3}$,因此方程${3x=-4.5}$是“友好方程”;③方程${\dfrac{1}{2}x=-1}$的解为${x=-2}$,而${-2\ne -1+\dfrac{1}{2}}$,因此方程${\dfrac{1} {2}x=-1}$不是“友好方程”.故答案为:②.${(2)}$方程${ 3x= b }$的解为${ x= \dfrac{b}{3} }$,∵关于${x}$的一元一次方程${ 3x= b }$是“友好方程”,∴${ \dfrac{b}{3}= b+ 3 }$,解得${ b= -\dfrac{9}{2}}$.${(3)}$∵方程${ -2x= mn+ n(n\ne 0) }$是“友好方程”,且它的解为${ x= n }$,∴${ n= mn+ n-2 }$,${ mn= 2 }$,解方程${ -2x= mn+ n(n\ne 0) }$,解得${ x= -\dfrac{mn+ n}{2} }$,即${ n= -\dfrac{mn+ n}{2} }$,整理得${ -2n= mn+ n }$,解得${ m= -3}$.由${ mn= 2 }$得${ n= -\dfrac{2}{3} }$,∴${ m= -3 }$,${ n= -\dfrac{2}{3}}$.21.【答案】②${\times 2}$得:${2x+ 3y}$=${26}$③,③-①得:${5y}$=${10}$,解得:${y}$=${2}$,把${y}$=${4}$代入②得:${x+ 8}$=${13}$,解得:${x}$=${5}$,方程组的解为.【考点】二元一次方程组的解加减消元法解二元一次方程组代入消元法解二元一次方程组【解析】此题暂无解析【解答】此题暂无解答22.【答案】解:${(1)}$观察已知算式可知:${ - \dfrac{1}{n} \times \dfrac{1}{n + 1} = - \dfrac{1}{n} + \dfrac{1}{n + 1}}$.${(2)}$根据发现的规律可得:原式${=-1 + \dfrac{1}{2} - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{3} + \dfrac{1}{4} + \cdots }$ ${+ ( - \dfrac{1}{2018}) + \dfrac{1}{2019} - \dfrac{1}{2019} + \dfrac{1}{2020}}$${=-1 + \dfrac{1}{2020}}$${ = - \dfrac{2019}{2020}}$.【考点】规律型:数字的变化类有理数的混合运算【解析】(1)根据已知三个等式的规律即可得一般表达式;(2)根据(1)中得到的一般式进行有理数的混合运算即可求解.【解答】解:${(1)}$观察已知算式可知:${ - \dfrac{1}{n} \times \dfrac{1}{n + 1} = - \dfrac{1}{n} + \dfrac{1}{n + 1}}$.${(2)}$根据发现的规律可得:原式${=-1 + \dfrac{1}{2} - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{3} + \dfrac{1}{4} + \cdots }$ ${+ ( - \dfrac{1}{2018}) + \dfrac{1}{2019} - \dfrac{1}{2019} + \dfrac{1}{2020}}$${=-1 + \dfrac{1}{2020}}$${ = - \dfrac{2019}{2020}}$.23.【答案】解:${(1)}$设每名熟练工和新工人每月分别可以安装${x}$、${y}$辆电动汽车.根据题意,得${\left\{ {\begin{matrix} {x+ 2y= 8}, \\ {2x+ 3y= 14}, \end{matrix}} \right.}$解得${\left\{ {\begin{matrix} {x= 4} ,\\ {y= 2} .\end{matrix}} \right.}$答:每名熟练工和新工人每月分别可以安装${4}$辆,${2}$辆电动汽车.${(2)}$设工厂有${a}$名熟练工.根据题意,得${12(4a+ 2n)= 240}$,则${2a+ n= 10}$,移项得${n= 10-2a}$,又∵${a}$,${n}$都是正整数,${0\lt n\lt 10}$,∴${n= 8}$,${6}$,${4}$,${2}$.即工厂有${4}$种新工人的招聘方案.①${n= 8}$,${a= 1}$,即新工人${8}$人,熟练工${1}$人;②${n= 6}$,${a= 2}$,即新工人${6}$人,熟练工${2}$人;③${n= 4}$,${a= 3}$,即新工人${4}$人,熟练工${3}$人;④${n= 2}$,${a= 4}$,即新工人${2}$人,熟练工${4}$人.${(3)}$结合${(2)}$知:要使新工人的数量多于熟练工,则${n= 8}$,${a= 1}$;或${n= 6}$,${a= 2}$;或${n= 4}$,${a= 3}$.根据题意,得:${W=4000a+2400(10-2a)=24000-800a}$要使工厂每月支出的工资总额${W}$(元)尽可能地少,则${a}$应最大.显然当${n= 4}$,${a= 3}$时,工厂每月支出的工资总额${W}$(元)尽可能地少,故应招聘${4}$名新员工.【考点】二元一次方程组的应用——产品配套问题由实际问题抽象出二元一次方程【解析】(1)设每名熟练工和新工人每月分别可以安装${x}$、${y}$辆电动汽车.根据“${1}$名熟练工和${2}$名新工人每月可安装${8}$辆电动汽车”和“${2}$名熟练工和${3}$名新工人每月可安装${14}$辆电动汽车”列方程组求解.${(2)}$设工厂有${a}$名熟练工.根据新工人和抽调的熟练工刚好能完成一年的安装任务,根据${a}$,${n}$都是正整数和${0\lt n\lt 10}$,进行分析${n}$的值的情况;(3)建立函数关系式,根据使新工人的数量多于熟练工,同时工厂每月支出的工资总额${W}$(元)尽可能地少,两个条件进行分析.【解答】解:${(1)}$设每名熟练工和新工人每月分别可以安装${x}$、${y}$辆电动汽车.根据题意,得${\left\{ {\begin{matrix} {x+ 2y= 8}, \\ {2x+ 3y= 14}, \end{matrix}} \right.}$解得${\left\{ {\begin{matrix} {x= 4} ,\\ {y= 2} .\end{matrix}} \right.}$答:每名熟练工和新工人每月分别可以安装${4}$辆,${2}$辆电动汽车.${(2)}$设工厂有${a}$名熟练工.根据题意,得${12(4a+ 2n)= 240}$,则${2a+ n= 10}$,移项得${n= 10-2a}$,又∵${a}$,${n}$都是正整数,${0\lt n\lt 10}$,∴${n= 8}$,${6}$,${4}$,${2}$.即工厂有${4}$种新工人的招聘方案.①${n= 8}$,${a= 1}$,即新工人${8}$人,熟练工${1}$人;②${n= 6}$,${a= 2}$,即新工人${6}$人,熟练工${2}$人;③${n= 4}$,${a= 3}$,即新工人${4}$人,熟练工${3}$人;④${n= 2}$,${a= 4}$,即新工人${2}$人,熟练工${4}$人.${(3)}$结合${(2)}$知:要使新工人的数量多于熟练工,则${n= 8}$,${a= 1}$;或${n= 6}$,${a= 2}$;或${n= 4}$,${a= 3}$.根据题意,得:${W=4000a+2400(10-2a)=24000-800a}$要使工厂每月支出的工资总额${W}$(元)尽可能地少,则${a}$应最大.显然当${n= 4}$,${a= 3}$时,工厂每月支出的工资总额${W}$(元)尽可能地少,故应招聘${4}$名新员工.。
七年级数学上学期第一次月考A 卷·基础知识达标测(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分选择题和非选择题两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一、二章(北师大版七年级上册)。
5.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共10小题,每小题3,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.近日,一个由来自哈佛大学等知名机构的科学家组成的国际研究小组发现,在距离银河系最近的仙女星系中,发生过大型的“银河移民”事件.仙女星系直径22万光年,距离地球245万光年.光在一年内所走的距离为一光年,约为94605亿公里.将数据94605亿用科学记数法表示为( ) A .49.460510⨯ B .89.460510⨯ C .109.460510⨯ D .129.460510⨯2.如图所示的是一个极受学生群体欢迎的三棱锥魔方,三棱锥的棱的条数为( )A .3B .4C .5D .63.下列计算错误的是( )A .34(2)32⋅-=-B .4(2)16--=-C .41228-⨯=D .22(2)(3)36-⨯-=A .圆B .长方形C .椭圆D .平行四边形 5.(2022·浙江金华期中)下列说法中,正确的是( )A .0既不是整数也不是分数B .绝对值等于本身的数是0和1C .数轴上的点和有理数一一对应D .整数和分数统称为有理数6.把5个正方体按如图所示方式摆放,沿箭头方向观察这个立体图形,得到的平面图形是( )A .B .C .D . 7.时差的计算方法:两个时区标准时间(即时区数)相减就是时差,时区的数值大的时间早.比如中国北京是东八区(8+),美国纽约是西五区(5-),两地的时差是13小时,北京比纽约要早13个小时,如北京时间2月1日18:00时,美国纽约为2月1日5:00.若美国纽约时间为3月1日20:00时,埃及开罗时间为3月2日3:00,则开罗所在的时区是( )A .西二区B .西三区C .东二区D .东三区 8.已知2211032x y ⎛⎫++-= ⎪⎝⎭,则xy 的值是( ) A .2- B .2 C .1- D .19.有理数a b 、在数轴上的位置如图所示,以下说法正确的是( )A .b a <B .0ab >C .0a b +>D .0a b -<10.已知有理数a ,c ,若218a -=,且3a c c -=,则所有满足条件的数c 的和是( ) A .﹣6 B .2 C .8 D .9二、填空题:本题共8小题,每小题3分,共24分.11.(2023·四川泸州期中)5-的绝对值是 ,相反数是 ,倒数是 .12.如图,节日的焰火可以看成由点运动形成的,这可以说 .13.如图,将一把刻度尺放在数轴上(数轴和刻度尺的单位长度相同,都是1cm ),刻度尺上“1cm ”和“8cm ”分别对应数轴上的点3-和x ,则x 的值是 .14.如图,将此长方形绕虚线旋转一周,得到的是圆柱体,其体积是 .(结果保留π)15.已知345a b c ===,,且a b c >>,则a b c ++的值是 . 16.根据如图所示的程序计算,若输入x 的值为0,则输出y 的值为 .17.如图是一个正方体的展开图,如果正方体相对的两个面所标注的值均互为相反数,则xy 的值为 .18.有理数a b c 、、在数轴上的位置如图所示,化简:a b c a b c a ---+--= .三、解答题:本题共8小题,共66分.其中第19题8分,20题6分,21-24题每题8分,25-26题每题10分,解答应写出文字说明、证明过程或演算步骤。
2019-2020年七年级上学期9月份月考数学试卷教师寄语:亲爱的同学们,考试只是老师了解你掌握知识多少的一种方式,请你放松心情,认真、细心答题,相信你定能在这里展示出你的风采!一、选择题(每小题3分,共计30分)1.下列四个式子中,是方程的是( )(A )2x -6 (B )2x +y=5 (C )-3+1=-2 (D )3264= 2.下列方程中,解为2x =的方程是( )(A )24=x (B ) 063=+x (C ) 021=x (D )0147=-x3.下列等式变形正确的是( )(A )如果12S ab =,那么2Sb a = (B )如果162x =,那么3x =(C )如果mx my =,那么x y = (D )如果33x y -=-,那么0x y -=4.将(32)2(21)x x +--去括号正确的是( )(A )3221x x +-+ (B )3241x x +-+(C )3242x x +-- (D )3242x x +-+5.若关于x 的一元一次方程k(x+4)-2k-x=5的解为x=-3,则k 的值是( )(A )-2 (B )2 (C )51(D )51-6.在解方程21x --332x +=1时,去分母正确的是( )(A )3(x -1)-2(2+3x )=1 (B )3(x -1)-2(2x +3)=6(C) 3x -1-4x +3=1 (D )3x -1-4x +3=67.某小组分若干本书,若每人分一本,则余一本,若每人分给2本,则缺3本,那么共有图书() (A )6本 (B )5本 (C )4本 (D )3本8.某商贩在一次买卖中,同时卖出两件上衣,每件都以80元出售,若按成本计算,其中一件赢利60%,另一件亏本20%,在这次买卖中,该商贩( )(A )不盈不亏 (B )盈利10元 (C )亏损10元 (D )盈利50元.9.已知1+x +23y x ()—+=0,那么2y x )(+的值是( ) (A )0 (B )1 (C )9 (D )4 10.如图所示,第一个天平的两侧分别放2个球体和5个圆柱体,第二个天平的两侧分别放2个正方体和3个圆柱体,两个天平都平衡,则12个球体的质量等于( )个正方体的质量.(A )12 (B )16(C )20 (D )24二、填空题(每小题3分,共计30分)11.方程052=+x 的解是=x .12.若x=-3是方程3(x-a )=7的解,则a= .13.若方程04x )2a (1a =+--是关于x 的一元一次方程,则a=_______.14.当n = 时,多项式2217n x y +2513x y -可以合并成一项. 15.一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某同学做了全部试题共得85分,他做对了 道题.16.如果关于x 的方程3x+4=0与方程3x+4k=18的解相同,则k= .17.有一列数,按一定规律排成1,-3,9,-27,81,-243,…,其中某三个相邻数的和是-1 701,这三个数中最小数为 .18.甲队有31人,乙队有26人,现另调24人分配给甲、乙两队,使甲队的人数是乙队人数的2倍,则应分配给甲队 人.19.A 、B 两地相距64千米,甲从A 出发,每小时行14千米,乙从B 地出发,每小时行18千米,若两人同时出发相向而行,则需_________小时两人相距16千米.20.一个通讯员骑自行车需要在规定时间内把信件送到某地,每小时走15公里早到24分钟,如果每小时走12公里,就要迟到15分钟,原定时间是________分.三、解答题(21题8分,22题10分,23题6分,24题8分,25题8分,26题10分,27题10分,共计60分)(第10题图)21.解方程(每小题4分,共8分)(1)52682x x -=-; (2) 37322x x +=-.22.解方程(每小题5分,共10分)(1)2(10)5+2(1)x x x x -+=-; (2)53210232213+--=-+x x x .23.(本题6分)已知:方程2=+k x 的解比方程k k x 2321=+-的解大1,求k 的值.24.(本题8分)某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?25. (本题8分) 有一些相同的房间需要粉刷墙面,一天3名一级技工可粉刷8个房间,结果其中有50平方米墙面没来得及粉刷;同样时间内5名二级技工可粉刷了10间房之外,还多刷了40平方米的墙.已知每名一级技工比二级技工一天多粉刷10平方米的墙面,求每个房间需要粉刷的墙面面积.26.(本题10分)某商场经销甲、乙两种商品,甲种商品每件进价20元,售价35元;乙种商品每件进价30元,售价50元.(1)若该商场同时购进甲、乙两种商品共100件,且使这100件商品的总利润(利润=售价进价)为1800元,需购进甲、乙两种商品各多少件?(2)在“十一”期间,该商场对甲、乙两种商品进行如下优惠促销活动:打折前一次性购物总金额优惠措施不超过300元不优惠超过300元且不超过500元售价一律打九折超过500元售价一律打八折按上述优惠条件,若小李第一天只购买甲种商品一次性付款210元,第二天只购买乙种商品打折后一次性付款440元,那么这两天他在该商场购买甲、乙两种商品一共多少件?27.(本题10分)十一黄金周(7天)期间,萧红中学7年3班某同学计划租车去旅行,在看过租车公司的方案后,认为有以下两种方案比较适合(注:两种车型的油耗相同):周租金(单位:元)免费行驶里程(单位:千米)超出部分费用(单位:元/千米)A型1740 100 1.5B型2640 220 1.2解决下列问题:(1)如果此次旅行的总行程为800千米,请通过计算说明租用哪种型号的车划算;(2)设本次旅行行程为x千米(x是正整数),请通过计算说明如何根据旅行行程选择省钱的租车方案.答案一、选择题:1.B2.D3.D4.D5.A6.B7.B8.B9.B 10.C二、填空题:11.-2.5 12.-16/3 13.-2 14.2 15.2216.5.5 17.-2187 18.23 19.1.5或2.5 20.180三、解答题:21.(1)x=4 (2)x=522. (1)x=-4/3 (2)x=7/1623.由方程(1)得X=2-K 由(2)得X=6K-6由题知:2-K=6K-6+1 得K=124.解:设应该安排X名工人生产螺钉2000(22-X)=2×1200XX=1022-10=12(人)答:25.解:设每个房间需要粉刷X平方米(8X-50)÷3=(10X+40)÷5+10X=52 答:26.(1)设该商场购进甲种商品a件,则购进乙种商品(100-a)件. 根据题意得(35-20)a+(50-30)(100-a)=1800--------------------------------------------2分解得,a=40,100-a=60. ------------------------------------------------------------2分答:(2)根据题意得,第一天只购买甲种商品不享受优惠条件∴210÷35=6(件)--------------------------------------------------------------------2分第二天只购买乙种商品有以下两种可能:①:若购买乙商品打九折,440÷90%÷50=889(件),不符合实际,舍去;②:购买乙商品打八折,440÷80%÷50=11(件)-------------------------------2分∴一共可购买甲、乙两种商品6+11=17(件)---------------------------------2分27.(1)1740+(800-100)×1.5=2790----------------------2分2640+(800-220)×1.2=3336-------------------2分∵3336>2790∴选择A型号车划算------------------------1分(2)1740+1.5×(X-100)=1.5X+1590--------------------------1分2640+1.2×(X-220)=1.2X+2376--------------------------1分1.5X+1590=1.2X+2376X=2620------------------------------------2分当X>2620时,选择B型号车划算当X=2620时,选择A、B型号车均可当X<2620时,选择A型号车划算--------------------------------------1分。
2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记为2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810× 3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4− 4. 下列各数中,最小数是( )A. 0B. 153C. ()32−D. 23−5. 在计算11()()23++−时,按照有理数加法法则,需转化成( ) A. 11()23+−B. 1)3+C. 11()23−− D. 1123 −+6. 下列各组数中,互为相反数是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表: 食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种 8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )的的A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +>9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 2710. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为( )A. 1−B. 0C. 1D. 2二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 12. 1363−÷×=______. 13. 比较大小:25−______1−(填“>”或“<”). 14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__.18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1)把以上各数在下列数轴上用点表示出来:(2)把这些数按照从小到大的顺序排列,并用“<”号连接.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×; (3)115486812 −+×; (4)()()32482233−−−÷×−.21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− .根据上述方法,计算:151176061512 −÷−−. 22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津为的是湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −0.3 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 【答案】A【解析】【分析】本题考查正负数的意义,根据规定方向为正相反方向为负直接求解即可得到答案;【详解】解:∵上升2米记为2+米,∴下降3米记为3−米,故选:A .2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810× 【答案】D【解析】【分析】本题考查了科学记数法,根据科学记数法:10n a ×(110a ≤<,n 为正整数),先确定a 的值,再根据小数点移动的数位确定n 的值即可解答,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:411800 1.1810=×,故选:D .3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4−【答案】A【解析】【分析】根据点A 在数轴上的位置,先确定A 的大致范围,再确定符合条件的数.【详解】解:因为点A 在−2与1−之间,且靠近−2,所以点A 表示的数可能是 1.6−.故选:A .为【点睛】本题考查了数轴上的点表示有理数.题目比较简单.原点左边的点表示负数,原点右边的点表示正数.4. 下列各数中,最小的数是( )A. 0B. 153C. ()32−D. 23−【答案】D【解析】【分析】本题考查了有理数的乘方、有理数的比较大小,先计算出()32−、23−,再根据有理数的大小比较法则:正数大于0,负数小于0,正数大于负数,两个负数进行比较,绝对值大的反而小,进行比较即可得出答案,熟练掌握有理数的大小比较法则是解此题的关键.【详解】解:()328−=−,239−=−, 88−= ,99−=,98>,()32305321∴−<<−<,故选:D .5. 在计算11()()23++−时,按照有理数加法法则,需转化成( )A. 11()23+−B. 1)3+C. 11()23−−D. 1123 −+ 【答案】A【解析】【分析】根据有理数的加法法则计算即可求解. 【详解】解:1123 ++− =1123 +− , 故选:A .【点睛】本题考查了有理数的加法,关键是熟练掌握异号两数相加的计算法则.6. 下列各组数中,互为相反数的是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 【答案】C【解析】【分析】本题主要考查相反数以及绝对值,根据相反数以及绝对值的定义解决此题,熟练掌握相反数以及绝对值的定义是解决本题的关键.【详解】解:A 、2与12互为倒数,故此选项不符合题意;B 、()211−= ,()21∴−与1相等,故此选项不符合题意; C 、211−=− ,()211−=,∴21−与()21−互为相反数,故此选项符合题意; D 、|2|2−=,2∴与|2|−相等,故此选项不符合题意; 故选:C .7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表: 食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种 【答案】A【解析】【分析】求出各种高于或低于标准质量的绝对值,根据绝对值的大小做出判断.【详解】解:∵|+10|<|-15|=|+15|<|20|,∴第1种最接近标准质量.故选:A .【点睛】本题主要考查正数、负数的意义,理解绝对值的意义是正确判断的前提.8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +>【答案】A【解析】【分析】根据原点左边的数为负数,原点右边的数为正数.从图中可以看出01a <<,1b <−,||||b a >,再选择即可.【详解】解:由数轴可得:01a <<,1b <−,||||b a >,∴||||a b <−,故A 符合题意;0ab <,故B 不符合题意;22a b <,故C 不符合题意;0a b +<,故D 不符合题意;故选:A .【点睛】本题考查了数轴,绝对值和有理数的运算,数轴上右边表示的数总大于左边表示的数. 9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 27【答案】C【解析】【分析】先求出()2*3−值,再计算()()4*2*3 −− 即可.【详解】解:∵*a b ab b =−,∴()2*3−=()()233×−−−=63−+=3−,∴()()4*2*3 −−=()()4*3−−=()()()433−×−−−=123+=15.故选:C .【点睛】本题考查了新定义下的有理数运算,熟练掌握运算法则是解题的关键.10. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为()A. 1−B. 0C. 1D. 2【答案】B的【分析】绝对值最小的数是0,最小的正整数是1,最大的负整数是1−,依此可得a b c 、、,再相加可得三数之和.【详解】解:由题意可知:011a b c ===−,,,∴()0110a b c ++=++−=.故选:B .【点睛】本题主要考查了有理数的加法,此题的关键是知道绝对值最小的数是0,最小的正整数是1,最大的负整数是1−.二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 【答案】 ①. 23−②. 23 【解析】【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据负数的绝对值是它的相反数,可得一个负数的绝对值. 【详解】解:2233−=,23的相反数是23−,23−的绝对值是23. 故答案为(1)23−;(2)23. 【点睛】本题考查了相反数、绝对值的定义.a 的相反数是a −,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0. 12. 1363−÷×=______. 【答案】16− 【解析】【分析】根据有理数的乘除法运算即可. 【详解】解:原式111=236−×=−, 故答案为:16−. 【点睛】本题主要考查有理数的乘除运算,按照乘除为同级运算从左至右求解.13. 比较大小:25−______1−(填“>”或“<”).【解析】【分析】本题考查了有理数的大小比较;根据两个负数比较大小,绝对值大的反而小可得答案. 【详解】解:∵215−<−, ∴215−>−, 故答案为:>.14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.【答案】1.345≤a <1.355【解析】【分析】根据近似数1.35精确到百分位,是从千分位上的数字四舍五入得到的,若干分位上的数字大于或等于5,则百分位上的数字为4;若千分位上的数字小于5,则百分位上的数字为5,即可得出答案.【详解】解:∵近似数1.35是由数a 四舍五入得到的,∴数a 的取值范围是1.345≤a <1.355;故答案为:1.345≤a <1.355.【点睛】本题考查了近似数,用到的知识点是近似数,一个数最后一位所在的数位就是这个数的精确度. 15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.【答案】8或4##4或8【解析】【分析】先根据绝对值的含义求解,x y 的值,再根据0,x y +< 分两种情况讨论即可.【详解】解:∵|x |=2,|y |=6,∴x =±2,y =±6,∵x +y <0,∴当x =2,y =﹣6时,x ﹣y =2+6=8;当x =﹣2,y =﹣6时,x ﹣y =﹣2+6=4;故答案为:8或4.【点睛】本题考查的是绝对值的含义,有理数加法的符号的确定,代数式的值,根据绝对值的含义求解,x y 的值,再分类是解本题的关键.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.【答案】4【解析】【分析】由程序图可得第一次输出的数为8,第二次输出的数为4,第三次输出的数为2,第四次输出的数为1,第五次输出的数为4,由此可得规律,进而问题可求解.【详解】解:由程序图可得第一次输出的数为5+3=8,第二次输出的数为1842×=,第三次输出的数为1422×=,第四次输出的数为1212×=,第五次输出的数为1+3=4,第六次输出的数为1422×=,……;由此可得规律为从第二次开始每三次一循环, ∴()202113673.......1−÷=, ∴第2021次输出的数是4;故答案为4.【点睛】本题主要考查有理数的运算及数字规律问题,解题的关键是根据程序图得到数字的一般规律即可.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__. 【答案】15【解析】【分析】根据题意得到0a b +=,1cd =,216m =,代入代数式计算即可.【详解】解:a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,0a b ∴+=,1cd =,216m =,22022()a b cd m ∴+−+20220116=×−+0116=−+15=,故答案为:15.【点睛】此题考查了代数式的求值,熟练掌握相反数、倒数、绝对值等知识是解题的关键.18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.【答案】 2.5−或4.5【解析】【分析】根据数轴上两点间的距离公式列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:|x +2|+|x -4|=7,当x <-2时,化简得:-x -2-x +4=7,解得:x =-2.5;当-2≤x <4时,化简得:x +2-x +4=7,无解;当x ≥4时,化简得:x +2+x -4=7,解得:x =4.5,综上,x 的值为-2.5或4.5.故答案为:-2.5或4.5.【点睛】此题考查了数轴,弄清数轴上两点间的距离公式是解本题的关键.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1(2)把这些数按照从小到大的顺序排列,并用“<”号连接.【答案】(1)见解析 (2)()1220.502 3.52−<−<−<<<−− 【解析】【分析】(1)利用数轴上表示有理数的方法表示即可.(2)根据数轴上有理数的特点即可求解.【小问1详解】解:0.5−,0,2,122−,( 3.5)−−,2−在数轴上表示为:【小问2详解】由(1)数轴可得:()1220.502 3.52−<−<−<<<−−. 【点睛】本题考查了用数轴表示有理数及利用数轴比较有理数的大小,熟练掌握数轴上有理数的特点:左边的数比右边小是解题的关键.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×; (3)115486812 −+×; (4)()()32482233−−−÷×−.【答案】(1)3−(2)27−(3)22(4)11【解析】【分析】(1)根据有理数加减运算法则计算即可求解;(2)根据有理数的运算法则计算即可求解;(3)利用有理数的乘法分配律进行计算即可求解;(4)根据有理数的运算法则计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【小问1详解】解:原式3996=−+− 36=-,3=−;【小问2详解】解:原式()43145=−+÷−−×()4320=−+−−,720=−−,27=−;的【小问3详解】 解:原式1154848486812=×−×+× 8620=−+,220=+,22=;【小问4详解】解:原式()168398=−−−×× ()1639=−−−×,()1627=−−−,1627=−+,11=.21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因为237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− . 根据上述方法,计算:13511760461512 −÷+−−. 【答案】116−【解析】 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:111()()41535761260+−−÷− 11()(60)415357126=+−−×− 45504435=−−++16=−, 则13511711660461512 −÷+−−=−. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他的练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后是否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?【答案】(1)守门员最后没有回到初始位置;(2)2次【解析】【分析】(1)根据题意可把记录的数据进行相加,然后问题可求解;(2)根据题意分别得出每次离初始位置的距离,进而问题可求解.【详解】解:(1)由题意得:(+5)+(-3)+(+10)+(-8)+(-6)+(+13)+(-10)=1(m).答:守门员最后没有回到初始位置.(2)第一次离开初始位置的距离为5m ,第二次离开初始位置的距离为5-3=2m ,第三次离开初始位置的距离为2+10=12m ,第四次离开初始位置的距离为12-8=4m ,第五次离开初始位置的距离为4-6=-2m ,第六次离开初始位置的距离为-2+13=11m ,第七次离开初始位置的距离为11-10=1m ,∴守门员离开初始位置达到10m 以上(包括10m)的次数是2次.【点睛】本题主要考查有理数加减混合运算的应用,熟练掌握有理数的加减运算是解题的关键. 23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.【答案】(1)2n −−()(2)第②行的数是第①行相对应的数减2;第③行的数是第①行相对应的数乘以0.5−()(3)每行的第8个数的和是386−【解析】【分析】(1)第①行的每个数是2−的乘方的相反数,其幂指数为数的个数n ;(2)将第①行各项的数减2即得第②行的数,第③行数等于第①行数相应的数乘以0.5−(),即可求解;(3)分别找出每行第8个数,进而计算这三个数的和即可.【小问1详解】解:首先2,4,8,16 很显然后者是前者2倍.由各数符号是交替出现,故考虑到数值的变化可以用(2)n −−表示.【小问2详解】第②行数等于第①行数相应的数减去2,第③行数等于第①行数相应的数乘以0.5−(); 【小问3详解】解:每行的第8个数的和是()()()()88822220.5 −−+−−−+−−×−()2562582560.5=−−−×−386=−.【点睛】本题主要考查了探索数字变化规律,找规律时,善于发现数字之间的共同点,或者是隐藏关系,培养学生的数感是解题的关键.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万的张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −03 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?【答案】(1)2;4 (2)750万元【解析】【分析】(1)把表格中的数据相加,即可得出结论;(2)根据表格得出1日到7日每天的人数,相加后再乘以60即可得到结果.【小问1详解】10月1日的售票量为:1.3+0.6=1.9(万张);10月2日的售票量为:1.9+0.1=2(万张);10月3日的售票量为:2-0.3=1.7(万张);10月4日的售票量为:1.7-0.2=1.5(万张);10月5日的售票量为:(万张);10月6日的售票量为:1.9-0.2=1.7(万张);10月7日的售票量为:1.7+0.1=1.8(万张);所以售票量最多的是10月2日,售票量最少的是10月4日;故答案为:2;4;【小问2详解】由题意得,7天的售票量(单位:万张)分别为:1.9,2.0,1.7,1.5,1.9,1.7,1.8则7日票房:60(1.9+2.0+1.7+1.5+1.9+1.7+1.8)10000=7500000××(元)答:这7天昆明《长津湖》票房共750万元【点睛】本题考查了正数和负数以及有理数的混合运算,掌握正数和负数表示相反意义的量是解答本题的关键..。
七年级上册数学第一次月考测试卷一、单选题1.给出下列各数:﹣1,0,﹣3.05,﹣π,+2,﹣12,4,其中负数有()A.1个B.2个C.3个D.4个2.如果零上7℃记作+7℃,则零下7℃记作()A.﹣7° B.﹣7℃ C.+7° D.+7℃3.下列表示“相反意义的量”的一组是()A.向东走和向西走B.盈利100元和支出100元C.水位上升2米和水位下降2米D.黑色与白色4.下列各数中,既是分数又是正数的是()A.1 B.﹣313C.0 D.2.255.下面是小强、小方、小丽和小燕4位同学所画的数轴,其中正确的是()A.B.C.D.6.下列说法正确的是()A.0不可以是负数但可以是正数B.﹣3和0都是整数C.不是正数的数一定是负数,不是负数的数一定是正数D.0℃表示没有温度7.数轴上与﹣3距离3个单位的数是()A.﹣6 B.0 C.﹣6和0 D.6和9 8.下列各组数中,互为相反数的一组是()A.﹣1与﹣|﹣1| B.2与﹣1 2C.﹣(﹣1)与﹣|﹣1| D.(﹣2)3与﹣239.绝对值小于100的所有有理数的和与它的积的差是()A.10000 B.5050C.0 D.数据过大,无法计算10.下列说法中,正确的是()A.若|a|<|b|,则a<b B.若a<b,则|a|<|b|C.若a>0,b>0,则|a|>|b| D.a<b<0,则|a|>|b| 11.如图,M、P、N分别是数轴上的三点,点M和点N表示的有理数之和为零.其中点P满足|(﹣3)+★|=3,“★”代表P,那么P点表示的数应该是()A.6 B.3 C.0 D.0和6二、填空题12.如果盈利500元记作+500元,则﹣500元表示_____元.13.﹣434的相反数是_____,它的倒数是_____,它的绝对值是_____.14.若a,b互为相反数,m,n互为倒数,则(a+b)×mn﹣2mn+2=_____.15.2018年,遵义市全市普通高中招生计划数为48380人,保留两个有效数字,用科学记数法表示为_____.16.若(a+2018)2+|2017﹣b|=0,则(a+b)2019=_____;三、解答题17.把下列各数填在相应集合的括号内:+15,﹣3,﹣12,﹣0.9,0.81,227,﹣113,101,0.整数集合:{ …}负数集合:{ …}分数集合:{ …}非负数集合:{ …}18.计算题(1)64+(﹣36)+(﹣64)﹣4×(﹣9)(2)(23﹣34+512﹣16)×(﹣12)19.把下列各数在数轴上(直线已画出)表示,并按从小到大的顺序用“<”连接起来.﹣12,0,34,﹣22,π,﹣|﹣3.14|,﹣(﹣2.5)20.如图,数轴上三点A ,B ,C 分别表示有理数a ,b ,c ,化简|a ﹣b |﹣|b ﹣c |+|a +c |.21.(1)已知a 是绝对值最小的有理数,b 和c 的倒数都是它本身,b <c .求a +b +c ﹣ab ﹣bc ﹣ac 的值.(2)a ,b 互为倒数,c 和d 互为相反数.求ab ﹣dc﹣2c ﹣2d 的值.22.“白水如绵,不用弓弹花自散;红雪如锦,何须梭织天生成.”我爱多彩贵州.今年“五一”期间,黄果树瀑布及周边景区,又一次迎来旅游高峰,据统计4月28日游客总人数达70万人.现将4月29日到5月5日游客人数统计如表.(“+”为当日增加人数,“﹣”为当日减少人数,单位:万人).(1)补全表中数据.(2)计算4月29日至5月5日,7日间景区共接待游客多少人?(3)请你估算一下,今年“五一”期间,黄果树瀑布及周边景区旅游总收入.通过大数据,谈谈你的感想(计算数据基本合理,其他言之有理即可).23.“中欧班列”是指按照固定车次线路条件开行,往来于中国与欧洲及“一带一路”沿线各国的集装箱国际铁路联运班列.其中从我国义乌到亚欧国家的一趟班列近似直线(东西方向),若某班列从我国某城市出发(规定向东为正,向西为负),下面记录数据分别为每一天的行程(单位:km):﹣1008,1100,﹣976,1010,﹣872,946.问6天后,此班列在该城市什么方向?距离多远?共计行程多少千米?24.如图,数轴上A点表示的数是﹣2,B点表示的数是5,C点表示的数是10.(1)若要使A、C两点所表示的数是一对相反数,则“原点”表示的数是:.(2)若此时恰有一只老鼠在B点,一只小猫在C点,老鼠发现小猫后立即以每秒一个单位的速度向点A方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A之间的距离;②小猫逮住老鼠时的“位置”恰好在,求时间t.25.阅读材料(1)绝对值的几何意义是表示数轴上的点到原点的距离,如|﹣2|=2,|x|=2,x=+2或﹣2,特别地|x﹣1|=2表示“x”到“1”的距离是2,就是x﹣1=2或x﹣1=﹣2,所以x=3或﹣1;同理,当|x+1|=2,表示“x”到“﹣1”的距离是2,就是x+1=2或x+1=﹣2,所以x=﹣3或+1;根据以上说明,求下列各式中x的值.①|x|=1 ②|x﹣2|=2 ③|x+1|=3(2)由(1)可知,|a|=a或﹣a,|b|=b或﹣b,|c|=c或﹣c,若abc≠0,求a b ca b c++的值.(3)若abcd ≠0,直接写出a b c da b c d +++的值.参考答案1.D【解析】【分析】根据负数是小于0的数找出即可.【详解】负数有:﹣1,﹣3.05,﹣π,﹣12,故选:D.【点睛】本题考查了负数的定义,是基础题,熟记概念是解题的关键.2.B【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,若增加表示为正,则减少表示为负.【详解】如果零上7℃记作+7℃,那么零下7℃记作﹣7℃,故选:B.本题主要考查正数和负数的知识点,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.3.C【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】A、“向东走和向西走是方向相反,不是相反意义的量,故本选项错误;B、“盈利100元”与“支出100元”是不是表示相反意义的量,故本选项错误;C、水位上升 2 米和水位下降 2 米是表示相反意义的量,故本选项正确;D、黑色与白色是颜色相反,是不具有相反或相同的意义的量,故本选项错误.故选:C.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.4.D【解析】根据大于零的分数是正分数,可得答案.【详解】A、是正整数,故A错误;B、是负分数,故B错误;C、既不是正数也不是负数,故C错误;D、是正分数,故D正确;故选:D.【点睛】本题考查了有理数,大于零的分数是正分数,注意0既不是正数也不是负数,0是整数.5.B【解析】【分析】根据数轴的特点,从左到右越来越大,单位长度是确定的,可以判断哪个选项是正确的.【详解】∵数轴从左到右越来越大,∴选项A和选项C错误,选项B正确,∵数轴的单位长度是确定的,∴选项D错误,故选:B.【点睛】本题考查数轴,解答本题的关键是明确数轴的特点,利用数轴的知识解答.6.B【解析】【分析】利用有理数的性质判断即可.【详解】A、0不可以是负数也不可以是正数,不符合题意;B、﹣3和0都是整数,符合题意;C、不是正数的数不一定是负数,不是负数的数不一定是正数,不符合题意;D、0℃表示温度为0,不符合题意,故选:B.【点睛】此题考查了有理数的分类及性质,弄清有理数的性质是解本题的关键.7.C【解析】【分析】根据题意和数轴的特点,可以求得数轴上与﹣3距离3个单位的数,分该点在-3的右边和左边两种情况求解即可.【详解】数轴上与﹣3距离3个单位的数是:﹣3+3=0或﹣3﹣3=﹣6,故选:C.【点睛】本题考查数轴两点间的距离及分类讨论的数学思想,解答本题的关键是明确数轴的特点,求出相应的数据.8.C【解析】【分析】利用相反数,绝对值,倒数的定义以及乘方的意义判断即可.【详解】A、﹣1=﹣|﹣1|=﹣1,相等,不符合题意;B、2与﹣12互为负倒数,不符合题意;C、﹣(﹣1)=1与﹣|﹣1|=﹣1,互为相反数,符合题意;D、(﹣2)3=﹣23=﹣8,相等,不符合题意,故选:C.【点睛】此题考查了有理数的乘方,相反数,倒数以及绝对值,熟练掌握各自的性质是解本题的关键.9.C【解析】【分析】根据0与任何数相乘的积为0,互为相反数的两数的和为0,得绝对值小于100的所有有理数的和与它的积,相减得结论.【详解】∵0的绝对值小于100,所以绝对值小于100的有理数的积为0;∵互为相反数的两数的绝对值相等,互为相反数的两数的和为0,所以小于100的所有有理数除0外都成互为相反数的对出现,所以它们的和为0;绝对值小于100的所有有理数的和与它的积的差是:0﹣0=0.故选:C.【点睛】本题考查了绝对值的意义与0与有理数相乘的积.解决本题的关键是知道:0与任何实数相乘的积为0,互为相反数的两数的绝对值相等,互为相反数的两数的和为0.10.D【解析】【分析】根据绝对值的定义即可求出答案.【详解】A.若a=0,b=﹣7,则|a|<|b|,但a>b,故A错误;B.若a=﹣3,b=2,则a<b,但|a|>|b|,故B错误;C.若a=1,b=﹣2,则a>0,b>0,但|a|>|b|,故C错误;D. 若a<b<0,则|a|>|b|,故D正确.故选:D.【点睛】本题考查绝对值的定义,解题的关键是熟练运用绝对值的定义,本题属于基础题型.11.D【解析】【分析】根据绝对值的意义即可得到结论.【详解】∵|(﹣3)+★|=3,∴(﹣3)+★=±3,∴★=0或6,故选:D.【点睛】本题考查了数轴,绝对值,熟记绝对值的意义是解题的关键.12.亏损500.【解析】【分析】根据正负数的意义即可求出答案.【详解】由题意可知:﹣500元表示亏损500元,故答案为:亏损500.【点睛】本题考查了相反意义的量,解题的关键是正确理解正负数的意义,为了区分相反意义的量,我们把其中一种意义的量规定为正的,那么与它相反意义的量规定为负的.本题属于基础题型.13.434﹣419434.【解析】【分析】根据相反数、倒数及绝对值的定义解答即可. 【详解】﹣434的相反数是:434,它的倒数是:﹣419,它的绝对值是:434,故答案为434,﹣419,434.【点睛】本题考查了相反数、倒数及绝对值的定义,熟知相反数、倒数及绝对值的定义是和解决问题的关键.14.0【解析】【分析】根据a,b互为相反数,m,n互为倒数,可以求得所求式子的值,本题得以解决.【详解】∵a,b互为相反数,m,n互为倒数,∴a+b=0,mn=1,∴(a+b)×mn﹣2mn+2=0×mn﹣2×1+2=0﹣2+2=0,故答案为:0.【点睛】本题考查了相反数、倒数的意义,有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.15.:4.8×104.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于48 380的整数位有5位,所以可以确定n=5﹣1=4,有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【详解】48 380人,保留两个有效数字,用科学记数法表示为4.8×104.故答案为:4.8×104.【点睛】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.16.-1【解析】【分析】根据非负数的性质即可得到结论.【详解】∵(a+2018)2+|2017﹣b|=0,∴a+2018=0,2017﹣b=0,∴a=﹣2018,b=2017,∴(a+b)2019=﹣1.故答案为:﹣1.【点睛】本题考查了非负数的性质,熟练掌握非负数的性质是解题的关键.17.详见解析【解析】【分析】根据有理数的分类即可求出答案.【详解】解:整数集合:+15,﹣3,101,0负数集合:﹣3,﹣,﹣0.9,﹣1分数集合:﹣,﹣0.9,0.81,,﹣1非负数集合:+15,0.81,,101,0【点睛】本题考查有理数的分类,解题的关键是正确理解有理数的分类,本题属于基础题型.18.(1)0;(2)-2【解析】【分析】1)原式先计算乘法运算,再计算加减运算即可求出值;(2)原式利用乘法分配律计算即可求出值.【详解】解:(1)原式=64﹣64﹣36+36=0;(2)原式=﹣8+9﹣5+2=﹣2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.﹣22<﹣|3.14|<﹣12<0<34<﹣(﹣2.5)<π.【解析】【分析】把各个数表示在数轴上,最后根据在数轴上表示的有理数的比较方法,用“<”连接各数.【详解】解:∵﹣22=﹣4,﹣|﹣3.14|=﹣3.14,﹣(﹣2.5)=2.5,∴在数轴上表示为:∴﹣22<﹣|3.14|<﹣<0<<﹣(﹣2.5)<π.【点睛】本题考查了数轴上表示有理数,相反数、绝对值的化简及有理数大小的比较方法.题目相对简单.注意在数轴上表示的数一定是题目给出的数据,不能是经过化简后的数据.20.2b.【解析】【分析】根据数轴,可以判断a、b、c的正负情况,从而可以判断a﹣b、b﹣c、a+c的正负情况,从而可以解答本题.【详解】解:由数轴可得,﹣3<a<0<b<3<c,∴a﹣b<0,b﹣c<0,a+c>0,∴|a﹣b|﹣|b﹣c|+|a+c|=b﹣a﹣(c﹣b)+a+c=b﹣a﹣c+b+a+c=2b.【点睛】本题考查数轴、绝对值,解答本题的关键是明确数轴的特点,利用数形结合的思想解答.21.(1)1;(2)2【解析】【分析】利用相反数,倒数,以及绝对值的代数意义判断即可.【详解】解:(1)根据题意得:a=0,b=﹣1,c=1,则原式=0﹣1+1﹣0+1﹣0=1;(2)根据题意得:ab=1,c+d=0,则原式=1﹣(﹣1)﹣0=2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.(1)80,115,135,125,110,100,85.(2)4月29日至5月5日,7日间景区共接待游客750万人;(3)60亿元.感想:旅游是绿色产业,投入少收入巨大.所以当地应该努力改善生态环境,大力发展旅游事业.【解析】【分析】(1)根据每天的人数变化可直接求出每天的旅游人数;(2)分别计算出每天的旅游人数,求和即可;(3)自己预估人均消费,计算当地景点大致收入,然后写出感想即可.【详解】解:(1)4月29日人数为:70+10=80(万人),4月30日人数为:80+35=115(万人),5月1日人数为:115+20=135(万人),5月2日人数为:135﹣10=125(万人),5月3日人数为:125﹣15=110(万人),5月4日人数为:110﹣10=100(万人),5月5日人数为:100﹣15=85(万人);故答案为:80,115,135,125,110,100,85.(2)80+115+135+125+110+100+85=750(万人),答:4月29日至5月5日,7日间景区共接待游客750万人;(3)若每人在黄果树瀑布周边景区平均旅游消费800元,则黄果树瀑布及周边景区旅游收入为:800×7500000=6000000000(元)=60亿元.感想:旅游是绿色产业,投入少收入巨大.所以当地应该努力改善生态环境,大力发展旅游事业.【点睛】本题考查了正负数的意义及有理数的加减运算.题目难度不大.解决(3)需自己预估数据.23.6天后,此班列在该城市东边,距离200km,共计行程5912km.【解析】【分析】根据题意,可以求得题目中数据的和和它们的绝对值的和,从而可以解答本题.【详解】解:(﹣1008)+1100+(﹣976)+1010+(﹣872)+946=200(km),|﹣1008|+1100+|﹣976|+1010+|﹣872|+946=5912(km),答:6天后,此班列在该城市东边,距离200km,共计行程5912km.【点睛】本题考查正数和负数,解答本题的关键是明确正负数在题目中的实际意义.24.(1)4;(2)①12﹣2t;②原点【解析】【分析】(1)根据相反数的意义,求出“原点”到两点的距离,在利用该距离求得“原点”的位置即可;(2)①根据两点的距离直接表示即可;②利用到点的距离相等时,小猫逮到老鼠,列出关于t的方程,求出t的值,再求出该位置即可.【详解】解:(1)根据相反数的意义,可知“原点”到两点的距离分别为:(10+2)÷2=6,∴“原点”表示的数为:﹣2+6=4,故答案为:4;(2)①老鼠在移动过程中与点A之间的距离为:7﹣t,小猫在移动过程中与点A之间的距离为:12﹣2t;②根据题意,得:7﹣t=12﹣2t,解得:t=5,此时小猫逮到老鼠的位置是:5﹣5=0,即在原点,故答案为:原点.【点睛】本题主要考查相反数与数轴的综合应用,解决第(2)小题的②时,能利用小猫逮到老鼠时,它们的位置距离点A相等列出方程式关键.25.(1)①,x=±1;②x=4或0,③x=2或﹣2;(2)±1,或±3.(3)±2,±4,0.【解析】【分析】(1)根据绝对值的意义进行计算即可;(2)(2)对a、b、c进行讨论,即a、b、c同正、同负、两正一负、两负一正,然后计算a b ca b c++得结果;(3)根据abcd≠0,得出共有5种情况,然后分别进行化简即可.【详解】解:(1)①|x|=1,x=±1;②|x﹣2|=2,x﹣2=2或x﹣2=﹣2,所以x=4或0,③|x+1|=3,x+1=3或x﹣1=﹣3,所以x=2或﹣2,(2)当abc≠0时,①a,b,c三个都是负数时,a b ca b c++=﹣1﹣1﹣1=﹣3;②a,b,c三个都是正数时,a b ca b c++=1+1+1=3;③a,b,c两负一正,a b ca b c++=﹣1﹣1+1=﹣1;④a,b,c两正一负,a b ca b c++=﹣1+1+1=1.故a b ca b c++的值为±1,或±3.(3)①若a,b,c,d有一个负数,三个正数,则a b c da b c d+++=﹣1+3=2;②若a,b,c,d有二个负数,二个正数,则a b c da b c d+++=﹣2+2=0;③若a,b,c,d有三个负数,一个正数,则a b c da b c d+++═﹣3+1=﹣2;④若a,b,c,d有四个负数,则a b c da b c d+++═﹣4;⑤若a,b,c,d有四个正数,则a b c da b c d+++═4;故a b c da b c d+++的值为:±2,±4,0.【点睛】本题考查了有理数的加法、绝对值的化简,解决本题的关键是对a、b、c、d的分类讨论.注意xx=±1(x>0,结果为1,x<0,结果为﹣1).七年级上册数学第一次月考测试卷一、单选题1.给出下列各数:﹣1,0,﹣3.05,﹣π,+2,﹣12,4,其中负数有()A.1个B.2个C.3个D.4个2.如果零上7℃记作+7℃,则零下7℃记作()A.﹣7° B.﹣7℃ C.+7° D.+7℃3.下列表示“相反意义的量”的一组是()A.向东走和向西走B.盈利100元和支出100元C.水位上升2米和水位下降2米D.黑色与白色4.下列各数中,既是分数又是正数的是()A.1 B.﹣313C.0 D.2.255.下面是小强、小方、小丽和小燕4位同学所画的数轴,其中正确的是()A.B.C.D.6.下列说法正确的是()A.0不可以是负数但可以是正数B.﹣3和0都是整数C.不是正数的数一定是负数,不是负数的数一定是正数D.0℃表示没有温度7.数轴上与﹣3距离3个单位的数是()A.﹣6 B.0 C.﹣6和0 D.6和98.下列各组数中,互为相反数的一组是()A.﹣1与﹣|﹣1| B.2与﹣1 2C.﹣(﹣1)与﹣|﹣1| D.(﹣2)3与﹣239.绝对值小于100的所有有理数的和与它的积的差是()A.10000 B.5050C.0 D.数据过大,无法计算10.下列说法中,正确的是()A.若|a|<|b|,则a<b B.若a<b,则|a|<|b|C.若a>0,b>0,则|a|>|b| D.a<b<0,则|a|>|b| 11.如图,M、P、N分别是数轴上的三点,点M和点N表示的有理数之和为零.其中点P满足|(﹣3)+★|=3,“★”代表P,那么P点表示的数应该是()A.6 B.3 C.0 D.0和6二、填空题12.如果盈利500元记作+500元,则﹣500元表示_____元.13.﹣434的相反数是_____,它的倒数是_____,它的绝对值是_____.14.若a,b互为相反数,m,n互为倒数,则(a+b)×mn﹣2mn+2=_____.15.2018年,遵义市全市普通高中招生计划数为48380人,保留两个有效数字,用科学记数法表示为_____.16.若(a+2018)2+|2017﹣b|=0,则(a+b)2019=_____;三、解答题17.把下列各数填在相应集合的括号内:+15,﹣3,﹣12,﹣0.9,0.81,227,﹣113,101,0.整数集合:{ …} 负数集合:{ …} 分数集合:{ …} 非负数集合:{ …}18.计算题(1)64+(﹣36)+(﹣64)﹣4×(﹣9)(2)(23﹣34+512﹣16)×(﹣12)19.把下列各数在数轴上(直线已画出)表示,并按从小到大的顺序用“<”连接起来.﹣12,0,34,﹣22,π,﹣|﹣3.14|,﹣(﹣2.5)20.如图,数轴上三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|b﹣c|+|a+c|.21.(1)已知a是绝对值最小的有理数,b和c的倒数都是它本身,b<c.求a+b+c﹣ab﹣bc﹣ac的值.(2)a,b互为倒数,c和d互为相反数.求ab﹣dc﹣2c﹣2d的值.22.“白水如绵,不用弓弹花自散;红雪如锦,何须梭织天生成.”我爱多彩贵州.今年“五一”期间,黄果树瀑布及周边景区,又一次迎来旅游高峰,据统计4月28日游客总人数达70万人.现将4月29日到5月5日游客人数统计如表.(“+”为当日增加人数,“﹣”为当日减少人数,单位:万人).(1)补全表中数据.(2)计算4月29日至5月5日,7日间景区共接待游客多少人?(3)请你估算一下,今年“五一”期间,黄果树瀑布及周边景区旅游总收入.通过大数据,谈谈你的感想(计算数据基本合理,其他言之有理即可).23.“中欧班列”是指按照固定车次线路条件开行,往来于中国与欧洲及“一带一路”沿线各国的集装箱国际铁路联运班列.其中从我国义乌到亚欧国家的一趟班列近似直线(东西方向),若某班列从我国某城市出发(规定向东为正,向西为负),下面记录数据分别为每一天的行程(单位:km):﹣1008,1100,﹣976,1010,﹣872,946.问6天后,此班列在该城市什么方向?距离多远?共计行程多少千米?24.如图,数轴上A点表示的数是﹣2,B点表示的数是5,C点表示的数是10.(1)若要使A、C两点所表示的数是一对相反数,则“原点”表示的数是:.(2)若此时恰有一只老鼠在B点,一只小猫在C点,老鼠发现小猫后立即以每秒一个单位的速度向点A方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A之间的距离;②小猫逮住老鼠时的“位置”恰好在,求时间t.25.阅读材料(1)绝对值的几何意义是表示数轴上的点到原点的距离,如|﹣2|=2,|x|=2,x=+2或﹣2,特别地|x﹣1|=2表示“x”到“1”的距离是2,就是x﹣1=2或x﹣1=﹣2,所以x=3或﹣1;同理,当|x+1|=2,表示“x”到“﹣1”的距离是2,就是x+1=2或x+1=﹣2,所以x=﹣3或+1;根据以上说明,求下列各式中x的值.①|x|=1 ②|x﹣2|=2 ③|x+1|=3(2)由(1)可知,|a|=a或﹣a,|b|=b或﹣b,|c|=c或﹣c,若abc≠0,求a b ca b c++的值.(3)若abcd≠0,直接写出a b c da b c d+++的值.数学学习——了解每道题中蕴含的规律对于很多中学生来讲,数学似乎都是他们的“硬伤”。
苏教版七年级数学上册第一次月考测试卷及答案【可打印】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果()P m 3,2m 4++在y 轴上,那么点P 的坐标是( )A .()2,0-B .()0,2-C .()1,0D .()0,12.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是( )A .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同位角相等4.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A .45°B .60°C .75°D .85°5.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A.122°B.151°C.116°D.97°6.如图,下列条件:①,②,③,④,⑤中能判13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠l l的有()断直线12A.5个B.4个C.3个D.2个7.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠38.比较2,5,37的大小,正确的是()A.3<<275257<<B.3C.3725<<<<D.37529.如图,已知AE是ΔABC的角平分线,AD是BC边上的高.若∠ABC=34°,∠ACB=64°,则∠DAE的大小是()A.5°B.13°C.15°D.20°10.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()A.400cm2B.500cm2C.600cm2D.300cm2二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,动点P 从A点出发,先以每秒2cm的速度沿A→C运动,然后以1cm/s的速度沿C→B 运动.若设点P运动的时间是t秒,那么当t=_______________,△APE的面积等于6.3.不等式组34012412xx+≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________.4.如果一个数的平方根是a+6和2a﹣15,则这个数为________.5.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为________ cm.6.如图,直线AB、CD相交于点O,OE⊥AB于点O,且∠COE=34°,则∠BOD为________.三、解答题(本大题共6小题,共72分)1.解方程组:23328x y x y -=⎧⎨+=⎩2.设m 为整数,且关于x 的一元一次方程(5)30m x m -+-=(1)当2m =时,求方程的解;(2)若该方程有整数..解,求m 的值.3.如图1,BC ⊥AF 于点C ,∠A +∠1=90°.(1)求证:AB ∥DE ;(2)如图2,点P 从点A 出发,沿线段AF 运动到点F 停止,连接PB ,PE .则∠ABP ,∠DEP ,∠BPE 三个角之间具有怎样的数量关系(不考虑点P 与点A ,D ,C 重合的情况).并说明理由.4.尺规作图:校园有两条路OA 、OB ,在交叉路口附近有两块宣传牌C 、D ,学校准备在这里安装一盏路灯,要求灯柱的位置P 离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P .(不写画图过程,保留作图痕迹)5.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中m的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?6.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、C5、B6、B7、C8、C9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、-22、1.5或5或93、04、815、556、56°三、解答题(本大题共6小题,共72分)1、21 xy=⎧⎨=⎩2、(1)13x=-;(2)6m=或4m=,7m=或3m=3、(1)略(2)∠BPE=∠DEP﹣∠ABP,略.4、略.5、(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;6、略。
人教版七年级上册数学第一次月考试卷(附答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知m,n为常数,代数式2x4y+mx|5-n|y+xy化简之后为单项式,则m n的值共有()A.1个B.2个C.3个D.4个2.2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确..的是()A.签约金额逐年增加B.与上年相比,2019年的签约金额的增长量最多C.签约金额的年增长速度最快的是2016年D.2018年的签约金额比2017年降低了22.98%3.已知:20n是整数,则满足条件的最小正整数n为( )A.2 B.3 C.4 D.54.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.2xx y+-B.22yxC.3223yxD.222()yx y-5.如图所示,点P到直线l的距离是()A.线段PA的长度 B.线段PB的长度C .线段PC 的长度D .线段PD 的长度6.如图,要把河中的水引到水池A 中,应在河岸B 处(AB ⊥CD )开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是( )A .两点之间线段最短B .点到直线的距离C .两点确定一条直线D .垂线段最短7.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .28.若2()(3)6x a x x mx +-=-- 则m等于( )A .-2B .2C .-1D .19.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x=16(27﹣x )B .16x=22(27﹣x )C .2×16x=22(27﹣x )D .2×22x=16(27﹣x )10.已知实数a 、b 、c 满足2111(b)(c)(b-c)0a a 4+++=.则代数式ab+ac 的值是( ).A .-2B .-1C .1D .2二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.3.关于x 的不等式组430340a x a x +>⎧⎨-≥⎩恰好只有三个整数解,则a 的取值范围是_____________.4.若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩的解满足0x y +≤,则m 的取值范围是________.5.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为________. 6.设4x 2+mx+121是一个完全平方式,则m=________三、解答题(本大题共6小题,共72分)1.(1)解方程组:425x y x y -=⎧⎨+=⎩(2)解不等式:2132x x ->-2.已知关于x 的方程()()122k x k x +=--中,求当k 取什么整数值时,方程的解是整数.3.已知:如图,∠1=∠2,∠3=∠E .求证:AD ∥BE .4.如图,四边形ABCD 中,对角线AC 、BD 交于点O ,AB =AC ,点E 是BD 上一点,且AE =AD ,∠EAD =∠BAC,(1)求证:∠ABD =∠ACD ;(2)若∠ACB=65°,求∠BDC的度数.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2) 由表达式你能求出降价前每千克的土豆价格是多少?试求降价前y与x之间的关系式(3) 降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、D5、B6、D7、C8、D9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、5或-72、如果两个角互为对顶角,那么这两个角相等3、43 32a≤≤4、2m≤-5、1 96、±44三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)x>125.2、k=−3或−1或−4或0或−6或2.3、略4、(1)略;(2) 50°5、()117、20;()22次、2次;()372;()4120人.6、(1) 5元(2) 0.5元/千克; y=12x+5(0≤x≤30);(3)他一共带了45千克土豆.。
七年级(上)第一次月考数学试卷一、选择题1.若﹣a=2,则a等于()A.2 B.C.﹣2 D.2.两个非零有理数的和为零,则它们的商是()A.0 B.﹣1 C.1 D.不能确定3.在有理数中有()A.最大的数B.最小的数C.绝对值最小的数D.不能确定4.若x=(﹣3)×,则x的倒数是()A.﹣B.C.﹣2 D.25.在﹣2与1.2之间有理数有()A.2个B.3 个C.4 个D.无数个6.在﹣1,1.2,﹣2,0,﹣(﹣2),﹣23中,负数的个数有()A.2个B.3个C.4个D.5个7.有理数a、b在数轴上的对应的位置如图所示:则()A.﹣a<﹣b B.﹣b<a C.b=a D.﹣a>b8.在﹣5,﹣,﹣3.5,﹣0.01,(﹣2)2,(﹣22)各数中,最大的数是()A.﹣22B.﹣C.﹣0.01 D.(﹣2)29.已知(1﹣m)2+|n+2|=0,则(m+n)2013的值为()A.﹣1 B.1 C.2 013 D.﹣2 01310.下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③×(﹣)÷(﹣1)=;④(﹣4)÷×(﹣2)=16.其中正确的个数()A.4个B.3个C.2个D.1个11.下列等式不成立的是()A.(﹣3)3=﹣33B.﹣24=(﹣2)4C.|﹣3|=|3| D.(﹣3)100=310012.已知|a|=5,|b|=8,且满足a+b<0,则a﹣b的值为()A.﹣13 B.13 C.3或13 D.13或﹣13二、填空题13.肥料口袋上标有50kg±0.5kg表示什么意思.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是.15.若|x+2|与|y﹣3|互为相反数,则x+y= ,x y= .16.用“☆”定义新运算:对于任意有理数a、b,都有a b=b2﹣a﹣1,例如:74=42﹣7﹣1=8,那么(﹣5)(﹣3)= .三.解答题17.计算题:(1)22﹣5×+|﹣2|;( 2)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(3)+(﹣)﹣(﹣)+(﹣)﹣(+);(4)﹣9÷3+(﹣)×12+32;( 5)(﹣48)+(﹣2)3﹣(﹣25)×(﹣4)+(﹣2)2;(6)﹣23﹣×[2﹣(﹣3)2]+(﹣32).18.把下列各数分别填入相应的集合里.﹣23,﹣|﹣|,0,,﹣(﹣3.14),2006,﹣(+5),+1.88,(1)正数集合:{ …};(2)负数集合:{ …};(3)整数集合:{ …};(4)分数集合:{ …}.19.规定一种运算: =ad﹣bc,例如=2×5﹣3×4=﹣2,请你按照这种运算的规定,计算的值.20.已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.21.气象统计资料表明:海拔高度每增加100 米,气温降低大约0.6℃.小明和小亮为考证地方教材中星斗山海拔高度,国庆期间他们两个进行实地测量,小明在山下一个海拔高度为1020米的小山坡上测得的气温为14℃,小亮在星斗山顶峰的最高位置测得的气温为2℃,那么你知道星斗山顶峰的海拔高度是多少米吗?请列式计算.22.小明从文斗中学出发,先向西走2千米到达A村,继续向西走3千米到达B村,然后向东走10千米到C村,后回到学校.(1)以学校为原点,向东为正,用1厘米表示1千米在数轴上表示出,A,B.C三个村庄的位置;(2)小明一共走了多少千米?(3)若D村与A,B,C在一条线上,D到C村有1千米.那么D到B村有多少千米?23.20袋小麦以每袋450千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:﹣6,4,3,﹣2,﹣3,1,0,5,8,﹣5,与标准质量相比较,(1)这20袋小麦总计超过或不足多少千克?(2)20袋小麦总质量是多少千克?(3)有几袋是非常标准的?七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题1.若﹣a=2,则a等于()A.2 B.C.﹣2 D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣a=2,则a等于﹣2,故选:C.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.两个非零有理数的和为零,则它们的商是()A.0 B.﹣1 C.1 D.不能确定【考点】有理数的乘法;有理数的加法;有理数的除法.【分析】根据互为相反数的两数的和等于0判断出这两个数是互为相反数,再根据异号得负解答.【解答】解:∵两个非零有理数的和为零,∴这两个数互为相反数,∴它们的商是负数.故选B.【点评】本题考查了有理数的除法,有理数的加法,判断出这两个数互为相反数是解题的关键.3.在有理数中有()A.最大的数B.最小的数C.绝对值最小的数D.不能确定【考点】绝对值;有理数.【分析】根据有理数的知识和绝对值的性质作出正确地判断即可.【解答】解:没有最大的有理数也没有最小的有理数,绝对值最小的数是0,故选C【点评】本题主要考查了绝对值和有理数的知识,解题的关键是掌握有理数的有关知识以及绝对值的性质.4.若x=(﹣3)×,则x的倒数是()A.﹣B.C.﹣2 D.2【考点】有理数的乘法;倒数.【分析】先求出x的值,再根据倒数的定义即可求出x的倒数.【解答】解:∵x=(﹣3)×=﹣,∴x的倒数是﹣2,故选C.【点评】此题主要考查了有理数的乘法和倒数的定义,两数相乘,同号得正,异号得负,并把绝对值相乘.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.5.在﹣2与1.2之间有理数有()A.2个B.3 个C.4 个D.无数个【考点】有理数.【分析】根据有理数分为整数与分数,判断即可得到结果.【解答】解:在数轴上﹣2与1.2之间的有理数有无数个.故选D.【点评】此题考查了数轴,熟练掌握有理数的定义是解答本题的关键.6.在﹣1,1.2,﹣2,0,﹣(﹣2),﹣23中,负数的个数有()A.2个B.3个C.4个D.5个【考点】相反数;正数和负数.【分析】注意﹣(﹣2)=2,﹣23=﹣8,指出所有的负数即可.【解答】解:负数有﹣1,﹣2,﹣23,一共有3个,故答案为:B.【点评】本题考查了有理数的分类,本题比较简单,明确有理数分为正数、负数和0即可做出正确判断.7.有理数a、b在数轴上的对应的位置如图所示:则()A.﹣a<﹣b B.﹣b<a C.b=a D.﹣a>b【考点】数轴.【分析】根据数轴可以得到a、0、b的关系,从而可以解答本题.【解答】解:由数轴可得,a<﹣1<0<b<1,∴﹣a>﹣b,故选项A错误,﹣b>a,故选项B错误,a<b,故选项C错误,﹣a>b,故选项D正确,故选D.【点评】本题考查数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.8.在﹣5,﹣,﹣3.5,﹣0.01,(﹣2)2,(﹣22)各数中,最大的数是()A.﹣22B.﹣C.﹣0.01 D.(﹣2)2【考点】有理数大小比较.【分析】根据正数大于一切负数即可解答.【解答】解:(2)2=4,(﹣22)=﹣2,∴最大的数是(﹣2)2,故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.9.已知(1﹣m)2+|n+2|=0,则(m+n)2013的值为()A.﹣1 B.1 C.2 013 D.﹣2 013【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列方程求出m、n的值,再代入代数式进行计算即可得解.【解答】解:由题意得,1﹣m=0,n+2=0,解得m=1,n=﹣2,所以,(m+n)2013=(1﹣2)2013=﹣1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③×(﹣)÷(﹣1)=;④(﹣4)÷×(﹣2)=16.其中正确的个数()A.4个B.3个C.2个D.1个【考点】有理数的除法;有理数的乘法.【分析】根据有理数的乘法和除法法则分别进行计算即可.【解答】解:①(﹣1)×(﹣2)×(﹣3)=﹣6,故原题计算错误;②(﹣36)÷(﹣9)=4,故原题计算错误;③×(﹣)÷(﹣1)=,故原题计算正确;④(﹣4)÷×(﹣2)=16,故原题计算正确,正确的计算有2个,故选:C.【点评】此题主要考查了有理数的乘除法,关键是注意结果符号的判断.11.下列等式不成立的是()A.(﹣3)3=﹣33B.﹣24=(﹣2)4C.|﹣3|=|3| D.(﹣3)100=3100【考点】有理数的乘方;绝对值.【分析】根据有理数的乘方分别求出即可得出答案.【解答】解:A:(﹣3)3=﹣33,故此选项正确;B:﹣24=﹣(﹣2)4,故此选项错误;C:|﹣3|=|3|=3,故此选项正确;D:(﹣3)100=3100,故此选项正确;故符合要求的为B,故选:B.【点评】此题主要考查了有理数的乘方运算,熟练掌握有理数乘方其性质是解题关键.12.已知|a|=5,|b|=8,且满足a+b<0,则a﹣b的值为()A.﹣13 B.13 C.3或13 D.13或﹣13【考点】有理数的减法;绝对值.【专题】分类讨论.【分析】根据绝对值的意义及a+b<0,可得a,b的值,再根据有理数的减法,可得答案.【解答】解:由|a|=5,|b|=8,且满足a+b<0,得a=5,或a=﹣5,b=﹣8.当a=﹣5,b=﹣8时,a﹣b=﹣5﹣(﹣8)=﹣5+8=3,当a=5,b=﹣8时,a﹣b=5﹣(﹣8)=5+8=13,故选:D.【点评】本题考查了有理数的减法,分类讨论是解题关键,以防漏掉.二、填空题13.肥料口袋上标有50kg±0.5kg表示什么意思净含量最大不超过50kg+0.5kg,最少不低于50kg﹣0.5kg..【考点】正数和负数.【分析】意思是净含量最大不超过50kg+0.5kg,最少不低于50kg﹣0.5kg.【解答】解:由题意可知:“50kg±0.5kg”表示净含量的浮动范围为上下0.5kg,即含量范围在(50+0.5)=50.5kg到(50﹣0.5)=49.5kg之间.即:它表示净含量的浮动范围为上下5kg,最多重50.5kg,最少重49.5kg;故答案为:净含量最大不超过50kg+0.5kg,最少不低于50kg﹣0.5kg.【点评】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是﹣1和5 .【考点】数轴.【分析】点A所表示的数为2,到点A的距离等于3个单位长度的点所表示的数有两个,分别位于点A的两侧,分别是﹣1和5.【解答】解:2﹣3=﹣1,2+3=5,则A表示的数是:﹣1或5.故答案为:﹣1或5.【点评】本题考查了数轴的性质,理解点A所表示的数是2,那么点A距离等于3个单位的点所表示的数就是比2大3或小3的数是关键.15.若|x+2|与|y﹣3|互为相反数,则x+y= 1 ,x y= ﹣8 .【考点】非负数的性质:绝对值.【分析】根据非负数的性质列出算式,求出x、y的值,计算即可.【解答】解:由题意得,|x+2|+|y﹣3|=0,则x+2=0,y﹣3=0,解得,x=﹣2,y=3,则x+y=1,x y=﹣8,故答案为:1;﹣8.【点评】本题考查的是相反数的概念和非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.16.用“☆”定义新运算:对于任意有理数a、b,都有a b=b2﹣a﹣1,例如:74=42﹣7﹣1=8,那么(﹣5)(﹣3)= 13 .【考点】有理数的混合运算.【专题】新定义.【分析】利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(﹣5)(﹣3)=9﹣(﹣5)﹣1=9+5﹣1=13.故答案为:13.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.三.解答题17.(2015秋•利川市校级月考)计算题:(1)22﹣5×+|﹣2|;( 2)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(3)+(﹣)﹣(﹣)+(﹣)﹣(+);(4)﹣9÷3+(﹣)×12+32;( 5)(﹣48)+(﹣2)3﹣(﹣25)×(﹣4)+(﹣2)2;(6)﹣23﹣×[2﹣(﹣3)2]+(﹣32).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式利用减法法则变形,计算即可得到结果;(3)原式利用减法法则变形,计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(5)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(6)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=4﹣1+2=5;(2)原式=4.3+4﹣2.3﹣4=2;(3)原式=﹣﹣﹣+=﹣;(4)原式=﹣3+6﹣8+9=4;(5)原式=﹣48﹣8﹣100+4=﹣156+4=﹣152;(6)原式=﹣8+1﹣9=﹣16.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.把下列各数分别填入相应的集合里.﹣23,﹣|﹣|,0,,﹣(﹣3.14),2006,﹣(+5),+1.88,(1)正数集合:{ ,﹣(﹣3.14),2006,+1.88 …};(2)负数集合:{ ﹣23,﹣|﹣|,﹣(+5)…};(3)整数集合:{ ﹣23,0,2006,﹣(+5)…};(4)分数集合:{ ﹣|﹣|,,﹣(﹣3.14),+1.88 …}.【考点】有理数.【分析】按照有理数分类即可求出答案.【解答】解:故答案为:正数:,﹣(﹣3.14),2006,+1.88;负数:﹣23,﹣|﹣|,﹣(+5);整数:﹣23,0,2006,﹣(+5);分数:﹣|﹣|,,﹣(﹣3.14),+1.88;【点评】本题考查有理数的分类,属于基础题型.19.规定一种运算: =ad﹣bc,例如=2×5﹣3×4=﹣2,请你按照这种运算的规定,计算的值.【考点】有理数的混合运算.【专题】新定义.【分析】根据新运算得出1×0.5﹣(﹣3)×(﹣2),算乘法,最后算减法即可.【解答】解:=1×0.5﹣(﹣3)×(﹣2)=0.5﹣6=﹣5.5.【点评】本题考查了有理数的混合运算的应用,能根据新运算得出1×0.5﹣(﹣3)×(﹣2)是解此题的关键.20.已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.【考点】倒数;相反数;绝对值.【专题】计算题.【分析】根据相反数,绝对值,倒数的概念和性质求得a与b,c与d及x的关系或值后,代入代数式求值.【解答】解:∵a,b互为相反数,∴a+b=0,∵c,d互为倒数,∴cd=1,∵|x|=1,∴x=±1,当x=1时,a+b+x2﹣cdx=0+(±1)2﹣1×1=0;当x=﹣1时,a+b+x2+cdx=0+(±1)2﹣1×(﹣1)=2.【点评】本题主要考查相反数,绝对值,倒数的概念及性质.(1)相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;(2)倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;(3)绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.21.气象统计资料表明:海拔高度每增加100 米,气温降低大约0.6℃.小明和小亮为考证地方教材中星斗山海拔高度,国庆期间他们两个进行实地测量,小明在山下一个海拔高度为1020米的小山坡上测得的气温为14℃,小亮在星斗山顶峰的最高位置测得的气温为2℃,那么你知道星斗山顶峰的海拔高度是多少米吗?请列式计算.【考点】有理数的混合运算.【分析】根据题意,可以知道顶峰的温度与小明所在位置的温差,从而可以求得顶峰的高度.【解答】解:由题意可得,星斗山顶峰的海拔高度是:1020+(14﹣2)÷0.6×100=1020+12÷0.6×100=1020+2000=3020(米),即星斗山顶峰的海拔高度是3020米.【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.22.小明从文斗中学出发,先向西走2千米到达A村,继续向西走3千米到达B村,然后向东走10千米到C村,后回到学校.(1)以学校为原点,向东为正,用1厘米表示1千米在数轴上表示出,A,B.C三个村庄的位置;(2)小明一共走了多少千米?(3)若D村与A,B,C在一条线上,D到C村有1千米.那么D到B村有多少千米?【考点】数轴.【分析】(1)数轴三要素:原点,单位长度,正方向.依此表示出家以及A、B、C三个村庄的位置;(2)距离相加的和即为所求;(3)分两种情况:①D村在C村左边时;②D村在C村右边时;分别计算即可.【解答】解:(1)如图所示:(2)2+3+10=15,即小明一共走了15千米;(3)分两种情况:①D村在C村左边时,则C、D村表示的数分别是5千米、4千米,4﹣(﹣2﹣3)=4+5=9(千米);②D村在C村右边时,则C、D村表示的数分别是5千米、6千米,6﹣(﹣2﹣3)=6+5=11(千米);综上所述:D到B村有9千米或11千米.【点评】本题考查的是数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.23.20袋小麦以每袋450千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:﹣6,4,3,﹣2,﹣3,1,0,5,8,﹣5,与标准质量相比较,(1)这20袋小麦总计超过或不足多少千克?(2)20袋小麦总质量是多少千克?(3)有几袋是非常标准的?【考点】正数和负数.【分析】(1)将各数据相加即可求出20袋小麦是不足或超过;(2)将(1)中的数据与20袋标准小麦总量相加即可求出答案;(3)记数为0时,小麦重量非常标准.【解答】解:(1)﹣6+4+3﹣2﹣3+1+0+5+8﹣5=5,这20袋小麦总计超过5千克;(2)20袋小麦总质量是:20×450+5=9005;(3)只有一袋非常标准,由于该袋小麦与标准质量相比较为0;【点评】本题考查正负数的意义,属于基础题型先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
七年级(上)第一次月考数学试卷一、填空题1.如果盈利700元记为+700元,那么﹣800元表示.2.在数轴上距离原点1.5个单位的点表示的数是.3.一种零件的内径尺寸在图纸上是8±0.04(m),加工要求最大不超过,最小不低于.4.用“>”、“<”、“=”号填空:(1)﹣0.02 1;(2)﹣﹣.5.观察下列数据,按某种规律在横线上填上适当的数:1,,,,,,…6.南通市某天上午的温度是8℃,中午又上升了5℃,下午由于冷空气南下,到夜间又下降了7℃,则这天夜间的温度是℃.7.化简:﹣|﹣|= ,﹣(﹣2.3)= .8.若a、b互为相反数,c、d互为倒数,则1.5cd+a+b= .9.用“☆”定义新运算:对于任意实数a、b,都有a☆b=b2+a.例如1☆4=42+1=17,那么﹣3☆2= .10.若|x﹣2|与(y+3)2互为相反数,则x+y= .二、选择题11.当|x|=﹣x时,则x一定是()A.负数B.正数C.负数或0 D.012.a,b是有理数,它们在数轴上的对应点的位置如图所示:把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.a<﹣b<b<﹣a C.﹣b<a<﹣a<b D.a<﹣b<﹣a<b13.绝对值小于3.5的整数共有()A.3个B.5个C.7个D.9个14.下列说法中正确的是()A.最小的整数是0B.互为相反数的两个数的绝对值相等C.有理数分为正数和负数D.如果两个数的绝对值相等,那么这两个数相等15.绝对值相等的两个数在数轴上对应的两个点的距离为6,则这两个数为()A.+6和﹣6 B.+3和﹣3 C.+6和﹣3 D.+3和+616.比﹣5.1大,而比1小的整数的个数是()A.5 B.4 C.6 D.717.一个数和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和018.下列每组数中,相等的是()A.﹣(﹣1.2)和﹣1.2 B.+(﹣1.2)和﹣(﹣1.2)C.﹣(﹣1.2)和|﹣1.2| D.﹣(﹣1.2)和﹣|﹣1.2|19.如果|x﹣1|+|y+2|+|z﹣3|=0,则(x+1)(y﹣2)(z+3)的值是()A.48 B.﹣48 C.0 D.xyz20.下列说法:①若a、b互为相反数,则a+b=0;②若a+b=0,则a、b互为相反数;③若a、b互为相反数,则;④若,则a、b互为相反数.其中正确的结论是()A.②③④B.①②③C.①②④D.①②三.把下列各数填在相应的大括号里.21.把下列各数填在相应的大括号里+5,0.375,0,﹣2.04,﹣(﹣7),0.1010010001…,﹣|﹣1|,,﹣,π,0.正整数集合{ …}非正数集合{ …}负分数集合{ …}有理数集合{ …}.四.画出数轴,在数轴上表示下列各数,并用“<”连接22.画出数轴,在数轴上表示下列各数,并用“<”连接:﹣2.5,﹣1,1,0,3.75.五、计算下列各题23.计算下列各题(1)(+6)+(+)+(﹣6.25)+(+)+(﹣)+(﹣)(2)÷(﹣2)﹣×+÷4(3)(+﹣)×(﹣24)(4)×(﹣)×÷(5)|﹣2|﹣(﹣2.5)+1﹣|1﹣2|(6)(﹣)÷(﹣+﹣)(7)(﹣4.3)+(﹣3.2)﹣(﹣2.2)﹣|﹣15.7|六、24.思考题观察下列等式=1﹣, =﹣, =﹣,将以上三个等式两边分别相加得:++=1﹣+﹣+﹣=1﹣=.(1)猜想并写出: = .(2)直接写出下列各式的计算结果:①+++…+= ;②+++…+= .七年级(上)第一次月考数学试卷参考答案与试题解析一、填空题1.如果盈利700元记为+700元,那么﹣800元表示亏损800元.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵盈利700元记为+700元,∴﹣800元表示亏损800元.故答案为:亏损800元.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.在数轴上距离原点1.5个单位的点表示的数是±1.5 .【考点】数轴.【分析】在数轴上距离原点1.5个单位的点表示的数有两个:分别是﹣1.5、1.5.【解答】解:在数轴上距离原点1.5个单位的点表示的数是:±1.5;故答案为:±1.5.【点评】本题考查了数轴的有关知识,比较简单,明确所有的有理数都可以用数轴上的点表示,数轴上与原点的距离为a的点有两个,是互为相反数.3.一种零件的内径尺寸在图纸上是8±0.04(m),加工要求最大不超过8.04 ,最小不低于7.96 .【考点】正数和负数.【分析】根据正数与负数表示相反意义的量得到8±0.04(m)的含义为最大不超过8+0.04m,最小不超过8﹣0.04m,然后回答问题.【解答】解:零件的内径尺寸在图纸上是8±0.04(m),加工要求最大不超过8+0.04=8.04m,最小不低于8﹣0.04=7.96m,故答案为8.04;7.96.【点评】本题考查了正数和负数:用正数与负数表示相反意义的量,此题基础题,比较简单.4.用“>”、“<”、“=”号填空:(1)﹣0.02 < 1;(2)﹣<﹣.【考点】有理数大小比较.【分析】(1)根据正数大于负数,可得答案;(2)根据两负数比较大小,绝对值大的反而小,可得答案.【解答】解:(1)﹣0.02<1;(2),﹣,故答案为:<,<.【点评】本题考查了有理数比较大小,(1)正数大于负数,(2)先比较绝对值,再比较两负数的大小.5.观察下列数据,按某种规律在横线上填上适当的数:1,,,,,﹣,…【考点】规律型:数字的变化类.【专题】规律型.【分析】分子是从1开始的连续奇数,分母是相应序数的平方,并且正、负相间,然后写出即可.【解答】解:∵1,,,,,∴要填入的数据是﹣.故答案为:﹣.【点评】本题是对数字变化规律的考查,确定从分子、分母和正反情况三个方面考虑求解是解题的关键.6.南通市某天上午的温度是8℃,中午又上升了5℃,下午由于冷空气南下,到夜间又下降了7℃,则这天夜间的温度是 6 ℃.【考点】有理数的加减混合运算.【专题】计算题.【分析】根据有理数的加减混合运算的运算方法,用南通市某天上午的温度加上中午又上升的温度,再减去夜间又下降的温度,求出这天夜间的温度是多少即可.【解答】解:8+5﹣7=13﹣7=6(℃)答:这天夜间的温度是6℃.故答案为:6.【点评】此题主要考查了有理数的加减混合运算,以及绝对值的含义和求法,要熟练掌握,解答此题的关键是要明确:有理数加减法统一成加法.7.化简:﹣|﹣|= ﹣,﹣(﹣2.3)= 2.3 .【考点】绝对值;相反数.【专题】推理填空题.【分析】根据绝对值的含义和求法,以及相反数的含义和求法,逐一求解即可.【解答】解:﹣|﹣|=﹣,﹣(﹣2.3)=2.3.故答案为:﹣、2.3.【点评】此题主要考查了绝对值的含义和应用,以及相反数的含义和求法,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.8.若a、b互为相反数,c、d互为倒数,则1.5cd+a+b= 1.5 .【考点】代数式求值.【分析】依据互为相反数的两数之和为0可知a+b=0,互为倒数的两数的乘积为1求解即可.【解答】解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1.∴原式=1.5×1+0=1.5,故答案为:1.5.【点评】本题主要考查的是求代数式的值,掌握倒数的定义和互为相反数的两数之和为0是解题的关键.9.用“☆”定义新运算:对于任意实数a、b,都有a☆b=b2+a.例如1☆4=42+1=17,那么﹣3☆2= 1 .【考点】实数的运算.【专题】计算题;新定义;实数.【分析】原式利用已知的新定义化简,计算即可得到结果.【解答】解:根据题中的新定义得:﹣3☆2=4﹣3=1.故答案为:1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.10.若|x﹣2|与(y+3)2互为相反数,则x+y= ﹣1 .【考点】相反数;非负数的性质:绝对值;非负数的性质:偶次方.【专题】常规题型.【分析】根据相反数的定义列式,然后根据非负数的性质列式求出x、y的值,再代入进行计算即可得解.【解答】解:∵|x﹣2|与(y+3)2互为相反数,∴|x﹣2|+(y+3)2=0,∴x﹣2=0,y+3=0,解得x=2,y=﹣3,∴x+y=2+(﹣3)=﹣1.故答案为:﹣1.【点评】本题考查了相反数的定义,绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.二、选择题11.当|x|=﹣x时,则x一定是()A.负数B.正数C.负数或0 D.0【考点】绝对值.【分析】根据绝对值的意义得到x≤0.【解答】解:∵|x|=﹣x,∴x≤0.故选C.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.12.a,b是有理数,它们在数轴上的对应点的位置如图所示:把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.a<﹣b<b<﹣a C.﹣b<a<﹣a<b D.a<﹣b<﹣a<b【考点】有理数大小比较;数轴.【分析】根据数轴和相反数比较即可.【解答】解:因为从数轴可知:a<0<b,|a|>|b|,所以a<﹣b<b<﹣a,故选B.【点评】本题考查了数轴,相反数的,有理数的大小比较的应用,能根据数轴得出﹣a和﹣b的位置是解此题的关键.13.绝对值小于3.5的整数共有()A.3个B.5个C.7个D.9个【考点】有理数大小比较;绝对值.【分析】根据绝对值的意义,可得答案.【解答】解:绝对值小于3.5的整数﹣3,﹣2,﹣1,0,1,2,3,故选:C.【点评】本题考查了有理数比较大小,到原点的距离小于3.5的整数.14.下列说法中正确的是()A.最小的整数是0B.互为相反数的两个数的绝对值相等C.有理数分为正数和负数D.如果两个数的绝对值相等,那么这两个数相等【考点】绝对值;有理数.【分析】根据绝对值的性质、整数的定义、正数和负数的定义,对A、B、C、D四个选项进行一一判断,从而求解.【解答】解:A、∵﹣1是整数,但﹣1<0,故A错误;B、∵|a|=|﹣a|,∴互为相反数的两个数的绝对值相等,故B正确;C、∵0也是有理数,故C错误;D、∵|﹣1|=|1|,但﹣1≠1,故D错误;【点评】此题主要考查整数的定义、正数和负数的定义及绝对值的性质,当a>0时,|a|=a;当a≤0时,|a|=﹣a,是一道基础题.15.绝对值相等的两个数在数轴上对应的两个点的距离为6,则这两个数为()A.+6和﹣6 B.+3和﹣3 C.+6和﹣3 D.+3和+6【考点】绝对值;数轴.【分析】绝对值相等的两个数只有两种情况,相等或互为相反数,因为绝对值相等的两个数在数轴上对应的两个点的距离为6,所以这两个数是互为相反数的,可求得为±3.【解答】解:由题意可得,这两个数是互为相反数的,因为两个数在数轴上对应的两个点的距离为6,从而求得这两个数为±3.答案:B.【点评】考查了绝对值在数轴上的定义(绝对值定义是坐标轴上的点到原点的距离),要求熟悉绝对值定义和数轴上数的规律.16.比﹣5.1大,而比1小的整数的个数是()A.5 B.4 C.6 D.7【考点】有理数大小比较.【分析】根据有理数的大小比较法则求出﹣6.1和1之间的整数即可.【解答】解:比﹣5.1大,而比1小的整数有﹣5,﹣4,﹣3,﹣2,﹣1,0,共6个.故选:C.【点评】本题考查了有理数的大小比较法则的应用,能求出所有的整数是解此题的关键,题目比较好,难度不大.17.一个数和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和0【考点】倒数.【分析】根据倒数的定义进行解答即可.【解答】解:∵1×1=1,(﹣1)×(﹣1)=1,∴一个数和它的倒数相等的数是±1.故选C.【点评】本题考查的是倒数的定义,解答此题时要熟知0没有倒数这一关键知识.18.下列每组数中,相等的是()A.﹣(﹣1.2)和﹣1.2 B.+(﹣1.2)和﹣(﹣1.2)C.﹣(﹣1.2)和|﹣1.2| D.﹣(﹣1.2)和﹣|﹣1.2|【考点】绝对值;相反数.【分析】分别化简各选项即可判断.【解答】解:A、﹣(﹣1.2)=1.2≠﹣1.2,此选项错误;B、+(﹣1.2)=﹣1.2,﹣(﹣1.2)=1.2,此选项错误;C、﹣(﹣1.2)=1.2,|﹣1.2|=1.2,此选项正确;D、﹣(﹣1.2)=1.2,﹣|﹣1.2|=﹣1.2,此选项错误,故选:C.【点评】本题主要考查相反数和绝对值,掌握相反数的表示方法及绝对值是解题的关键.19.如果|x﹣1|+|y+2|+|z﹣3|=0,则(x+1)(y﹣2)(z+3)的值是()A.48 B.﹣48 C.0 D.xyz【考点】非负数的性质:绝对值;代数式求值.【分析】本题可根据非负数的性质解出x、y、z的值,再把x、y、z的值代入(x+1)(y﹣2)(z+3)中求解即可.【解答】解:∵|x﹣1|+|y+2|+|z﹣3|=0,∴x﹣1=0,y+2=0,z﹣3=0,解得x=1,y=﹣2,z=3.∴(x+1)(y﹣2)(z+3)=﹣48.故选B.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.20.下列说法:①若a、b互为相反数,则a+b=0;②若a+b=0,则a、b互为相反数;③若a、b互为相反数,则;④若,则a、b互为相反数.其中正确的结论是()A.②③④B.①②③C.①②④D.①②【考点】相反数.【专题】探究型.【分析】根据相反数的定义对各小题进行逐一分析即可.【解答】解:①∵只有符号不同的两个数叫做互为相反数,∴若a、b互为相反数,则a+b=0,故本小题正确;②∵a+b=0,∴a=﹣b,∴a、b互为相反数,故本小题正确;③∵0的相反数是0,∴若a=b=0时,﹣无意义,故本小题错误;④∵=﹣1,∴a=﹣b,∴a、b互为相反数,故本小题正确.故选C.【点评】本题考查的是相反数的定义,在解答此题时要注意0的相反数是0.三.把下列各数填在相应的大括号里.21.把下列各数填在相应的大括号里+5,0.375,0,﹣2.04,﹣(﹣7),0.1010010001…,﹣|﹣1|,,﹣,π,0.正整数集合{ +5,﹣(﹣7)…}非正数集合{ 0,﹣2.04,﹣|﹣1|,﹣…}负分数集合{ ﹣2.04,﹣…}有理数集合{ +5,0.375,0,﹣2.04,﹣(﹣7),﹣|﹣1|,,﹣,0.…}.【考点】有理数;绝对值.【分析】根据大于零的整数是正整数,小于或等于零的数是非正数,小于零的分数是负分数,有限小数或无限循环小数是有理数,可得答案.【解答】解:正整数集合{+5,﹣(﹣7)…}非正数集合{ 0,﹣2.04,﹣|﹣1|,﹣…}负分数集合{﹣2.04,﹣…}有理数集合{+5,0.375,0,﹣2.04,﹣(﹣7),﹣|﹣1|,,﹣,0.…};故答案为:+5,﹣(﹣7);0,﹣2.04,﹣|﹣1|,﹣;﹣2.04,﹣;+5,0.375,0,﹣2.04,﹣(﹣7),﹣|﹣1|,,﹣,0..【点评】本题考查了有理数,利用有理数的分类是解题关键,注意不能重复,也不能遗漏.四.画出数轴,在数轴上表示下列各数,并用“<”连接22.画出数轴,在数轴上表示下列各数,并用“<”连接:﹣2.5,﹣1,1,0,3.75.【考点】有理数大小比较;数轴.【分析】先画出数轴并在数轴上表示出各数,再按照数轴的特点从左到右用小于号把各数连接起来.【解答】解:画出数轴并在数轴上表示出各数:按照数轴的特点用小于号从左到右把各数连接起来为:【点评】本题考查的是有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.五、计算下列各题23.计算下列各题(1)(+6)+(+)+(﹣6.25)+(+)+(﹣)+(﹣)(2)÷(﹣2)﹣×+÷4(3)(+﹣)×(﹣24)(4)×(﹣)×÷(5)|﹣2|﹣(﹣2.5)+1﹣|1﹣2|(6)(﹣)÷(﹣+﹣)(7)(﹣4.3)+(﹣3.2)﹣(﹣2.2)﹣|﹣15.7|【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算括号中的运算,再从左到右依次计算即可得到结果;(5)原式利用绝对值的代数意义化简,计算即可得到结果;(6)原式被除数与除数换过,求出倒数,即可确定出原式的值;(7)原式利用减法法则变形,计算即可得到结果.【解答】解:(1)原式=6﹣6.25++﹣﹣=﹣;(2)原式=﹣×﹣×+×=﹣×(+﹣1)=﹣×=﹣;(3)原式=﹣14﹣40+18=﹣36;(4)原式=×(﹣)××=﹣;(5)原式=+2.5+1﹣2+1=﹣0.5;(6)∵(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣42)=﹣7+9﹣28+12=﹣35+21=﹣14,∴原式=﹣;(7)原式=﹣4.3﹣3.2+2.2﹣15.7=﹣23.2+2.2=﹣21.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.六、24.思考题观察下列等式=1﹣, =﹣, =﹣,将以上三个等式两边分别相加得:++=1﹣+﹣+﹣=1﹣=.(1)猜想并写出: = ﹣.(2)直接写出下列各式的计算结果:①+++…+= ;②+++…+= .【考点】规律型:数字的变化类.【专题】推理填空题.【分析】(1)观察题目所给等式,总结隐含的恒等变换,直接写出所求等式.(2)利用等式: =﹣将相邻两个正整数的积的倒数写成它们的倒数的差,然后计算出结果即可.【解答】解:(1)∵﹣=﹣=∴=﹣(2)①+++…+=1﹣+﹣+﹣+…+﹣=1﹣=②+++…+=1﹣+﹣+﹣+…+﹣=1﹣=故答案为:(1)﹣;(2)①;②【点评】本题考查了数字的变化规律问题,解题的关键是能够总结出题目隐含的数字变换规律并加以运用先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
上海市民办立达中学2024-—2025学年上学期七年级数学10月月考试卷一、单选题1.下列代数式3a b +-,m π,22x y ,53,()21x -,2S r π=中,单项式有( ) A .1个 B .2个 C .3个 D .4个2.下列代数式计算正确的是( )A .235a a a +=B .236(2)a a -=C .623()a a a -÷=D .()()347a a a -⋅-=- 3.分式 2223424312,,,412y x x x xy y a ab a x x y ab b +--++-+-中是最简分式的有( ) A .1个 B .2个 C .3个 D .4个4.下列图形中是轴对称图形但不是中心对称图形的是( )A .B .C .D .5.如图,ABC V 和A B C '''V 关于直线l 对称,若50A ∠=︒,30C '∠=︒,则∠B 的度数为( )A .30︒B .50︒C .90︒D .100︒6.已知x 是整数,且222218339x x x x ++++--为整数,则所有符合条件的x 的值的和为( ) A .12 B .15 C .18 D .20二、填空题7.若212m n x y 与32x y -是同类项,则2m n -=. 8.当x 时,分式2331x x +-有意义. 9.将 ()23a x y -写成不含分母的形式: 10.一种细菌的半径是0.00000419米,用科学记数法把它表示为米.11.当x =时, 分式 24122x x x --+的值为零 12.计算:()()2323x y x y -++-.13.如图,ABC V 沿射线AC 方向平移3cm 后得到DEF V ,若7cm AC =,那么CF =cm14.如图,ABC V 以点A 为旋转中心,按逆时针方向旋转60︒,得A BC ''△,若25BAC ∠=︒,则CAB '∠=.15.如图,把长方形ABCD 沿EF 对折,若150∠=︒,则BFE ∠= .16.已知:2310x x -+=,则221x x+=. 17.如图所示,在边长为1的正三角形格图中有菱形ABCD 旋转至菱形AEFG 的位置,则点B 走过的路径长度为.(保留π)18.如图,点C 是线段AB 上的一点,以AC BC 、为边向两边作正方形,设 9AB =,两正方形的面积和1245S S +=,则图中阴影部分面积为三、解答题19.因式分解: 2?36?162m m m -+20.因式分解: ()()²6?14?645a a a a ++++ 21.计算: 226323284m m n n m n -⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭ 22.计算:()()2222222x xy y x xy x x yx y x y xy ++-+⋅+--+-. 23.解方程:22112339x x x -=-+- 24.先化简,再求值: 22211111x x x x x ⎛⎫-++÷ ⎪-+⎝⎭,其中3x =- 25.在方格中画出ABC V 绕着点C 顺时针旋转90︒后的A B C ''△26.已知四边形ABCD,如果点D、C关于直线MN对称(1)画出直线MN(2)画出与四边形ABCD关于直线MN成轴对称的四边形27.如果关于x的方程411x kx x-=--的解为非负数,求k的取值范围28.如图,正六边形ABCDEF是由边长为2厘米的六个等边三角形拼成,那么图中(1)三角形AOB沿着___________方向平移_________厘米能与三角形FEO重合;(2)三角形AOB绕着点______顺时针旋转________度后能与三角形EOF重合;(3)三角形AOB沿着BE所在直线翻折后能与________重合;(4)写一对中心对称的三角形:_________.29.某服装厂接到加工400套校服的任务,在加工完160套后,采用了新技术,这样每天加工服装的套数是原来的2倍,结果共用了14天完成任务.问原来每天加工服装多少套?30.生活中,有人喜欢把传送的便条折成“”形状,折叠过程按图①、②、③、④的顺序进行(其中阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为26厘米,分别回答下列问题:(1)如果长方形纸条的宽为2厘米,并且开始折叠时起点M与点A的距离为3厘米,那么在图②中,BE=__________厘米;在图③中,BF=__________厘米;在图④中,BM= __________厘米.(2)如果长方形纸条的宽为x厘米,现不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点A的距离(结果用x表示).。
第 1 页,共 9 页 月考数学试卷 题号 一 二 三 四 总分 得分
一、选择题(本大题共 4 小题,共 12.0 分) 1. 下列语句中错误的是( ) A. 数字 0 也是单项式
B. 单项式 -a 的系数和次数都是 1
C. 若 A和 B都是关于 x的三次多项式,则 A+B的次数一定不高于 3次
D. 不是整式
2. 下列多项式乘法中,可以用平方差公式计算的是( ) A. ( x+1)( 1+x) B. ( a+b)( b- a)
C. ( -a+ b)( a-b) D. ( x2-y)( x+y2
)
3. 计算 22019×52018 的积是( )位整数. A. 2017 B. 2018 C. 2019 D. 2020
4. 一件工作,甲单独做需 a天完成,乙单独做需 b天完成,如果两人合作 5 天则可以 完成这件工作的( )
A. 5( a-b) B. 5( a+b) C. 5( - ) D. 5( + )
二、填空题(本大题共 14小题,共 28.0 分) 5. 若 n 表示一个自然数,则它的下一个自然数是 ______ . 6. 若 m、 n互为相反数,则 5m+5n-5= ____ .
7. 单项式 的系数是 _________ .
8. 多项式 a3b2-2ab2+1 的次数是 ____ . 9. 5xby8与-4x2ya是同类项,则 a+b 的值是 _____ .
10. 计算: m2?m3= ____ . 11. ( -x4) 3= ___ . 12. 计算:( 3x)2= _____ . 13. 若 am=3, an=5,则 am+n= ____ . 14. 若计算 2x-1 与 ax+1 相乘的结果中不含有 x 的项,则 a 的值为 _____ . 15. 三个连续的奇数,中间一个是 n,用代数式表示这三个奇数的和为 _______ . 16. 一个长方体的长、宽、高分别是 3x-2、2x 和 x,它的体积等于 _____ . 17. 已知 a、b 互为相反数,且满足( a+3)2-(b+3)2=24,则 a2?b= _____ .
18. 计算: = _________________ . 计算: . 三、计算题(本大题共 3 小题,共 19.0 分) 19. 已知 A=x2-5x,B=x2-10x+5,求 A-2B 的值. 第 2 页,共 9 页
20. 已知( x2+ax+3)(x2-ax+3)=x4+2x2+9,求 a 的值. 21. 阅读下文,回答问题: 已知( 1-x)( 1+x) =1-x2. ( 1-x)( 1+x+x2) = __ ; ( 1-x)( 1+x+x2+x3) = ___ ; (1)计算上式并填空; (2)猜想:( 1-x)( 1+x+x2+⋯+xn)= _____ ; ( 3)你能计算 3
99+398+397⋯ +32+3+1 的结果吗?请写出计算过程(结果用含有 3
幂的形式表示)
四、解答题(本大题共 3 小题,共 35.0 分) 22. 计算
(1)7a-6b-2a+3b
(2)2(a2b-3ab2)-3(2ab
2- a2b)
(3)( 2a2)2-(-a)4 (4)3ax2.( -7a3xy2) (5)( x+3)( x-3)(6)(5x-y)2
23. 先化简,再求值: 5a( a+1) -5( a+1)( a-1),其中 a= . 24. 已知: a+b=-5,2a-b=-1.求 ab(a+b2) -b2(ab-a)+2a(a-b2)第 3 页,共 9 页
答案和解析 1. 【答案】 B
【解析】 解: A、单独的一个数字也是单项式,原说法正确,故这个选项不符合题意; B、单项式 -a 的系数应是 -1,次数是 1,原说法错误,故这个选项符合题意; C、若 A和 B都是关于 x的三次多项式,则 A+B的次数一定不高于 3次,原说法正确, 故这个选项不符合题意;
D 、 不是整式,是分式,原说法正确,故这个选项不符合题意. 故选: B. 根据整式,多项式的次数,单项式系数、次数的定义来求解.单项式中数字因数叫做单 项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式. 本题考查了整式,多项式的次数,单项式的系数和次数.确定单项式的系数和次数时, 把一个单项式分解成数字因数和字母因式的积, 是找准单项式的系数和次数的关键. 注 意单项式的系数包括前面的符号. 2. 【答案】 B
【解析】 解: A、不存在互为相反数的项,故本选项错误; B、b 是相同的项,互为相反项是 a 与- a,正确; C、(-a+b)(a-b)=-(a-b)( a-b),不符合平方差公式的特点; D 、不存在相同的项,故本选项错误. 故选 B. 根据平方差公式的特点, 两个数的和乘以这两个数的差, 对各选项分析判断后利用排除 法求解. 本题考查了平方差公式,熟记公式结构是解题的关键. 3. 【答案】 C
【解析】 解: 2
2019×52018
=2×22018×52018 =2×102018
∴计算 22019×52018的积是 2019 位整数. 故选: C.
根据幂的乘方与积的乘方的运算方法,把 22019×52018 化成 2×102018,即可判断出它们的
积是几位整数. 此题主要考查了幂的乘方和积的乘方, 要熟练掌握, 解答此题的关键是要明确: ①( am) n=amn(m,n 是正整数);②( ab)n=anbn(n 是正整数). 4. 【答案】 D
【解析】 解: ∵甲单独做需 a 天完成, ∴甲一天完成工作的 , ∵乙单独做需 b 天完成, ∴乙一天完成工作的 ,
∴甲、乙合作一天完成工作的( + ), ∴两人合作 5 天则可以完成这件工作的 故选: D . 先确定出甲、乙一天完成的工作量,进而得出两人合作一天的工作量,即可得出结论. 此题第 4 页,共 9 页
是工程问题,确定出甲乙的工作效率是解本题的关键. 5. 【答案】 n+1
【解析】 解: n表示一个自然数,则它的下一个自然数是 n+1, 故答案为: n+1. 根据两个相邻的自然数差为 1 可以求解. 本题考查了列代数式的知识,解题的关键是了解相邻的两个自然数之间的关系. 6. 【答案】 -5
【解析】 【分析】 本题主要考查相反数的性质,相反数的和为 0. 若 m、n 互为相反数,则 m+n=0,那么代数式 5m+5n-5 即可解答. 【解答】 解:由题意得: 5m+5n-5=5(m+n)-5=5×0-5=-5 . 故答案为: -5.
7. 【答案】
解析】 解:单项式 的系数是 , 根据单项式中的数字因数叫做单项式的系数解答. 本题考查的是单项式的定义,单项式中的数字因数叫做单项式的系数. 8. 【答案】 5
【解析】 解:多项式 a
3b2-2ab2+1 的次数是 5.
故答案为: 5. 根据多项式项数及次数的定义即可得出答案. 本题考查了多项式的定义,解答本题的关键是掌握多项式项数及次数的定义. 9. 【答案】 10
【解析】 解: ∵5xby8与-4x2ya是同类项, ∴b=2, a=8, 故可得 a+b=10 . 故答案为: 10. 根据同类项:所含字母相同,并且相同字母的指数也相同,可得出 a、 b的值,代入可 得出 a+b 的值. 本题考查了同类项的知识,掌握同类项中的两个相同:( 1)所含字母相同,( 2)相同 字母的指数相同,是解答本题的关键.
10. 【答案】 m5
【解析】 解: m2?m3=m2+3=m5. 故答案为: m5. 根据同底数幂相乘,底数不变指数相加进行计算即可得解. 本题考查了同底数幂相乘,底数不变指数相加的性质,熟记性质是解题的关键. 11. 【答案】 -x12
【解析】 解:原式 =-x12. 故答案为 -x12. 根据幂的乘方与积的乘法法则运算. 本题考查了幂的乘方与积的乘法:( am)n=amn( m, n是正整数);( ab)n=anbn( n是 正整数). 12. 【答案】 9x2
故答案为: