水下井口和采油树
- 格式:ppt
- 大小:18.78 MB
- 文档页数:23
2 许用应力的选择方法2.1 材料许用应力的选择2.1.1 标准材料根据ASME BPVC :2004以及2005和2006增补,第Ⅷ卷第2册附录4所述,对于承压装置的设计计算,设计的许用应力分别按公式(1)和公式(2)中的准则进行限定,S T 为静水压试验压力下的最大许用的总体一次薄膜应力强度,S m 为额定压力下的设计应力强度:T y y 50.836S S S == (1)m y y 20.673S S S == (2)式中:S y 为材料规定的最小屈服强度。
2.1.2 非标准材料根据ASME BPVC :2004以及2005和2006增补,第Ⅷ卷第2册附录4所述,应用于非标准材料承压装置的设计计算,设计的许用应力分别按公式(3)、(4)和(5)中的准则进行限定,S T 为静水压试验压力下的最大许用的总体初始薄膜应力强度,S m 为额定压力下的设计应力强度,S s 为初始应力和次应力的最大合成强度:T y m,min 52min(,)63S S R = (3)m y m,min 21min(,)32S S R = (4)s y m,min min(2,)S S R = (5)式中:R m 为材料规定的极限抗拉强度。
0 引言在水下井口装置与采油树的设计过程中,存在除了承载紧固件和钢结构外,大量为控压或承压设备,这些设备的零部件存在各种类型的非标设计。
为了保证它们在试验和使用过程中的安全性,需要进行大量的力学计算。
在进行初步计算时,需要综合材料、工况等条件,并合理选用许用应力和应力准则[1-2]。
在进行有限元分析复验时,还需要对这些工况条件下的应力进行应力分类和线性化,严格按照不同类型的应力进行强度校核[3-4]。
本文着重介绍了水下井口装置与采油树所常用的应力计算与分析方法。
1 标准材料与非标准材料在进行设计计算分析时,我们需要初步知悉所使用材料的机械性能。
关于标准材料与非标准材料,其应力计算与分析过程是有所区别的。
浅谈采油井口装备技术现状及发展方向摘要:海洋水下井口和采油装备起源于20世纪60年代,水下井口和采油装备是海洋油气田开发中的重要单元装备,也是水下生产系统的关键设备。
本文概述了海洋水下井口和采油装备的技术现状,同时阐述了海洋水下井口和采油装备发展方向。
关键词:采油井口装备技术现状发展方向前言水下井口和采油装备是海洋油气田开发中的重要单元装备,也是水下生产系统的关键设备。
一般来说,海洋水下生产系统由多套水下井口和采油装备构成,水下井口和采油装备作为海底油气输送通道中的关键节点,其主要功能是有效控制来自海底井口的工作压力,保证海底油气按照设定的流速和流量输送到海底油气集输处理系统,并最终输送到采油平台及海岸线上。
长期以来,水下井口和采油装备受西方发达国家的技术垄断和高技术、高风险及高价位等多方面因素的影响,包括我国在内的许多发展中国家只能依赖于进口以实施海洋油气田的开发建设。
这不仅增加了海洋油气资源的开采成本,而且往往受交货期、服务和配件供应等因素制约,严重影响了我国海洋油气资源的开发进度。
一、海洋水下井口、采油装备技术现状海洋水下井口和采油装备起源于20世纪60年代。
1967年,美国的FMC公司生产出全球第1套水下采油树,用于墨西哥湾海域,适应水深能力20m。
随着时间的推移和技术的不断积累和完善,海洋水下井口和采油装备得到了快速发展。
就其具备规模的公司来说,除FMC公司外,美国GE-VetcoGray公司、Caneron 公司、D ril-qu ip公司和挪威Aker Kvaemer公司等均有很强的技术实力;就其设备形式而言,目前已有水平采油树、垂直采油树、混合采油树和有导向绳式采油树及无导向绳式采油树等多种结构形式。
同样,水下井口装备也经历了一个从陆地到海洋,从干式到湿式,从简单到复杂,从浅水到深水的漫长发展历程,当前能够满足的水深范围已达到3000m。
工作压力已形14MPa,21MPa,35MPa,70MPa,105MPa到140MPa等不同的系列。
GB/T21412《石油天然气工业水下生产系统的设计与操作》分为九个部分:---第1部分:总要求和建议;---第2部分:水下和海上用软管系统;---第3部分:过出油管(TFL)系统;---第4部分:水下井口装置和采油树设备;---第5部分:水下控制管缆;---第6部分:水下生产控制系统;---第7部分:修井和(或)完井立管系统;---第8部分:水下生产系统远程作业机器人(ROV)接口;---第9部分:远程作业工具(ROT)维修系统。
本部分为GB/T21412的第4部分,对应于ISO136284:1999《石油和天然气工业水下生产系统的设计与操作第4部分:水下井口装置和采油树设备》(英文第1版)。
本部分等同翻译ISO136284:1999,为了便于使用,本部分做了下列编辑性修改:---ISO13628的本部分改为GB/T21412的本部分或本部分;---用小数点.代替作为小数点的逗号,;---将ISO136284:1999中的ISO10423和ISO10423:1994统一为ISO10423:1994;---在第2章引用文件中,用ISO13533、ISO13625、ISO13628 3 分别代替APISpec16A、APISpec16R、APIRP17C 并增加了标准中文名称;---对表面粗糙度值进行了转换;---表7(A)中转换了螺栓直径并增加了螺栓孔直径公制尺寸值;表9(B)和表10(B)中增加了螺栓孔直径公制尺寸值;---表G.1中增加了螺栓直径和螺距公制尺寸值;---删除了ISO136284:1999的前言和引言;---增加了本部分的前言。
本部分的附录E、附录G 和附录H 为规范性附录,附录A、附录B、附录C、附录D、附录F和附录I为资料性附录。
本部分由全国石油钻采设备和工具标准化技术委员会(SAC/TC96)提出并归口。
本部分负责起草单位:宝鸡石油机械有限责任公司。
本部分参加起草单位:中国海洋石油总公司、石油工业井控装置质量监督检验中心。
井口采油树的原理
井口采油树是石油开采中的一种设备,用于控制井口的油气流量和压力。
它通常安装在井口上方,连接着井筒和输送管道。
以下是井口采油树的基本原理:
1. 控制油气流量:井口采油树可以通过打开或关闭阀门来控制油气的流入和流出。
通过调整阀门的开闭程度,可以控制油气的产量和流速。
2. 调节井口压力:井口采油树还可以调节井口的压力。
通过调整阀门的开闭程度,可以增加或减少井口的压力,以满足油田开采的需求。
3. 防止井喷:井口采油树还具有防止井喷的功能。
如果井底的压力突然升高,采油树可以通过关闭阀门来切断井口与井底之间的连接,阻止油气喷出。
4. 安全措施:井口采油树还配备了多种安全装置,如压力传感器、温度传感器和阀门故障监测装置等,以确保井口的安全运行和监测。
总的来说,井口采油树的原理是通过控制阀门开闭来调节油气流量和压力,以确保安全、高效地开采油田资源。
井口专题(二)采油树采油树概念采油树是自喷井和机采井等用来开采石油的井口装置。
它是油气井最上部的控制和调节油气生产的主要设备,采油树由阀门、异径接头、油嘴及管路配件组成,是一种用于控制生产,并为钢丝、电缆、连续油管等修井作业提供条件的装置。
采油树的作用(1)连接井下各层套管,密封各层套管环形空间,承挂套管部分重量。
(2)悬挂油管及下井工具,承托井内全部油管柱的重量,密封油管、套管间的环形空间。
(3)控制和调节油井的生产。
(4)保证各项井下作业施工,便于压井作业、起下作业等措施施工和进行测压、清蜡等日常生产管理。
(5)录取油压、套压资料。
采油树分类采油树按结构形式,可分为分体式和整体式两种。
分体式是由一些阀门等独立部件组装而成。
△分体式采油树整体式是将主阀、安全阀、清蜡阀和翼阀等制成一个整体部件,阀与阀之间的距离较小,既省空间又耐高压,特别适用于海上平台的油气井。
△整体式采油树按生产井类别和完井生产方式,可分为自喷井、电潜泵井、气举井、螺杆泵井和注水井、气井的采油树等。
△各式采油树单管和双管之分1.单油管采油树单油管采油树安装在单油管完井的井口装置上,除了有分体式和整体式之外,它还有单翼和双翼之分。
根据井的种类或油井生产方式的差别,可用阀门及短节组合成不同形式的单油管采油树,而其连接方式可以是法兰式、螺纹式或卡箍式。
△单管采油树2.双油管采油树双油管采油树安装在双油管完井的井口装置上,用于两个油层同时而又独立开采的生产控制。
双油管完井是在同—个生产套管中下入两根平行油管柱(长油管柱和短油管柱)或两根同心油管柱,通过双管封隔器和单管封隔器对两个油(或气)层段进行分隔。
△双管采油树3 . 三管采油树随着技术的发展和现场的实际应用需求,已经出现了三管采油树。
△三管采油树采油树相关部件1.油管四通和三通采油树的油管四通和三通与主阀、清蜡阀和翼阀相连接,常见的四通和三通有法兰式和法兰一双头螺栓式。
采用四通的采油树为双翼采油树,采用三通的采油树为单翼采油树。