二次函数周检测题(3)含答案
- 格式:docx
- 大小:93.51 KB
- 文档页数:3
专题训练三 二次函数的最值及自变量的取值范围由自变量的取值范围求函数值的取值范围1.二次函数y=-x2+bx+c的部分图象如图所示,若y>3,则x的取值范围是( )A.-4<x<1B.-2<x<0C.x<-4或x>1D.x<-2或x>02.二次函数y=-x2+bx+c,若y≥2时,x的取值范围为n-3≤x≤n+1(n为常数),则当n-4≤x≤n时,y的取值范围为( )A.-3≤y≤5B.-3≤y≤6C.0≤y≤5D.0≤y<63.已知二次函数y=-x2+2x+3,当-1≤x≤2时,y的取值范围为 .4.已知二次函数y=-x2+bx+c,函数值y与自变量x之间的部分对应值如表:x…-4-101…y…-21-2-7…(1)写出二次函数图象的对称轴;(2)求二次函数的表达式;(3)当-4<x<-1时,写出函数值y的取值范围.由自变量取值范围下的函数最值求字母系数5.(2024西安临潼区二模)已知抛物线y=-(x -n )2-1(n 为常数),当1≤x ≤4时,其对应的函数值最大为-10,则n 的值为( )A.4B.-2或7C.1或7D.-2或46.如图,抛物线y=12x 2-x -32的顶点为D 点,与y 轴交于C 点,点M (m ,0)是x 轴上的一个动点,当MC+MD 的值最小时,m 的值是( )A.13B.12C.23D.377.(2024苏州期末)如图,Rt △ABC 中,∠ABC=90°,AB=6 cm,BC=8 cm,点P 从点A 出发沿边AB 向点B 以1 cm/s 的速度移动,点Q 从B 出发沿边BC 向点C 以2 cm/s 的速度移动,P ,Q 两点同时出发,当一点到达终点时另一点也停止运动,设运动时间为t (s).(1)若P ,Q 两点的距离为42 cm 时,求t 的值;(2)当t 为何值时,△BPQ 的面积最大?并求出最大面积.8.(2024廊坊大城县期中)已知抛物线y=x 2+ax+a+1经过点A (-2,3).(1)求a的值;(2)已知点P(m,y P),Q(m-4,y Q)均在该抛物线上.①若m=0,请比较y P与y Q的大小关系;②当-3≤x≤m时,函数y的最大值是6,最小值是2,求m的取值范围.9.(2024葫芦岛绥中县月考)如图,已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴相交于点C.(1)求此抛物线的表达式;(2)若点P是直线BC下方的抛物线上一动点(不与点B、C重合),过点P作y轴的平行线交直线BC 于点D,设点P的横坐标为m.①用含有m的代数式表示线段PD的长;②连接PB,PC,求△PBC的面积最大时点P的坐标.【详解答案】1.B 解析:由题图可得:抛物线对称轴为直线x =-1,当x =0时,y =3,根据抛物线的对称性可得:当x =-2时,y =3,∴若y>3,则x 的取值范围是-2<x<0,故选B .2.B 解析:由题意知,当y ≥2时,x 的取值范围为n-3≤x ≤n +1,且抛物线开口向下,∴对称轴是直线x =n -3+n +12=n-1=-b-2.∴b =2(n-1).∴抛物线为y =-x 2+2(n-1)x +c.又当x =n +1时,y =-(n +1)2+2(n-1)·(n +1)+c =2,∴c =-n 2+2n +5.∴二次函数为y =-x 2+2(n-1)x-n 2+2n +5.∵抛物线开口向下,∴抛物线上的点离对称轴越近函数值越大.∵n-1-(n-4)=3>n-(n-1)=1,n-4<n-1<n ,又n-4≤x ≤n ,∴当x =n-1时,y 取最大值为y =-(n-1)2+2(n-1)2-n 2+2n +5=6;当x =n-4时,y 取最小值为y =-(n-4)2+2(n-4)(n-1)-n 2+2n +5=-3.∴当n-4≤x ≤n 时,-3≤y ≤6.故选B .3.0≤y ≤4 解析:∵二次函数y =-x 2+2x +3=-(x-1)2+4,∴该函数图象开口向下,对称轴为直线x =1.∵-1≤x ≤2,∴当x =-1时,y 取得最小值0;当x =1时,y 取得最大值4;∴当-1≤x ≤2时,y 的取值范围为0≤y ≤4.4.解:(1)∵x =-4和x =0时的函数值相等,都是-2,∴此函数图象的对称轴为直线x =-4+02=-2.(2)将(-1,1),(0,-2)代入y =-x 2+bx +c ,得-1-b +c =1.c =-2.解得b =-4,c =-2,∴二次函数的表达式为y =-x 2-4x-2.(3)∵y =-x 2-4x-2=-(x +2)2+2,∴当x =-2时,y 取得最大值2.由表可知当x =-4时y =-2,当x =-1时y =1,∴当-4<x<-1时,-2<y ≤2.5.B 解析:①当n ≥4时,当x =4,y =-10时,代入抛物线y =-(x-n )2-1(n 为常数),得-10=-(4-n )2-1,整理,得n 2-8n +7=0,解得n =7或1(舍去),②当n ≤1时,当x =1,y =-10时,代入抛物线y =-(x-n )2-1(n 为常数),得-10=-(1-n )2-1,整理,得n 2-2n-8=0,解得n =-2或4(舍去).故n 的值为7或-2.故选B .6.D 解析:当x =0时,y =12x 2-x-32=-32,则点C 的坐标为0∴C 点关于x 轴的对称点C'的坐标为0∵y =12x 2-x-32=12(x-1)2-2,∴点D 的坐标为(1,-2).连接C'D 交x 轴于M ,如图,∵MC +MD =MC'+MD =C'D ,∴此时MC +MD 的值最小.设直线C'D 的表达式为y =kx +32,把D (1,-2)代入,得-2=k +32,解得k =-72,∴直线C'D 的表达式为y =-72x +32,当y =0时,-72x +32=0,解得x =37,∴此时M 0,即m =37.故选D .7.解:(1)由题意知,BP =(6-t )cm,BQ =2t cm .在Rt △BPQ 中,PQ 2=PB 2+BQ 2=(6-t )2+(2t )2.又∵P ,Q 两点的距离为42 cm,∴(6-t )2+(2t )2=(42)2,解得t 1=2,t 2=25.又∵0≤t ≤4,∴上述两解都符合题意,故t 的值为2或25.(2)由(1)知,BP =(6-t )cm,BQ =2t cm,∴S △BPQ =12BP ·BQ =12·2t (6-t )=t (6-t )=-t 2+6t =-(t 2-6t +9)+9=-(t-3)2+9.又∵0≤t ≤4,且-1<0,∴当t =3时,S △BPQ 有最大值为9 cm 2.8.解:(1)将点A (-2,3)代入y =x 2+ax +a +1中,得3=4-2a +a +1,解得a =2.(2)①∵a =2,∴抛物线为y =x 2+2x +3,当m =0时,点P (m ,y P ),Q (m-4,y Q )为P (0,y P ),Q (-4,y Q ),∴y P =0+0+3=3,y Q =16-8+3=11,∴y P 与y Q 的大小关系为y P <y Q ;②y =x 2+2x +3=(x +1)2+2.当x 2+2x +3=6时,x 1=-3,x 2=1.如图,根据图象和题意可得m 的取值范围是-1≤m ≤1.9.解:(1)∵抛物线y =ax 2+bx +3(a ≠0)经过点A (1,0)和点B (3,0),∴将A ,B 点坐标代入,得a +b +3=0,9a +3b +3=0,解得a =1,b =-4,∴抛物线表达式为y =x 2-4x +3.(2)①由y =x 2-4x +3可知,抛物线对称轴为直线x =2,点C (0,3),设直线BC 的表达式为y =kx +c.将点B (3,0),C (0,3)代入直线BC 表达式y =kx +c ,则3k +c =0,c =3,解得k =-1.c =3.∴直线BC 的表达式为y BC =-x +3.设P (m ,m 2-4m +3),如图,过点P 作y 轴的平行线交直线BC 于点D ,∴点D 的坐标为(m ,-m +3),∴PD =(-m +3)-(m 2-4m +3)=-m 2+3m ;②S △PBC =S △CPD +S △BPD =12OB ·PD =-32m 2+92m=+278,∴当m =32时,S 有最大值.当m =32时,m 2-4m +3=-34.∴点P∴△PBC 的面积最大时点P。
人教版九年级数学上册第22章《二次函数》单元测试及答案 (2)一.选择题(每小题3分,共30分)1.下列函数关系中,可以看做二次函数y =ax 2 +bx +c (a ≠0)模型的是( ) A .在一定的距离内汽车的行驶速度与行驶时间的关系B .我国人口年自然增长率1%,这样我国人口总数随年份的关系C .竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D .圆的周长与圆的半径之间的关系.2.抛物线y =x 2 –2x –3 的对称轴和顶点坐标分别是( )A .x =1,(1,-4)B .x =1,(1,4)C .x =-1,(-1,4)D .x =-1,(-1,-4)3.对称轴平行于y 轴的抛物线的顶点为点(2,3)且抛物线经过点(3,1),那么抛物线解析式是( )A .y =-2x 2 + 8x +3B .y =-2x -2 –8x +3C .y = -2x 2 + 8x –5D .y =-2x -2 –8x +24.已知二次函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( )A .ab >0,c >0B .ab >0,c <0C .ab <0,c >0D .ab <0,c <05.把二次函数y =213212---x x 的图象向上平移3个单位,再向右平 移4个单位,则两次平移后的图象的解析式是( )A .x y (21-=- 1)2 +7 B .x y (21-=+7)2 +7 C .x y (21-=+3)2 +4 D .x y (21-=-1)2 +16.下列各点中是抛物线3)4(312--=x y 图像与x 轴交点的是( )A . (5,0)B . (6,0)C . (7,0)D . (8,0)7. 在同一直角坐标系中,一次函数y =ax +c 和二次函数y =ax 2+c 的图象大致为( )8. 已知二次函数y =2x 2+8x +7的图象上有有点A 1(2)y -,,B 21(5)3y -,,C 31(1)5y -,,则 y 1、y 2、y 3的大小关系为( )A . y 1 > y 2> y 3B . y 2> y 1> y 3C . y 2> y 3> y 1D . y 3> y 2> y 1 9.二次函数y =ax 2+bx +c的图象如图所示,则点M c b a ⎛⎫⎪⎝⎭,在( )Oyx9题x yO x yO xyOxyOA .第一象限B .第二象限C .第三象限D .第四象限 10.关于二次函数y =ax 2+bx +c 图像有下列命题:(1)当c =0时,函数的图像经过原点;(2)当c >0时,函数的图像开口向下时,方程ax 2 +bx + c =0 必有两个不等实根; (3)当b =0时,函数图像关于原点对称.其中正确的个数有( )A .0个B .1个C .2个D .3个 二.填空题(每题3分,共21分)11.已知抛物线y =ax 2 +bx +c 的对称轴为x =2,且经过点(1,4)和点(5,0),则该抛物线的解析式为_______________.12.函数y =2x 2 – 4x – 1写成y = a (x –h)2 +k 的形式是________,抛物线y =2x 2 – 4x – 1的顶点坐标是_______,对称轴是__________.13.已知函数①y =x 2+1,②y =-2x 2+x .函数____(填序号)有最小值,当x =____时,该函数的最小值是_______.14.当m=_________时,函数y = (m 2 -4))3(42-+--m x m mx + 3是二次函数,其解析式是__________________,图象的对称轴是_______________,顶点是________,当x =______时, y 有最____值_______.15.已知二次函数的图象开口向下,且与y 轴的正半轴相交.请你写出一个满足条件的二次函数的解析式:___________16.抛物线c bx ax y ++=2如右图所示,则它关于y 轴对称的抛物线的解析式是__________.17.有一个二次函数的图象,三位同学分别说出了它的一些特点:甲:对称轴为直线x =4乙:与x 轴两个交点的横坐标都是整数.丙:与y 轴交点的纵坐标也是整数,且以这三个点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式__________________.三.解答题(共52分)18.(6分) (1)如果二次函数y =x 2 - x + c 的图象过点(1,2),求这个二次函数的解析式,并写出该函数图象的对称轴.19.(10分)有一个运算装置,当输入值为x 时,其输出值为y ,且y 是x 的二次函数,已知输入值为2-,0,1时, 相应的输出值分别为5,3-,4-.(1)求此二次函数的解析式;(2)在所给的坐标系中画出这个二次函数的图象,并根据图象写出当输出值y 为正数时输入值x 的取值范围.20.(10分) 某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:yO 331 yO xx (元) 15 20 30 … y (件)252010…若日销售量y 是销售价x 的一次函数.(1)求出日销售量y (件)与销售价x (元)的函数关系式;(2)要使每日销售利润最大,每件产品的销售价应定为多少元?此时,每日销售的利润是多少元? 21.(12分) 某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成下图.请根据图象回答:⑴第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间?⑵第三天12时这头骆驼的体温是多少?⑶兴趣小组又在研究中发现,图中10时到22时的曲线是抛物线,求该抛物线的解析式.22.(12分)在平面直角坐标系中,给定以下五点A (-2,0),B (1,0)C (4,0),D (-2,29),E (0,-6),从这五点中选取三点,使经过这三点的抛物线满足以平行于y 轴的直线为对称轴.我们约定:把经过三点A 、E 、B 的抛物线表示为抛物线AEB (如图所示).(1)问符合条件的抛物线还有哪几条.....不求解析式,请用约定的方法一一表示出来; (2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求出抛物线及直线的解析式;如果不存在,请说明理由.参考答案: 1.C 2.A3.C 点拨:使用待定系数法求解二次函数解析式. 4.C5.A 点拨:此题不仅考查了对平移的理解,同时考查了学生将一般式转化顶点式的能力.(平移含两个方向:一是左右平移,二是上下平移.左右平移时,对应点纵坐标不变;上下平移时,对应点横坐标不变.) 6.C 7.B8.C (本题涉及到比较坐标值大小的问题,可先将一般式y =2x 2+8x +7化成顶点式22(2)1y x =+-便得顶点(-2,-1).因为抛物线开口向上,故当x =-2时,y 1=-1为最小值;又因为115135-> ,由函数图象分布规律,易知对应的y 2>y 3.综上得y 2>y 3>y 1 ) 9.D10.C 11.y =252212++-x x 12.y = 2(x –1)2 –3 , (1,-3), x = 113.①,0,114. 3 , y =5x 2+3 ,y 轴(或x =0) ,(0,3) x =0时y 有最小值3 15.y =-x 2 –2x + 3 (满足条件即可)16. y =x 2+4x +3 点拨:这是一道很容易出错的题目.根据对称点坐标来解.因为点(1,0),(3,0),(0,3)关于y 轴的对称点是(-1,0),(-3,0),(0,3).所以关于y 轴对称的抛物线就经过点(-1,0),(-3,0),(0,3)然后利用待定系数法求解即可. 17.抛物线的解析式为:222218181818113377775555y x x y x x y x x y x x =-+=-+-=-+=-+-或或或(从四个答案中填写一个即可) 点拨:本题是一个开放性题目,主要考查数形结合法,待定系数法以及抛物线与x 轴y 轴的交点坐标等有关性质.根据题意中二次函数图象的特点,用数形结合法画出其示意图,对称轴x =4.可由面积来求.18. (1)y = x 2–x + 2, x = 21;19.解:(1)设所求二次函数的解析式为c bx ax y ++=2,则⎪⎪⎩⎪⎪⎨⎧-=++-=+⋅+⋅=+-+-43005)2()2(22c b a c b a c b a ,即⎪⎩⎪⎨⎧-=+=--=1423b a b a c ,解得⎪⎩⎪⎨⎧-=-==321c b a 故所求的解析式为:322--=x x y . 2)函数图象如图所示.由图象可得,当输出值y 为正数时, 输入值x 的取值范围是1-<x 或3>x . 20.解:一次函数的解析式为 y =k x +b 则y O x15252020k b k b +=⎧⎨+=⎩解的K=-1 b =40 即:一次函数解析式为y =-x +40(2)设每件产品的销售价应定为x 元,所获销售利润为w 元 w=(x -10)(40-x )=-x 2+50x -400=-(x -25)2+225产品的销售价应定为25元,此时每日获得的最大销售利润为225元.21、⑴第一天中,从4时到16时这头骆驼的体温是上升的它的体温从最低上升到最高需要12小时⑵第三天12时这头骆驼的体温是39℃ ⑶()()的取值范围不写不扣分x x x x y 22102421612≤≤++-= 22.解:(1)符合条件的抛物线还有5条,分别如下:①抛物线AEC ;②抛物线CBE ;③抛物线DEB ;④抛物线DEC ;⑤抛物线DBC . (2)在(1)中存在抛物线DBC ,它与直线AE 不相交设抛物线DBC 的解析式为y =ax 2+bx +c ,将D (-2,29),B (1,0),C (4,0)三点坐标分别代入,得:4a -2b +c =29,a +b +c =0,16a +4b +c =0.解这个方程组,得:a =41,b =-45,c =1.∴抛物线DBC 的解析式为y =41x 2-45x +1【另法:设抛物线为y =a (x -1)(x -4),代入D (-2,29),得a =41也可.】 又设直线AE 的解析式为y =m x +n .将A (-2,0),E (0,-6)两点坐标分别代入,得: -2m+n=0,解这个方程组,得m=-3,n=-6. n=-6.∴直线AE 的解析式为y =-3x -6.。
《二次函数》检测题一.选择题1.已知二次函数y=a(x﹣h)2+k,其图象过点A(0,2),B(6,2),则h的值是()A.6 B.5 C.4 D.3),B(1,y2),C(,y3)三2.若二次函数y=x2﹣6x+9的图象,经过A(﹣1,y点,y1,y2,y3大小关系正确的是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2 3.如果将抛物线y=x2+2向下平移1个单位,向右平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=(x﹣1)2+3 D.y=(x+1)2﹣3 4.有一个矩形苗圃园,其中一边靠墙,另外边用长为20m的篱笆围成.已知墙长为15m,若平行于墙的一边长不小于8m,则这个苗圃园面积的最大值和最小值分别为()A.48m2,37.5m2B.50m2,32m2C.50m2,37.5m2D.48m2,32m25.二次函数y=2x2﹣3的二次项系数、一次项系数和常数项分別是()A.2、0、﹣3 B.2、﹣3、0 C.2、3、0 D.2、0、36.若二次函数y=x2+3x+a﹣1的图象经过原点,则a的值为()A.0 B.1 C.﹣1 D.1或﹣17.二次函数y=a2x2+bx+c(a≠0)的图象的顶点为P(m,k)且有一点Q(k,m)也在该函数图象上,则下列结论一定正确的是()A.m=k B.m>k C.m≥k D.m<k8.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.9.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a、b、c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为()A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟10.如图,已知抛物线y=x2+bx+c与直线y=x交于(1,1)和(3,3)两点,现有以下结论:①b2﹣4c>0;②3b+c+6=0;③当x2+bx+c>时,x>2;④当1<x<3时,x2+(b﹣1)x+c<0,其中正确的序号是()A.①②④B.②③④C.②④D.③④11.抛物线y=2x2﹣x﹣1与y轴的交点坐标为.12.抛物线y=﹣2(x+1)2﹣3开口,对称轴是,顶点坐标是,如果y随x的増大而减小,那么x的取值范围是.13.点P1(﹣1,y1),P2(4,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是.(用“<”连接)14.数学综合实践课,老师要求同学们利用直径为6cm的圆形纸片剪出一个如图所示的展开图,再将它沿虚线折叠成一个无盖的正方体形盒子(接缝处忽略不计).若要求折出的盒子体积最大,则正方体的棱长等于.15.已知二次函数y=ax2﹣ax﹣x﹣t(t为实数)的对称轴是直线x=1,函数图象的顶点在x轴上,则t=;把抛物线k1:y=mx2﹣mx﹣x(m是一常数,且m<0)向上平移一个单位得到新的抛物线k2,则k2落在x轴上方的部分对应的x的取值范围是.16.若二次函数y=x2﹣x﹣(m2+m),以下结论:①抛物线与坐标轴有三个交点;②当x≥时,y随x的增大而增大;③函数交x轴于A,B两点,若AB=1,则m=0或m=1;④若直线y=x﹣1与抛物线没有交点,则m<1;其中正确的是.17.在平面直角坐标系xOy中,直线y=2x+2与x轴,y轴分别交于点A,B,抛物线y =ax2+bx﹣3a经过点A,将点B向右平移4个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.18.用长为36米的篱笆围成一个矩形养鸡场,设围成矩形一边长为x米,面积为y平方米.(1)求y关于x函数解析式;(2)当x为何值时,围成的养鸡场面积为45平方米?19.已知二次函数y=(1)把函数表达式配方成y=a(x﹣h)2+k的形式为.(2)函数图象的开口方向向,顶点坐标为,对称轴为直线,函数图象与x轴的交点坐标为,与y轴的交点坐标为.(3)函数y=的图象可由抛物线y=﹣向平移个单位长度,再向平移个单位长度得到;(4)根据图象,写出y>0时,x的取值范围是.(5)当y随x的增大而增大时,x的取值范围是.20.某商场将每台进价为3000元的彩电以3900元的销售价售出,每天可销售出6台,这种彩电每台降价100x(x为整数且0<x<9)元,每天可以多销售出3x台.(1)降价后每台彩电的利润是元,每天销售彩电台,设商场每天销售这种彩电获得的利润为y元,试写出y与x之间的函数关系式.(2)为了使顾客得到实惠,每台彩电的销售价定为多少时,销售该品牌彩电每天获得的利润最大,最大利润是多少?21.如图,已知抛物线y=ax2+2x+c与y轴交于点A(0,6),与x轴交于点B(6,0),点P是线段AB上方抛物线上的一个动点.(1)求这条抛物线的表达式及其顶点坐标;(2)点M在抛物线上,点N在x轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标:若不存在,请说明理由;(3)当点P从A点出发沿线段AB上方的抛物线向终点B移动时,点P到直线AB的距离为d,求d最大时点P的坐标.22.已知抛物线y=ax2+bx+3与x轴交于A(﹣1,0)、B(3,0)两点.(1)求抛物线解析式;(2)抛物线与y轴交于点C,在抛物线上存在点P,使S△BAP=S△CAP,求P点坐标;(3)已知直线l:y=2x﹣1,将抛物线沿y=2x﹣1方向平移,平移过程中与l相交于E、F两点.设平移过程中抛物线的顶点的横坐标为m,在x轴上存在一点P,使∠EPF=90°,求m的范围.23.已知抛物线y=ax2﹣2ax﹣2(a≠0).(1)当抛物线经过点P(1,0)时,求抛物线的顶点坐标;(2)若该抛物线开口向上,当0≤x≤4时,抛物线的最高点为M,最低点为N,点M 的纵坐标为6,求点M和点N的坐标;(3)点A(x1,y1)、B(x2,y2)为抛物线上的两点,设t≤x1≤t+1,当x2≥3且a<0时,均有y1≥y2,求t的取值范围.24.二次函数y=ax2+bx+2的图象交x轴于点A(﹣1,0),点B(4,0)两点,交y轴于点C,动点M从A点出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)直线MN上存在一点P,当△PBC是以∠BPC为直角等腰三角形时,求此时点D 的坐标;(3)当t=时,在直线MN上存在一点Q,使得∠AQC+∠OAC=90°,求点Q的坐标.参考答案一.选择题1.解:由解析式可知抛物线的对称轴为直线x=h,∵点A(0,2),B(6,2),它们的纵坐标相同,∴对称轴为直线x==3∴h=3.故选:D.2.解:∵二次函数y=x2﹣6x+9=(x﹣3)2,∴对称轴为直线x=3,3﹣(﹣1)=4,3﹣1=2,4+﹣3=1+,∵4>1+>2,∴y1>y3>y2.故选:B.3.解:抛物线y=x2+2向下平移1个单位后的解析式为:y=x2+2﹣1=x2+1.再向右平移1个单位所得抛物线的解析式为:y=(x﹣1)2+1.故选:A.4.解:设平行于墙的一边长为xm,苗圃园面积为Sm2,则S=x×(20﹣x)=﹣(x2﹣20x)=﹣(x﹣10)2+50∵﹣<0∴S有最大值,x=10>8时,S最大=50∵墙长为15m∴当x=15时,S最小S=15××(20﹣15)=37.5最小∴这个苗圃园面积的最大值和最小值分别为50m2,37.5m2.故选:C.5.解:二次函数y=2x2﹣3的二次项系数是2,一次项系数是0,常数项是﹣3,故选:A.6.解:把(0,0)代入y=x2+3x+a﹣1得a﹣1=0,解得a=1,所以a的值为1.故选:B.7.解:∵二次函数y=a2x2+bx+c(a≠0),∴a2>0,∴该函数开口向上,函数有最小值,∵二次函数y=a2x2+bx+c(a≠0)的图象的顶点为P(m,k)且有一点Q(k,m)也在该函数图象上,∴m≥k,故选:C.8.解:∵二次函数y=x2+a∴抛物线开口向上,∴排除B,∵一次函数y=ax+2,∴直线与y轴的正半轴相交,∴排除A;∵抛物线得a<0,∴排除C;故选:D.9.解:根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:,解得:,即p=﹣0.2t2+1.5t﹣2,当t=﹣=3.75时,p取得最大值,故选:B.10.解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;∴b2﹣4c<0故①不正确;当x=3时,y=9+3b+c=3,即3b+c+6=0;故②正确;把(1,1)(3,3)代入y=x2+bx+c,得抛物线的解析式为y=x2﹣3x+3,当x=2时,y=x2﹣3x+3=1,y==1,抛物线和双曲线的交点坐标为(2,1)第一象限内,当x>2时,x2+bx+c>;或第三象限内,当x<0时,x2+bx+c>;故③错误;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确;故选:C.二.填空题(共6小题)11.解:把x=0代入抛物线y=2x2﹣x﹣1得:y=﹣1,∴抛物线y=2x2﹣x﹣1与y轴的交点坐标是(0,﹣1),故答案为:(0,﹣1).12.解:抛物线y=﹣2(x+1)2﹣3的开口向下,对称轴是直线x=﹣1,顶点坐标是(﹣1,﹣3),当x>﹣1时,y随x的增大而减小,故答案为:向下,x=﹣1,(﹣1,﹣3),x>﹣1.13.解:∵y=﹣x2+2x+c=﹣(x﹣1)2+1+c,∴图象的开口向下,对称轴是直线x=1,A(﹣1,y)关于对称轴的对称点为(3,y1),1∵3<4<5,∴y3<y2<y1,故答案为y3<y2<y1.14.解:根据题意AB=6cm,设正方体的棱长为xcm,则AC=x,BC=3x,根据勾股定理,AB2=AC2+BC2,即62=x2+(3x)2,解得x=故答案为cm.15.解:对称轴是直线x=1=,解得:a=1,△=(﹣a﹣1)2+4at=0,解得:t=﹣1,故答案为:﹣1;k的表达式为:y=mx2﹣mx﹣x﹣1,2△=(﹣m﹣1)2+4m=(m﹣1)2,函数与x轴的交点坐标为:(,0)和(1,0),故k2落在x轴上方的部分对应的x的取值范围:<x<1,故答案为:<x<1.16.解:①△=1﹣4(﹣m2+m)=(2m﹣1)2≥0,即抛物线与坐标轴有2﹣3个交点,故不符合题意;②函数的对称轴为:x=,函数开口向上,故当x≥时,y随x的增大而增大,符合题意;③函数交x轴于A,B两点,则两个点的坐标分别为:(m+1,0)、(﹣m,0),则AB=|m+1+m|=1,则m=0或m=﹣1,故不符合题意;④若直线y=x﹣1与抛物线没有交点,即:x2﹣x﹣(m2+m)=x﹣1,化简为:x2﹣2x ﹣(m2+m﹣1)=0,△=4+4(m2+m﹣1)<0,解得:0<m<1,故m<1,不符合题意;故答案为:②三.解答题(共8小题)17.解:(1)与y轴交点:令x=0代入直线y=2x+2得y=2,∴B(0,2),∵点B向右平移4个单位长度,得到点C,∴C(4,2);(2)与x轴交点:令y=0代入直线y=2x+2得x=﹣1,∴A(﹣1,0),将点A(﹣1,0)代入抛物线y=ax2+bx﹣3a中得0=a﹣b﹣3a,即b=﹣2a,∴抛物线的对称轴x=﹣=﹣=1;(3)∵抛物线y=ax2+bx﹣3a经过点A(﹣1,0)且对称轴x=1,由抛物线的对称性可知抛物线也一定过A的对称点(3,0),①a>0时,如图1,将x=0代入抛物线得y=﹣3a,∵抛物线与线段BC恰有一个公共点,∴﹣3a<4,a>﹣,将x=4代入抛物线得y=5a,∴5a≥4,a≥,∴a≥;②a<0时,如图2,将x=0代入抛物线得y=﹣3a,∵抛物线与线段BC恰有一个公共点,∴﹣3a>4,a<﹣;③当抛物线的顶点在线段BC上时,则顶点为(1,4),如图3,将点(1,4)代入抛物线得4=a﹣2a﹣3a,解得a=﹣1.综上所述,a≥或a<﹣或a=﹣1.18.解:(1)由题意可得,y=x•=x(18﹣x)=﹣x2+18x,即y关于x的函数关系式是:y=﹣x2+18x(0<x<18);(2)令y=45,则45=﹣x2+18x,解得x1=3,x2=15.即当x为3米或15米时,围成的养鸡场面积为45平方米.19.解:(1)y==﹣(x+1)2+2;故答案为:y=﹣(x+1)2+2;(2)﹣0,故函数图象的开口方向向下,顶点坐标为(﹣1,2),对称轴为直线x =﹣1,y=,令x=0,则y=,令y=0,则x=1或﹣3,故:函数图象与x轴的交点坐标为(1,0)或(﹣3,0),与y轴的交点坐标为(0,),故答案为:下,(﹣1,2),x=1,(1,0)或(﹣3,0),(0,);(3)函数y=的图象可由抛物线y=﹣向上平移2个单位,向左平移1个单位得到,故答案为:上,2,左,1;(4)根据图象,写出y>0时,x的取值范围是:﹣1<x<3,故答案为:﹣1<x<3;(5)函数的对称轴为:x=﹣1,故当y随x的增大而增大时,x的取值范围是x<﹣1,故答案为:x<﹣1.20.解:(1)由题意得:每台彩电的利润是(3900﹣100x﹣3000)元,即(900﹣100x)元,每天销售(6+3x)台,则y=(900﹣100x)(6+3x)=﹣300x2+2100x+5400故答案为:(900﹣100x),(6+3x);y与x之间的函数关系式为:y=﹣300x2+2100x+5400.(2)y=﹣300x2+2100x+5400.=﹣300(x﹣3.5)2+9075当x=3或x=4时,y最大值=9000.当x=3时,彩电销售单价为3600元,每天销售15台,营业额为3600×15=54000元,当x=4时,彩电销售单价为3500元,每天销售18台,营业额为3500×18=63000元,∴为了使顾客得到实惠,每台彩电的销售价定为3500元时,销售该品牌彩电每天获得的利润最大,最大利润是9000元.21.解:(1)物线y=ax2+2x+c与y轴交于点A(0,6),则c=6,将点B(6,0)代入函数表达式得:0=36a+12+6,解得:a=﹣,故抛物线的表达式为:y=﹣x2+2x+6,∴函数的对称轴为:x=2,顶点坐标为(2,8);(2)设点P(m,n),n=﹣m2+2m+6,点N(s,0),①当AB是平行四边形的一条边时,点A向右、向下均平移6个单位得到B,同理点N右、向下均平移6个单位得到M,故:s+6=m,0﹣6=n,解得:m=2±2,故点M的坐标为(2﹣2,﹣6)或(2+2,﹣6);②当AB是平行四边形的对角线时,则AB的中点即为MN的中点,则s+m=6,n+0=6,解得:m=4,故点M的坐标为(4,6),综上,点M的坐标为(2﹣2,﹣6)或(2+2,﹣6)或(4,6).(3)如下图,过点P作PG∥y轴交AB于点G,作PH⊥AB交于点H,∵OA=OB=6,则∠OAB=∠OBA=45°,∵PG∥y轴,则∠PGH=∠OAB=45°,直线AB的表达式为:y=﹣x+6,设点P(x,﹣x2+2x+6),则G(x,﹣x+6),d=PH=PG=(﹣x2+2x+6+x﹣6)=(﹣x2+3x),当x=3时,d取得最大值,此时点P(3,).22.解:(1)抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=1,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3…①;(2)①当点P在第一象限时,如下图左图:过点C作AP的平行线,过点B作AP的平行线交y轴于点H,当GH=CG时,即点G是CH的中点时,则S△BAP=S△CAP,设点P(m,﹣m2+2m+3),将点P、A的坐标代入一次函数表达式:y=kx+b并解得:直线PA的表达式为:y=(3﹣m)x+(3﹣m),则点G(0,3﹣m),.同理BH的表达式为:y=(3﹣m)x﹣9(3﹣m),则点H(0,9m﹣27),点G是CH的中点,则2(3﹣m)=3+9m﹣27,解得:m=,故点P(,);②当点P在第四象限时,如上图右侧图,S=S△CAP,则点B、C到直线AP的距离相等,△BAP则CB∥AP即满足条件,同理可得:直线BC的表达式为:y=﹣x+3,同理可得:直线AP的表达式为:y=﹣x﹣1…②,联立①②并解得:x=4,故点P(4,﹣5),③当点P在二、三象限时,点B、C到直线AP的距离不相等,故点P不存在;综上,点P的坐标为:(,)或(4,﹣5);(3)当以EF为直径的⊙R与x轴相切时,直线x上存在点P即切点,使∠EPF=90°,当⊙R与x轴相交时,在x轴上存在点P(即交点),使∠EPF=90°,当⊙R与x轴相离时,不存在点P.如下图,⊙R与x轴相切时,切点为P,设:点E、F的坐标分别为:(x1,y1)、(x2,y2),当平移后的抛物线顶点横坐标为m时,则抛物线向右平移了m﹣1个单位,相应纵坐标向上平移了2(m﹣1)个单位,则平移后抛物线的表达式为:y=﹣(x﹣m+1)2+2m ﹣2,将上式与y=2x﹣1联立并整理得:x2﹣(2m﹣4)x+m2﹣2=0,则x1+x2=2m﹣4,x1x2=m2﹣2,则y1+y2=2(x1+x2)﹣2,则点R(m﹣2,2m﹣5),则(x1﹣x2)2=(x1+x2)2+4x1x2=24﹣16m,PR=EF,即:EF2=4PR2,EF2=(x﹣x2)2+(y1﹣y2)2=5(x1﹣x2)2=5×(24﹣16m)=4PR2=4(2m﹣5)12,化简得:4m2=5,解得:m=±,故m的范围是:m≥或m≤﹣.23.解:(1)∵该二次函数图象的对称轴为:x=﹣=1又∵抛物线经过点P(1,0),∴抛物线的顶点坐标为(1,0).(2)∵该抛物线开口向上,对称轴为x=1,∴当0≤x≤4时,点M的纵坐标为6,∴抛物线的最高点M的坐标为(4,6),∴将(4,6)代入y=ax2﹣2ax﹣2得:6=a×16﹣2a×4﹣2解得:a=1∴y=x2﹣2x﹣2∴最低点N在x=1时取得∴N(1,﹣3)∴点M和点N的坐标分别为(4,6)和(1,﹣3).(3)当a<0时,该抛物线开口向下,对称轴为x=1,∵点A(x1,y1)、B(x2,y2)为抛物线上的两点,t≤x≤t+1,当x2≥3时,均有y1≥y2,1∴解得:﹣1≤t≤2∴t的取值范围是﹣1≤t≤2.24.解:(1)函数的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),则﹣4a=2,解得:a=﹣,故抛物线的表达式为:y=﹣x2+x+2;(2)过点M作x轴的平行线交y轴于点E,过点B作y轴的平行线交EM的延长线于点F,∵∠BMF+∠MBF=90°,∠MBF+∠CME=90°,∴∠CME=∠MBF,MB=MC,∠MFB=∠CEM=90°,∴△MFB≌△CEM(AAS),∴ME=t﹣1=BF=OE,EC=MB=5﹣t,CO=CE﹣OE=5﹣t﹣(t﹣1)=2,解得:t=2,则OM=2﹣1=1,当x=1时,y=﹣x2+x+2=3,故点D(1,3);(3)如图2,∠ACO+∠CAO=90°,∠AQC+∠OAC=90°,∴∠ACO=∠CQA,同理∠CQ′A=∠ACO,则A、C、Q、Q′四点公圆,且圆心R在x轴上,连接QR、RC,设圆的半径为r,则在△COR中,AO=1,OR=r﹣1,CO=2,MO=﹣1=,则(r﹣1)2+4=r2,解得:r=3,在△AQM中,MR=3﹣=,QM==,故点Q的坐标为:(,)或(,﹣).。
2023年春学期九年级数学下册第五章【二次函数】检测卷一、单选题1.抛物线y =﹣2(x ﹣3)2﹣4的顶点坐标是()A .(﹣3,4)B .(﹣3,﹣4)C .(3,﹣4)D .(3,4)2.下列二次函数的图象经过原点的是()A .y=x 2+1B .y=x 2+xC .y=(x+1)2D .y=x 2-2x+13.用绳子围成周长为10(m )的矩形,记矩形的一边长为x (m ),面积为S (m 2).当x 在一定范围内变化时,S 随x 的变化而变化,则S 与x 满足的函数关系是()A .一次函数关系B .二次函数关系C .反比例函数关系D .正比例函数关系4.把抛物线y=2x 2向下平移1个单位,则平移后抛物线的解析式为()A .y=2x 2+1B .y=2x 2-1C .y=()22x 1+D .y=()22x 1-5.若A (﹣3,y 1),21B ,y 2⎛⎫⎪⎝⎭,C (2,y 3)在二次函数y =x 2+2x+c 的图象上,则y 1,y 2,y 3的大小关系是()A .y 2<y 1<y 3B .y 1<y 3<y 2C .y 1<y 2<y 3D .y 3<y 2<y 16.下列函数:①y=-x ;②y=2x ;③1y x=-;④y=x 2.当x<0时,y 随x 的增大而减小的函数有()A .1个B .2个C .3个D .4个7.若将抛物线y=x 2平移,得到新抛物线2(3)y x =+,则下列平移方法中,正确的是()A .向左平移3个单位B .向右平移3个单位C .向上平移3个单位D .向下平移3个单位8.一次函数y=ax 2+bx+c(a≠0)的图象如图所示,对称轴为直线x=1.下列结论:①abc>0;②若(−3,y 1),(4,y 2)在抛物线上,则y 1<y 2;③当−1<x<3时,y<0时;④8a+c>0.其中正确的有()A .①②B .①④C .①③④D .②④9.已知:抛物线y 1=x 2+2x-3与x 轴交于A 、B 两点(点A 在点B 的左侧),抛物线y 2=x 2-2ax-1(a>0)与x 轴交于C 、D 两点(点C 在点D 的左侧),在使y 1>0且y 2≤0的x 的取值范围内恰好只有一个整数时,a 的取值范围是()A .0<a≤34B .a≥34C .34≤a <43D .34<a≤4310.对于函数y==ax 2-(a+1)x+1,甲和乙分别得出一个结论:甲:若该函数图象与x 轴只有一个交点,则a=1;乙:方程ax 2-(a+1)x+1=0至少有一个整数根.甲和乙所得结论的正确性应是()A .只有甲正确B .只有乙正确C .甲乙都正确D .甲乙都不正确二、填空题11.校运动会铅球比赛时,小林推出的铅球行进的高度y (米)与水平距离x (米)满足关系式21251233y x x =-++,则小林这次铅球推出的距离是米.12.在二次函数y=-x 2+bx+c 中,函数y 与自变量x 的部分对应值如下表.x -3-2-112345y-14-7-22mn-7-14则m-n 的值为.13.如图,已知二次函数21(0)y ax bx c a =++≠与一次函数2(0)y kx m k =+≠的图象相交于点A(-2,6)和B (8,3),则能使y 1<y2成立的x的取值范围.14.如图,在平面直角坐标系中,抛物线21:2C y x =-+和抛物线22:2C y x x =+相交于点A 、B (点A 在点B 的左侧),P 是抛物线22:2C y x x =+上AB 段的一点(点P 不与A 、B 重合),过点P 作x 轴的垂线交抛物线21:2C y x =-+于点Q ,以PQ 为边向右侧作正方形PQMN .设点P 的横坐标为m ,当正方形的四个顶点分别落在四个不同象限时,m 的取值范围是.三、计算题15.已知抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴相交于A、B两点,且AB=2,求m的值.16.求二次函数y=x2+4x﹣5的最小值.四、作图题17.在同一平面内画出函数y=2x2与y=2x2+1的图象.五、解答题18.如图,等腰梯形的周长为60,底角为30°,腰长为x,面积为y,试写出y与x的函数表达式.19.如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(m2)与它与墙平行的边的长x(m)之间的函数.20.已知二次函数y=﹣x2+mx+n与x轴交于A,B两点(点A在点B左侧),其中点A的坐标为(﹣1,0),AB=4.求该二次函数的表达式.21.如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(m2)与它与墙平行的边的长x(m)之间的函数.六、综合题22.据环保中心观察和预测:发生于甲地的河流污染一直向下游方向移动,其移动速度v(千米/小时)与时间t(小时)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,根据物理知识:梯形OABC在直线l左侧部分的面积表示的实际意义为t(小时)内污染所经过的路程S(千米),其中0≤t≤30.(1)当t=3时,则S的值为;(2)求S与t的函数表达式;(3)若乙城位于甲地的下游,且距甲地171千米,试判断这河流污染是否会侵袭到乙城?若会,求河流污染发生后多长时间它将侵袭到乙城;若不会,请说明理由.23.某商场经营某种品牌童装,进货时的单价是40元,根据市场调查,当销售单价是60元时,每天销售量是200件,销售单价每降低0.5元,就可多售出10件.(1)当销售单价为58元时,每天销售量是件.(2)求销售该品牌童装获得的利润y(元)与销售单价x(元)之间的函数关系式;(3)若商场规定该品牌童装的销售单价不低于57元且不高于60元,则销售该品牌童装获得的最大利润是多少?答案解析部分1.【答案】C【解析】【解答】解:由抛物线的顶点式y=-2(x-3)2-4可得:该抛物线的顶点坐标为(3,-4),故答案为:C.【分析】二次函数y=a(x-k)2+h(a≠0)的图象的顶点是(k,h),依此解答即可.2.【答案】B【解析】【解答】解:A、当x=0时,y=x2+1=1,则此二次函数的图象不经过原点,A不符合题意;B、当x=0时,y=x2+x=0,则此二次函数的图象经过原点,B符合题意;C、当x=0时,y=(x+1)2=1,则此二次函数的图象不经过原点,C不符合题意;D、当x=0时,y=x2-2x+1=1,则此二次函数的图象不经过原点,D不符合题意.故答案为:B.【分析】二次函数图象过原点,即(0,0)在函数图象上,因此把x=0代入选项四个解析式求出对应的函数值,若y=0,则可判断这个二次函数图象经过原点.3.【答案】B【解析】【解答】解:∵矩形周长为10m,一边长为x m,∴另一边长为:(10-2x)÷2=5-x(m),∴S=x(5-x)=-x2+5x.故答案为:B.【分析】结合矩形对边相等,将另一边长表示出来,再根据面积=长×宽,建立出S与x的关系式,即可判断.4.【答案】B【解析】【解答】解:∵抛物线y=2x2向下平移1个单位,∴y=2x2-1.故答案为:B.【分析】对于二次函数y=a(x+h)2+k,根据抛物线的平移规律:即左右平移在h后左加右减,上下平移在k后上加下减即可求出结果.5.【答案】A【解析】【解答】解:对称轴为直线x=﹣221 =﹣1,∵a=1>0,∴x<﹣1时,y随x的增大而减小,x>﹣1时,y随x的增大而增大,∴y2<y1<y3.故答案为:A.【分析】求出二次函数的对称轴,再根据二次函数的增减性判断即可.6.【答案】B【解析】【解答】解:一次函数y =-x 中k <0,∴y 随x 的增大而减小,故本选项正确;∵正比例函数y =2x 中,k =2,∴当x <0时,y 随x 的增大而增大,故本选项错误;∵反比例函数1y x=中,k =-1<0,∴当x <0时函数的图象在第二象限,此时y 随x 的增大而增大,故本选项错误;∵二次函数y =x 2,中a =1>0,∴此抛物线开口向上,当x <0时,y 随x 的增大而减小,故本选项正确.故答案为:B.【分析】一次函数的比例系数k <0的时候,y 随x 的增大而减小,当比例系数k >0的时候,y 随x 的增大而增大,从而即可判断①、②;反比例函数的比例系数k <0的时候,图象的两支分别位于第二、四象限,在每一个象限内,y 随x 的增大而增大,比例系数k >0的时候,图象的两支分别位于第一、三象限,在每一个象限内,y 随x 的增大而减小;函数y=x 2的二次项系数大于0对称轴是y 轴,图象开口向上,在对称轴左侧,即当x<0时y 随x 的增大而减小,从而即可一一判断得出答案.7.【答案】A【解析】【解答】解:抛物线y=x 2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0),因为点(0,0)向左平移3个单位长度后得到(-3,0),所以把抛物线y=x 2向左平移3个单位得到抛物线y=(x+3)2.故答案为:A.【分析】先确定抛物线y=x 2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0),然后利用顶点的平移情况确定抛物线的平移情况.8.【答案】B【解析】【解答】解:①抛物线开口向上,则a >0,抛物线与y 交于负半轴,则c <0,x=-2ba=1,即b=-2a ,则b <0,∴abc >0,故①符合题意;②∵(-3,y 1)离对称直线x=1的距离为1-(-3)=4,(4,y 2)离对称直线x=1的距离为4-1=3,∴点(-3,y 1)离对称轴要比点(4,y 2)离对称轴要远,又∵抛物线开口向上,离对称轴越远,函数值越大,4>3,∴y 1>y 2,故②不符合题意;③观察图象,抛物线与x 轴的一个交点为−1<x<0,∴当−1<x<3时,y 不一定小于0;故③不符合题意;④当x=-2时,y >0,则4a-2b+c >0,∵b=-2a ,∴8a+c >0,所以④符合题意;综上,正确的有①④,故答案为:B .【分析】①抛物线开口向上,则a >0,抛物线与y 交于负半轴,则c <0,对称轴为x=-2ba=1,即b=-2a ,则b <0,可得abc >0,故正确;②由抛物线开口向上,离对称轴越远,函数值越大,故②错误;③根据抛物线的对称性及与x 轴的一个交点为−1<x<0,可知当−1<x<3时,y 不一定小于0;④当x=-2时,y=4a-2b+c >0,由b=-2a 可得8a+c >0,故正确.9.【答案】C【解析】【解答】由题意可知()22210y x ax a =-->的对称轴为(0)x a a =>可知对称轴再y 轴的右侧,由2123y x x =+-与x 轴交于A 、B 两点(点A 在点B 的左侧)可知当10y >时可求得31x x -或 使1200y y >≤且的x 的取值范围内恰好只有一个整数时∴只要符合将2x =代入()22210y x ax a =-->中,使得20y ≤,且将3x =代入()22210y x ax a =-->中使得20y >即22−4−1≤09−6−1>0求得解集为:3443x ≤<故答案为:C【分析】利用抛物线y 2=x 2-2ax-1可求出其对称轴为直线x=a ,利用a 的取值范围可知对称轴再y 轴的右侧;同时可知当x <-3和x >1时y 1>0;再根据y 1>0且y 2≤0的x 的取值范围内恰好只有一个整数,可得到x=2时y 2≤0,当x=3时y 2>0,分别将其代入y 2的函数解析式,可得到关于a 的不等式组,然后求出不等式组的解集.10.【答案】B【解析】【解答】解:甲:当a=0时,y=-x+1,∴当y=0时,x=1,即函数图象与x 轴交于点(1,0),∴甲结论不正确,乙:当a=0时,-x+1=0,∴x=1;当a≠0时,ax 2-(a+1)x+1=(x-1)(ax-1)=0,解得x=1或x=1a,∴方程ax 2-(a+1)x+1=0至少有一个整数根.故答案为:B.【分析】甲:当a=0时,函数y=-x+1,此时函数图象与x 轴只有一个交点为(1,0),即可判断甲的结论;乙:当a=0时,-x+1=0,解得根为1,当a≠0时,ax 2-(a+1)x+1=(x-1)(ax-1)=0,解得根为1或1a,据此即可判断乙结论.11.【答案】10【解析】【解答】解:令y=0∴21251233x x -++=0∴x 2−8x−20=0解得:x 1=10,x 2=−2(舍去)∴小林这次铅球推出的距离是10米.故答案为:10.【分析】令y=0,求出x 的值,进而可得小林这次铅球推出的距离.12.【答案】3【解析】【解答】解:由表可得,(-1,-2)和(1,2)在二次函数y=-x 2+bx+c 图象上,∴1212b c b c --+=-⎧⎨-++=⎩,整理,解得21b c =⎧⎨=⎩,∴二次函数解析式为y=-x 2+2x+1,∴当x=2时,m=-4+4+1,解得m=1,当x=3时,n=-9+6+1,解得n=-2,∴m-n=1-(-2)=3.故答案为:3.【分析】由表可得,(-1,-2)和(1,2)在函数图象上,先利用待定系数法求出二次函数解析式,再将x=2和x=3分别代入即可计算出m 和n 的值,从而求出m-n 的值.13.【答案】−2<x <8<8<p=""><8<>【解析】【解答】解:∵二次函数y 1=ax 2+bx +c (a≠0)与一次函数y 2=kx +m (k≠0)的图象相交于点A (−2,6),B (8,3),∴结合图象,能使y 1<y 2成立的x 的取值范围是:−2<x <8,故答案为:−2<x <8,【分析】根据两函数交点坐标得出,能使y 1<y 2成立的x 的取值范围即是图象y 2在图象y 1上面是x 的取值范围,即可得出答案.14.【答案】11704m +-<<【解析】【解答】解:若正方形的四个顶点分别落在四个不同象限,则P 点在第三象限,Q 点在第二象限,M 点在第一象限,N 点在第四象限,∵点P 的横坐标为m ,P 是抛物线22:2C y x x =+上AB 段的一点∴2(,2)P m m m +,0m <,由题意可知Q 点和P 点横坐标相同,∴2(,2)Q m m -+,若Q 在Q 点在第二象限,则220m -+>,解得02m <<,或02m <<(舍),∴()22222222PQ m m m m m =-+-+=--+,即2222QM PN PQ m m ===--+,∴M 、N 的横坐标都为()2222222m m m m m +--+=--+,∵M 点在第一象限,N 点在第四象限,∴2220m m --+>,当2220m m --+=时,解得11174m -=-,21174m =-,因此11711744m +--<<-时2220m m --+>,又∵0m <,∴11704m -<<,故答案为:11704m +-<<.【分析】若正方形的四个顶点分别落在四个不同象限,则P 点在第三象限,Q 点在第二象限,M 点在第一象限,N 点在第四象限,由点P 的横坐标为m ,通过解析式可表示点P 、Q 的坐标,即可表示PQ 的长,通过正方形的边长相等可表示N 点的横坐标,通过象限内点的坐标特点求解即可.15.【答案】解:令0y =,则()()2121=0m x m x -+--解关于x 的方程得11x =-,211x m =-设()10A -,,1(01B m -)∵2AB =∴(10B ,)或(30B -,)∴111m =-或131m =--解得12m =,223m =,经检验12m =,223m =是分式方程的根.∴m 的值为2或23.【解析】【分析】令y=0,求关于x 的一元二次方程(m-1)x 2+(m-2)x-1=0的解,即为点A 、B 的横坐标,再根据AB=2求得m 的值即可.16.【答案】解:y=x 2+4x ﹣5=(x+2)2﹣9,则二次函数y=x 2+4x ﹣5的最小值为﹣9【解析】【分析】直接利用配方法得出二次函数顶点式,进而得出二次函数最值.17.【答案】解:列表得:x ﹣2-1012y=2x 282028y=2x 2+193139【解析】【分析】利用二次函数的对称性先列表,再描点,然后用圆滑的曲线连接即可。
二次函数练习题(含答案)形,如图所示。
将剩余部分折成一个无盖的长方体盒子,已知折痕处的线段长度均为2cm,求这个盒子的体积。
解析:首先确定长方体的长、宽、高分别对应正三角形的边长a、b、c,如图所示。
由于筝形的对角线长度为2cm,根据勾股定理可得$a^2+b^2=4$。
由于正三角形的内角为60度,因此可以利用三角函数求得$a=\sqrt{3}c$和$b=2\sin30^{\circ}c=c$。
将$a$、$b$、$c$代入长方体的体积公式$V=abc$,得到$V=2\sqrt{3}c^3$。
将$c=2$代入即可得到盒子的体积为$V=16\sqrt{3}$。
1.将文章中的公式和图表进行排版整理,删除明显有问题的段落。
2.对于每段话进行小幅度的改写,使其更加简洁明了。
1.某人要制作一个无盖的直三棱柱纸盒,现在需要确定该纸盒的侧面积最大值。
根据图中的信息,我们可以得出最大面积为()A.cm2B.cm2C.cm2D.cm2.2.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,),下列结论中正确的有几个?①abc<;②b2﹣4ac=0;③a>2;④4a﹣2b+c>。
答案为A.1B.2C.3D.4.3.如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2.现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1.下列结论中正确的有哪些?①b>;②a﹣b+c<;③阴影部分的面积为4;④若c=﹣1,则b2=4.答案为……4.二次函数y=ax2+bx+c的图象如图所示,点O为坐标原点,点A在y轴的正半轴上,点B、C在图象上,四边形OBAC为菱形,且∠OBA=120°。
求菱形OBAC的面积。
5.某水产养殖户为了节省材料,利用水库的岸堤为一边,用总长为80m的围栏在水库中围成了如图所示的①②③三块矩形区域,且这三块矩形区域的面积相等。
设BC的长度为xm,矩形区域ABCD的面积为ym2.(1) 求y与x之间的函数关系式,并注明自变量x的取值范围;(2) 当y有最大值时,x为多少?最大值是多少?6.在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a(a <0)与x轴交于A、B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC。
二次函数单元练习题一、选择题1.下列函数中是二次函数的是( B )A .y =3x -1B .y =3x 2-1 C.y =(x +1)2-x 2 D .y =x 3+2x -32.将抛物线y =3x 2向右平移两个单位,再向下平移4个单位,所得抛物线是( )(A)y =3(x +2)2+4 (B) y =3(x -2)2+4 (C) y =3(x -2)2-4 (D)y =3(x +2)2-43.二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,则下列结论中正确的是( B )A .a >0B .当-1<x <3时,y >0C .c <0D .当x ≥1时,y 随x 的增大而增大4.二次函数y =x 2-8x +c 的最小值是0,那么c 的值等于( )(A)4 (B)8 (C)-4 (D)165.抛物线y =-2x 2+4x +3的顶点坐标是( )(A)(-1,-5) (B)(1,-5) (C)(-1,-4) (D) (-2,-7)6. 若二次函数=ax 2+c ,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值为( )(A)a +c (B)a -c (C)-c (D)c7.如图,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点, 且AE =BF =CG =DH , 设小正方形EFGH 的面积为s ,AE 为x ,则s 关于x 的函数图象大致是( )(A) (B) (C) (D)8.抛物线y =ax 2+bx +c 的顶点为D(-1,2),与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,其部分图象如图,则以下结论:①b 2-4ac <0;②a +b +c <0;③c -a =2;④方程ax 2+bx +c -2=0有两个相等的实数根.其中正确的结论的个数为( C )A .1个B .2个C .3个D .4个二、填空题9.已知函数y =ax 2+bx +c ,当x =3时,函数的最大值为4,当x =0时,y =-14,则函数关系式____.10.若二次函数y =-x 2+4x +k 的最大值等于3,则k 的值等于____. .11.函数42-=x y 的图象与y 轴的交点坐标是________. 12.已知抛物线的顶点是(0,1),对称轴是y 轴,且经过(-3,2),则此抛物线的函数关系式为_________,当x >0时,y 随x 的增大而____.13.已知抛物线y =ax 2+bx +c(a≠0)与x 轴的两个交点的坐标是(5,0),(-2,0),则方程ax 2+bx+c=0(a≠0)的解是_______.14.抛物线y=(m-4)x2-2mx-m-6的顶点在x轴上,则m=______.15.若函数y=a(x-h)2+k的图象经过原点,最大值为8,且形状与抛物线y=-2x2-2x+3相同,则此函数关系式______.16.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2),如图所示,则使y1>y2成立的x的取值范围是______ __三、解答题17.(8分)已知抛物线y=a(x-h)2-4经过点(1,-3),且与抛物线y=x2的开口方向相同,形状也相同.(1)求a,h的值;(2)求它与x轴的交点,并画出这个二次函数图象的草图;(3)若点A(m,y1),B(n,y2)(m<n<0)都在该抛物线上,试比较y1与y2的大小.y x mx m.18、已知抛物线22(1)求证此抛物线与x轴有两个不同的交点;y x mx m与x轴交于整数点,求m的值;(2)若m是整数,抛物线22(3)在(2)的条件下,设抛物线顶点为A,抛物线与x轴的两个交点中右侧交点为B.若M为坐标轴上一点,且MA=MB,求点M的坐标.19.(8分)如图,已知二次函数y=-x2+bx+c的图象与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,顶点D.(1)求这个二次函数的关系式;(2)求四边形ABDC的面积.20.(12分)(2011·聊城)如图,已知抛物线y =ax 2+bx +c(a ≠0)的对称轴为x =1,且抛物线经过A(-1,0)、C(0,-3)两点,与x 轴交于另一点B.(1)求这条抛物线所对应的函数解析式;(2)在抛物线的对称轴x =1上求一点M ,使点M 到点A 的距离与到点C 的距离之和最小,并求出此时点M 的坐标;(3)设点P 为抛物线的对称轴x =1上的一动点,求使∠PCB =90°的点P 的坐标.参考答案:一、1-5 BCBDB 6-8 DBC .二、9.y =-2(x -3)2+4; 10.-1 ;11.(0.-4) ; 12.y =19x 2+1 ;增大. 13.向上,x =41,(825,41-);14.略. 15.y =-2x 2+8x 或y =-2x 2-8x ; 16.x <-2或x >8; 三、17.解:(1)a =1,h =2 (2)它与x 轴的交点坐标为(0,0),(4,0),图象略 (3)y 1>y 218.由已知,得30423c a b c a b c =-⎧⎪-+=⎨⎪++=-⎩,,解得a =1,b =-2,c =-3.所以y =x 2-2x -3.(2)开口向上,对称轴x =1,顶点(1,-4).19、解:(1)y =-x 2+2x +3 (2)连结OD ,可求得C (0,3),D (1,4),则S 四边形ABDC =S △AOC+S △COD +S △BOD =12×1×3+12×3×1+12×3×4=920、解:(1)根据题意,y =ax 2+bx +c 的对称轴为x =1,且过A(-1,0),C(0,-3),可得⎩⎪⎨⎪⎧ -b 2a =1a -b +c =0,c =-3解得⎩⎨⎧ a =1,b =-2,c =-3.∴抛物线所对应的函数解析式为y =x 2-2x -3.(2)由y =x 2-2x -3可得,抛物线与x 轴的另一交点B(3,0)如图①,连结BC ,交对称轴x =1于点M.因为点M 在对称轴上,MA =MB.所以直线BC 与对称轴x =1的交点即为所求的M 点.设直线BC 的函数关系式为y =kx +b ,由B(3,0),C(0,-3),解得y =x -3,由x =1,解得y =-2.故当点M 的坐标为(1,-2)时,点M 到点A 的距离与到点C 的距离之和最小.(3)如图②,设此时点P 的坐标为(1,m),抛物线的对称轴交x 轴于点F(1,0).连结PC 、PB ,作PD 垂直y 轴于点D ,则D(0,m).。
一、选择题1.把二次函数243y x x =-+化成2()y a x h k =++的形式是( )A .2(2)1y x =++B .2(2)7y x =++C .2(2)1y x =--D .2(2)7y x =-- 2.对于二次函数2y x bx c =++(b ,c 是常数)中自变量x 与函数y 的部分对应值如下表: x1- 0 1 2 3 4 y 10 5 2 1 25 A .函数图像开口向上B .当5x =时,10y =C .当2x >时,y 随x 的增大而增大.D .方程20x bx c ++=有两个不相等的实数根3.下列函数:①2y x =-,②3y x =,③2y x ,④234y x x =++,y 是x 的反比例函数的个数有( ).A .1个B .2个C .3个D .4个4.如图,二次函数()20y ax bx c a =++≠图象的顶点为D ,其图像与x 轴的交点A 、B 的横坐标分别为-1,3,与y 轴负半轴交于点C .在下面四个结论中:①0a b c ++<;②13a c =-; ③只有当12a =时,ABD △是等腰直角三角形; ④使ACB △为等腰三角形的a 值可以有两个.其中正确的结论有 A .1个 B .2个 C .3个 D .4个5.如图是二次函数y =mx 2+nx +k 图象的一部分且过点P (3,0),二次函数图象的对称轴是直线x =1,下列结论正确的是( )A .n 2﹣4mk <0B .mk >0C .n =2mD .m ﹣n +k =0 6.如图是抛物线y 1=ax 2+bx +c (a≠0)的一部分,抛物线的顶点坐标A (1,3),与x 轴的一个交点为B (4,0),直线y 2=mx +n (m≠0)与抛物线交于A 、B 两点,结合图象分析下列结论:①2a +b =0;②abc >0;③方程ax 2+bx +c =3有两个相等的实数根;④当1<x <4时,有y 2<y 1;⑤抛物线与x 轴的另一个交点是(﹣1,0).其中正确的是( )A .①②③B .②④C .①③④D .①③⑤ 7.如图所示,二次函数2y ax bx c =++的图象经过点(-1,2),且与x 轴交点的横坐标分别为1x ,2x ,其中121x -<<-,201x <<,下列结论:①0abc >;②420a b c -+<;③20a b -<;④284b a ac +>.其中正确的有( )A .1个B .2个C .3个D .4个8.抛物线23y x =向左平移5个单位,再向下平移1个单位,所得到的抛物线是( ) A .23(5)1y x =-+B .23(-5)1y x =-C .23(5)1y x =+-D .23(5)1y x =++9.已知二次函数24y x x m =-+的图象与x 轴有两个交点,若其中一个交点的横坐标为1,则另一个交点的横坐标为( )A .1-B .2-C .2D .310.如图,抛物线2y ax bx c =++的顶点位于第二象限,对称轴是直线1x =-,且抛物线经过点(1,0).下面给出了五个结论:①0abc >;②240a b c -+>;③40a c +<;④13a b c -=;⑤326320a b c --<.其中结论正确的有( )A .5个B .4个C .3个D .2个11.在同一直角坐标系中,一次函数y ax c =+和二次函数2y ax c =--的图象可能为( )A .B .C .D . 12.已知函数223y x x =+-及一次函数y x m =-+的图象如图所示,当直线y x m =-+与函数223y x x =+-的图象有2个交点时,m 的取值范围是( )A .3m <-B .31m -<<C .134m >或3m <-D .31m -<<或134m > 二、填空题13.将抛物线243y x x =-+沿y 轴向下平移3个单位,则平移后抛物线的顶点坐标为_____.14.将二次函数y =﹣(x ﹣k )2+k +1的图象向右平移1个单位,再向上平移2个单位后,顶点恰好在直线y =2x +1上,则k 的值为_____.15.如图,在△ABC 中,∠C =90°,AB =10cm ,BC =8cm ,点P 从点A 沿AC 向点C 以1cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2cm/s 的速度运动(点Q 运动到点B 停止),在运动过程中,四边形PABQ 的面积最小值为_____cm 216.抛物线y =a (x ﹣2)(x ﹣2a)(a 是不等于0的整数)顶点的纵坐标是一个正整数,则a 等于_____. 17.将抛物线21:23C y x x =-+向左平移一个单位长度,得到抛物线2C ,抛物线2C 与抛物线3C 关于y 轴对称,则抛物线3C 的表达式为____.18.在平面直角坐标系中,已知()1,A m -和()5,B m 是抛物线21y x bx =++上的两点,则抛物线21y x bx =++的顶点坐标为_________.19.将抛物线243y x x =-+沿x 轴向左平移2个单位,则平移后抛物线的解析式是__. 20.在平面直角坐标系中,抛物线y =x 2的图象如图所示.已知A 点坐标为(1,1),过点A 作AA 1∥x 轴交抛物线于点A 1,过点A 1作A 1A 2∥OA 交抛物线于点A 2,过点A 2作A 2A 3∥x 轴交抛物线于点A 3,过点A 3作A 3A 4∥OA 交抛物线于点A 4……,依次进行下去,则点A 2021的坐标为____.三、解答题21.已知:抛物线y 1=﹣x 2﹣2x +3的图象交x 轴于点A ,B (点A 在点B 的左侧). (1)请在平面直角坐标系内画出二次函数y 1=﹣x 2﹣2x +3的草图,并标出点A 的位置; (2)点C 是直线y 2=﹣x +1与抛物线y 1=﹣x 2﹣2x +3异于B 的另一交点,则点C 的坐标为 ;当y 1≥y 2时x 的取值范围是 .22.如图,抛物线2y x bx c =+-与x 轴交于A (-1,0),B (3,0)两点,直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求抛物线及直线AC 的函数表达式;(2)点M 是线段AC 上的点(不与A ,C 重合)过M 作MF //y 轴交抛物线于F ,若点M 的横坐标为m ,请用含m 的代数式表示MF 的长.23.在平面直角坐标系中,已知抛物线y=x2﹣2x.(1)它的顶点坐标是,当x时,y随x的增大而减小;(2)将抛物线y=x2﹣2x向左平移2个单位长度,再向下平移3个单位长度,设所得新抛物线与x轴交于A、B两点,与y轴交于点C,写出新抛物线的解析式并求△ABC的面积.24.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发沿着AB以每秒1cm的速度向点B移动;同时点Q从点B出发沿着BC以每秒2cm的速度向点C运动.设△DPQ 的面积为S,运动时间为t秒.(1)用含t的代数式表示出BP的长为cm,CQ的长为cm;(2)写出S与t之问的函数关系式;(3)当△DPQ的面积最小时,请判断线段PQ与对角线AC的关系,并说明理由.25.在二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如表:x…01234…y…30﹣10m…m的值;并利用所给的坐标网格,画出该函数图象;(2)将这个二次函数向左平移2个单位,再向上平移1个单位,求平移后的函数解析式.26.已知抛物线的顶点坐标是()1,4-,且过点(0,3).()1求这个抛物线对应的函数表达式.()2在所给坐标系中画出该函数的图象.()3当x 取什么值时,函数值小于0?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用配方法先提出二次项系数,在加上一次项系数的一半的平方来凑完全平方式,即可把一般式转化为顶点式.【详解】解:()()22243443421y x x x x x =-+=-++-=--. 故选:C .【点睛】此题考查了二次函数的顶点式,掌握利用配方法将二次函数一般式转化为顶点式是解题的关键.2.D解析:D【分析】根据表格中的数据和二次函数图象具有对称性即可判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:由表格可得,当x<2时,y随x的值增大而减小;当x>2时,y随x的值增大而增大,该函数开口向上,故选项A、C不符合题意;∴点(−1,10)的对称点是(5,10),∴点(5,10)在该函数的图象上,故选项B不符合题意;由表格可得,该抛物线开口向上,且最小值是1,则该抛物线与x轴没有交点,∴方程20++=无实数根,故选项D符合题意.x bx c故选:D.【点睛】本题考查二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.3.A解析:A【分析】根据反比例函数、一次函数、二次函数的性质,对各个选项逐个分析,即可得到答案.【详解】=-是一次函数,故选项①不符合题意;y x23=是反比例函数,故选项②符合题意;yx2y x是二次函数,故选项③不符合题意;234=++是二次函数,故选项④不符合题意;y x x∴y是x的反比例函数的个数有:1个故选:A.【点睛】本题考查了反比例函数、二次函数、一次函数的知识;解题的关键是熟练掌握反比例函数、二次函数、一次函数的定义,从而完成求解.4.D解析:D【分析】先根据图象与x轴的交点A,B的横坐标分别为﹣1,3确定出AB的长及对称轴,再由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①由抛物线的开口方向向上可推出a >0,∵图像与x 轴的交点A 、B 的横坐标分别为-1,3,∴对称轴x =1,∴当x =1时,y <0,∴a +b +c <0;故①正确;②∵点A 的坐标为(﹣1,0),∴a ﹣b +c =0,又∵b =﹣2a ,∴a ﹣(﹣2a )+c =0,∴c =﹣3a , ∴13a c =-∴结论②正确.③如图1,连接AD ,BD ,作DE ⊥x 轴于点E , ,要使△ABD 是等腰直角三角形,则AD =BD ,∠ADB =90°,∵DE ⊥x 轴,∴点E 是AB 的中点,∴DE =BE ,即|244ac b a -|()312--==2,又∵b =﹣2a ,c =﹣3a ,∴|()()24324a a a a⨯---|=2,a >0, 解得a 12=, ∴只有当a 12=时,△ABD 是等腰直角三角形,结论③正确④要使△ACB 为等腰三角形,则AB =BC =4,AB =AC =4,或AC =BC ,Ⅰ、当AB =BC =4时,在Rt △OBC 中,∵OB =3,BC =4,∴OC 2=BC 2﹣OB 2=42﹣32=16﹣9=7,即c 2=7,∵抛物线与y 轴负半轴交于点C ,∴c <0,c=,∴a 33c =-=. Ⅱ、当AB =AC =4时,在Rt △OAC 中,∵OA =1,AC =4,∴OC 2=AC 2﹣OA 2=42﹣12=16﹣1=15,即c 2=15,∵抛物线与y 轴负半轴交于点C ,∴c <0,c=,∴a 3c =-= Ⅲ、当AC =BC 时,∵OC ⊥AB ,∴点O 是AB 的中点,∴AO =BO ,这与AO =1,BO =3矛盾,∴AC =BC 不成立.∴使△ACB 为等腰三角形的a . 结论④正确.故答案选:D【点睛】二次函数y =ax 2+bx +c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0;(2)b 由对称轴和a 的符号确定:由对称轴公式x 2b a=-判断符,(3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0;(4)b 2﹣4ac 由抛物线与x 轴交点的个数确定:①2个交点,b 2﹣4ac >0;②1个交点,b 2﹣4ac =0;③没有交点,b 2﹣4ac <0.5.D解析:D【分析】根据抛物线与x 轴有两个交点可对A 进行判断;由抛物线开口向上得m >0,由抛物线与y 轴的交点在x 轴下方得k <0,则可对B 进行判断;根据抛物线的对称轴是x =1对C 选项进行判断;根据抛物线的对称性得到抛物线与x 轴的另一个交点为(−1,0),所以m−n +k =0,则可对D 选项进行判断.【详解】解:A .∵抛物线与x 轴有两个交点,∴n 2﹣4mk >0,所以A 选项错误;B .∵抛物线开口向上,∴m >0,∵抛物线与y 轴的交点在x 轴下方,∴k <0,∴mk <0,所以B 选项错误;C .∵二次函数图象的对称轴是直线x =1,∴﹣2n m=1, ∴n =﹣2m ,所以C 选项错误;D .∵抛物线过点A (3,0),二次函数图象的对称轴是x =1,∴抛物线与x 轴的另一个交点为(﹣1,0),∴m ﹣n +k =0,所以D 选项正确;故选:D .【点睛】本题考查了二次函数的图象与系数的关系:二次函数y =ax 2+bx +c (a≠0)的图象为抛物线,当a >0,抛物线开口向上;对称轴为直线2b x a=-;抛物线与y 轴的交点坐标为(0,c );当b 2−4ac >0,抛物线与x 轴有两个交点;当b 2−4ac =0,抛物线与x 轴有一个交点;当b 2−4ac <0,抛物线与x 轴没有交点.6.C解析:C【分析】根据抛物线对称轴方程对①进行判断;由抛物线开口方向得到a <0,由对称轴位置可得b >0,由抛物线与y 轴的交点位置可得c >0,于是可对②进行判断;根据顶点坐标对③进行判断;根据函数图象得当1<x <4时,一次函数图象在抛物线下方,则可对④进行判断;根据抛物线的对称性对⑤进行判断.【详解】∵抛物线的顶点坐标A (1,3),∴抛物线的对称轴为直线x =2b a-=1, ∴2a +b =0,所以①正确;∵抛物线开口向下,∴a <0,∴b =﹣2a >0, ∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc <0,所以②错误;∵抛物线的顶点坐标A (1,3),∴x =1时,二次函数有最大值,∴方程ax 2+bx +c =3有两个相等的实数根,所以③正确;∵抛物线y 1=ax 2+bx +c 与直线y 2=mx +n (m≠0)交于A (1,3),B 点(4,0), ∴当1<x <4时,y 2<y 1,所以④正确.∵抛物线与x 轴的一个交点为(4,0),而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点为(﹣2,0),所以⑤错误;故选:C .【点睛】本题主要考查了二次函数的图像、一次函数图像、二次函数的图象与系数的关系等知识,考查知识点较多,解答的关键在于读懂图象信息,掌握二次函数知识,灵活运用所学知识解决问题.7.D解析:D【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①∵a <0,2b a -<0, ∴b <0.∵抛物线交y 轴与正半轴,∴c >0.∴abc >0,故①正确.②根据图象知,当x=-2时,y <0,即4a-2b+c <0;故②正确;③∵该函数图象的开口向下,∴a <0;又∵对称轴-1<x=2b a-<0,∴2a-b <0,故③正确;④∵y=244ac b a->2,a <0, ∴4ac-b 2<8a ,即b 2+8a >4ac ,故④正确.综上所述,正确的结论有①②③④.故答案为:D .【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,掌握相关性质是解题的关键.8.C解析:C【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=3x 2向左平移5个单位所得直线解析式为:y=3(x+5)2;再向下平移1个单位为:y=3(x+5)2-1.故选:C .【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键. 9.D解析:D【分析】函数的对称轴为:x=-22b a =,一个交点的坐标为(1,0),则另一个交点的坐标为(3,0),即可求解.【详解】解:∵二次函数y=x 2-4x+m 中a=1,b=-4,∴函数的对称轴为:x=-22b a=, ∵一个交点的坐标为(1,0)与另一个交点的坐标关于对称轴对称,∴另一个交点的坐标为(3,0),即另一个交点的横坐标为3.故选:D .【点睛】本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征. 10.A解析:A【分析】由二次函数的图象即可判断a 、b 、c 的符号,即可判断①;由对称轴和与x 轴交点坐标即可求出c=-3a 和b=2a ,即可判断②③④;把()()()2232332632632236126=61a b c a a a a a a a a --=-⨯-⨯-=-+-变形之后即可判断⑤;【详解】∵由图象可知开口向下,∴a <0,∵对称轴为x=-1,∴ b <0,抛物线与y 轴的交点在原点上方,∴ c >0,∴ abc >0,故①正确;∵ 抛物线经过点(1,0),对称轴为x=-1,∴ 抛物线与x 轴的另一交点时是(-3,0),∴ a+b+c=0,∵对称轴为x=-1,∴ b=2a ,∴ a+2a+c=0,即c=-3a , ()24443150a b c a a a a -+=-+⨯-=-> ,故②正确;4430a c a a a +=-=< ,故③正确;123a b a a a c -=-=-= ,故④正确; ()()()2232332632632236126=61a b c a a a a a a a a --=-⨯-⨯-=-+- ,∵ ()21a -≥0,由图象得:1a ≠ , ∴32632a b c --<0,故⑤正确;故选:A .【点睛】本题考查了二次函数图象的性质、对称轴以及函数值的求法,正确掌握二次函数的性质是解题的关键.11.D解析:D【分析】根据二次函数的开口方向,与y 轴的交点;一次函数经过的象限,与y 轴的交点可得相关图象.【详解】解:∵一次函数经过y 轴上的(0,c ),二次函数经过y 轴上的(0,-c ),∴两个函数图象交于y 轴上的不同点,故A ,C 选项错误;当a <0,c <0时,二次函数开口向上,一次函数经过二、三、四象限,故B 选项错误; 当a <0,c >0时,二次函数开口向上,一次函数经过一、二、四象限,故D 选项正确; 故选:D .【点睛】本题考查二次函数及一次函数的图象的性质;用到的知识点为:二次函数和一次函数的常数项是图象与y 轴交点的纵坐标;一次函数的一次项系数大于0,图象经过一、三象限;小于0,经过二、四象限;二次函数的二次项系数大于0,图象开口向上;二次项系数小于0,图象开口向下.12.D解析:D【分析】 作出函数223y x x =+-及一次函数y x m =-+的图象,根据图象性质讨论即可求出. 【详解】解:如图:函数223y x x =+-,当0y =时,1x =或3-, ()()3010A B ∴-,,,,当31x -<<时,223y x x =--+,当直线过点A 时,1个交点,此时()03m =--+,即3m =-,当3m >-时,有2个交点,当直线过点B 时,有3个交点,此时01m =-+,即1m =, ∴1m <时有2个交点,31m ∴-<<,当直线与抛物线相切时,有3个交点,223y x x y x m⎧=--+∴⎨=-+⎩, 由()1430m =--+=,解得:134m =, 134m ∴>时有2个交点,综上所述,31m -<<或134m >. 【点睛】 本题考查了一次函数与二次函数的交点问题,熟练掌握二次函数的性质是解题的关键.二、填空题13.(2-4)【分析】首先根据二次函数解析式写成顶点式可得顶点坐标再根据平移得性质得出平移后得顶点坐标即可【详解】∵y=x2-4x+3=(x-2)2-1∴顶点坐标为(2-1)∵将抛物线y=x2-4x+3解析:(2,-4)【分析】首先根据二次函数解析式写成顶点式,可得顶点坐标,再根据平移得性质得出平移后得顶点坐标即可.【详解】∵y=x 2-4x+3=(x-2)2-1,∴顶点坐标为(2,-1),∵将抛物线y=x 2-4x+3沿y 轴向下平移3个单位,∴平移后得抛物线得顶点坐标为(2,-4),故答案为:(2,-4)【点睛】本题考查了抛物线的平移与抛物线解析式的关系,关键是把抛物线的平移转化为顶点的平移.14.0【分析】先求出二次函数y =﹣(x ﹣k )2+k+1的图象平移后的顶点坐标再将它代入y =2x+1即可求出k 的值【详解】解:∵二次函数y =﹣(x ﹣k )2+k+1的顶点坐标为(kk+1)∴将y =﹣(x ﹣k解析:0【分析】先求出二次函数y =﹣(x ﹣k )2+k +1的图象平移后的顶点坐标,再将它代入y =2x +1,即可求出k 的值.【详解】解:∵二次函数y =﹣(x ﹣k )2+k +1的顶点坐标为(k ,k +1),∴将y =﹣(x ﹣k )2+k +1的图象向右平移1个单位,向上平移2个单位后顶点坐标为(k +1,k +3).根据题意,得k +3=2(k +1)+1,解得k =0.故答案是:0.【点睛】本题考查了二次函数图象与几何变换,一次函数图象上点的坐标特征,难度适中.根据点的平移规律:右加左减,上加下减正确求出二次函数y =−(x−k )2+k +1的图象平移后的顶点坐标是解题的关键.15.15【分析】在Rt △ABC 中利用勾股定理可得出AC=6cm 设运动时间为t (0≤t≤4)则PC=(6-t )cmCQ=2tcm 利用分割图形求面积法可得出S 四边形PABQ=S △ABC-S △CPQS 四边形P解析:15【分析】在Rt △ABC 中,利用勾股定理可得出AC=6cm ,设运动时间为t (0≤t≤4),则PC=(6-t )cm ,CQ=2tcm ,利用分割图形求面积法可得出S 四边形PABQ =S △ABC -S △CPQ ,S 四边形PABQ =(t-3)2+15,则可求出四边形PABQ 的面积最小值,此题得解.【详解】解:在Rt △ABC 中,∠C=90°,AB=10cm ,BC=8cm ,∴=6cm .设运动时间为t (0≤t≤4),则PC=(6-t )cm ,CQ=2tcm ,∴S 四边形PABQ =S △ABC -S △CPQ ,代入得:S 四边形PABQ =12×6×8-12(6-t )×2t 变形得:S 四边形PABQ =(t-3)2+15,∴当t=3时,四边形PABQ 的面积取最小值,最小值为15.故答案为:15.【点睛】本题考查了二次函数的最值以及勾股定理,利用分割图形求面积法,列出二次函数并进行变形求极值是解题的关键.16.-1【分析】令y=0时则有则有进而可得对称轴为直线然后可求抛物线顶点纵坐标为由此可得当a 不为±1时纵坐标不为整数进而可求解a 的值【详解】解:由题意得:令y=0时则有解得:∴抛物线与x 轴交点的坐标为由 解析:-1【分析】令y=0时,则有()220a x x a ⎛⎫--= ⎪⎝⎭,则有122,2x x a==,进而可得对称轴为直线11x a =+,然后可求抛物线顶点纵坐标为12a a--+,由此可得当a 不为±1时,纵坐标不为整数,进而可求解a 的值.【详解】解:由题意得:令y=0时,则有()220a x x a ⎛⎫--= ⎪⎝⎭,解得:122,2x x a==, ∴抛物线与x 轴交点的坐标为()2,0,2,0a ⎛⎫ ⎪⎝⎭, 由抛物线的对称性可得对称轴为直线11x a =+, ∴把11x a =+代入抛物线解析式得顶点纵坐标为12y a a=--+, ∵顶点的纵坐标是一个正整数且a 是不等于0的整数,∴1a =±,当1a =时,y=0(不符合题意,舍去);当1a =-时,y=4,(符合题意)∴1a =-;故答案为-1.【点睛】本题主要考查二次函数的性质,熟练掌握二次函数的性质是解题的关键.17.【分析】根据抛物线的解析式得到顶点坐标根据顶点式及平移前后二次项的系数不变可得抛物线的顶点坐标而根据关于y 轴对称的两条抛物线的顶点的纵坐标相等横坐标互为相反数由此可得到抛物线所对应的函数表达式【详解 解析:22y x =+【分析】根据抛物线1C 的解析式得到顶点坐标,根据顶点式及平移前后二次项的系数不变可得抛物线 2C 的顶点坐标,而根据关于y 轴对称的两条抛物线的顶点的纵坐标相等,横坐标互为相反数,由此可得到抛物线3C 所对应的函数表达式.【详解】抛物线1C :2223=(1)2y x x x =-+-+, ∴抛物线1C 的顶点为(1,2),向左平移一个单位长度,得到抛物线2C ,∴抛物线2C 的顶点为(0,2),抛物线2C 与抛物线3C 关于y 轴对称,∴抛物线3C 的开口方向相同,顶点为(0,2),∴抛物线3C 的解析式为22y x =+.故答案为22y x =+.【点睛】本题主要考查了二次函数的图像的平移问题,只需看顶点坐标是如何平移得到的即可,关于y 轴对称的两条抛物线的顶点的纵坐标相等,横坐标互为相反数,难度适中.18.(2-3)【分析】根据坐标特点判定AB 两点是一对对称点从而得到抛物线的对称轴根据对称轴x=确定b 的值从而确定顶点坐标【详解】∵和是抛物线上的两点∴抛物线对称轴为x==2∴顶点坐标的横坐标为2;∵∴b解析:(2,-3).【分析】根据坐标特点,判定A ,B 两点是一对对称点,从而得到抛物线的对称轴,根据对称轴x=2b a-,确定b 的值,从而确定顶点坐标. 【详解】 ∵()1,A m -和()5,B m 是抛物线21y x bx =++上的两点,∴抛物线对称轴为x=152-+=2, ∴顶点坐标的横坐标为2; ∵22b -=, ∴b= -4, ∴241y x x =-+,当x=2时,22421y =-⨯+= -3,∴抛物线的顶点坐标为(2,-3),故应填(2,-3).【点睛】本题考查了利用抛物线的对称点确定顶点坐标,熟练掌握抛物线对称轴与对称点的关系,抛物线顶点坐标的计算公式是解题的关键.19.y=x2-1【分析】先把抛物线写成顶点式再写出平移后的顶点根据顶点式可求平移后抛物线的解析式【详解】解:∴原抛物线顶点坐标为(2-1)向左平移2个单位平移后抛物线顶点坐标为(0-1)∴平移后抛物线解解析:y=x 2-1【分析】先把抛物线写成顶点式,再写出平移后的顶点,根据顶点式可求平移后抛物线的解析式.【详解】解:()22-4+3-2-1y x x x ==,∴原抛物线顶点坐标为(2,-1),向左平移2个单位,平移后抛物线顶点坐标为(0,-1), ∴平移后抛物线解析式为:21y x =-,故答案为:21y x =-.【点睛】本题考查了抛物线的平移与抛物线解析式的关系,关键是把抛物线的平移转化为顶点的平移,运用顶点式求抛物线的解析式.20.(-101110112)【分析】根据二次函数性质可得出点A1的坐标求得直线A1A2为y=x+2联立方程求得A2的坐标即可求得A3的坐标同理求得A4的坐标即可求得A5的坐标根据坐标的变化找出变化规律即解析:(-1011,10112)【分析】根据二次函数性质可得出点A 1的坐标,求得直线A 1A 2为y=x+2,联立方程求得A 2的坐标,即可求得A 3的坐标,同理求得A 4的坐标,即可求得A 5的坐标,根据坐标的变化找出变化规律,即可找出点A 2021的坐标.【详解】解:∵A 点坐标为(1,1),∴直线OA 为y=x ,A 1(-1,1),∵A 1A 2∥OA ,∴直线A 1A 2为y=x+2,解22y x y x +⎧⎨⎩== 得11x y -⎧⎨⎩==或24x y ⎧⎨⎩==, ∴A 2(2,4),∴A 3(-2,4),∵A 3A 4∥OA ,∴直线A 3A 4为y=x+6,解26y x y x +⎧⎨⎩==, 得24x y -⎧⎨⎩==或39x y ⎧⎨⎩==, ∴A 4(3,9),∴A 5(-3,9)…,∴A 2021(-1011,10112),故答案为(-1011,10112).【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.三、解答题21.(1)见解析;(2)()2,3-,21x -≤≤【分析】(1)利用五点法作出二次函数的图像,然后令x=0求出A 点坐标即可;(2)将两个函数联立形成新的一元二次方程,然后求解C 点坐标,最后利用图像判断x 的取值范围即可. 【详解】 (1)由题意得: x ··· -3 -2 -1 0 1 ··· y··343···1由上图得A 点坐标为()3,0-;(2)由题意得:2123x x x -+=--+,解得12x =-,21x =, 当2x =-时,()213y =--+=, ∴C 点坐标为()2,3-,由上图得,当y 1≥y 2时,21x -≤≤. 【点睛】本题考查了二次函数的图像和性质,重点是根据五点法作出二次函数的图像,然后利用数形结合思想进行判断.22.(1)223y x x =--,1y x =--;(2)22MF m m =-++ 【分析】(1)把点A 和点B 的坐标代入抛物线解析式求出b 和c 的值即可求出抛物线解析式;再把点C 的横坐标代入已求出的抛物线解析式可求出其纵坐标,进而可求出直线AC 的表达式;(2)已知点M 的横坐标为m ,点M 又在直线AB 上,所以可求出其纵坐标,而点F 在抛物线上,所以可求出其纵坐标,进而可用m 的代数式表示MF 的长. 【详解】解:(1)把A (-1,0)、B (3,0)代入y=x 2+bx-c 得:01093b c b c--⎧⎨+-⎩==, 解得:23b c =-⎧⎨=⎩,∴解析式为:y=x 2-2x-3, 把x=2代入y=x 2-2x-3得y=-3, ∴C (2,-3),设直线AC 的解析式为y=kx+n ,把A (-1,0)、C (2,-3)代入得023k n k n -+=⎧⎨+=-⎩,解得:11k n =-⎧⎨=-⎩,∴直线AC 的解析式为1y x =--; (2)∵点M 在直线AC 上, ∴M 的坐标为(m ,-m-1); ∵点F 在抛物线y=x 2-2x-3上, ∴F 点的坐标为(m ,m 2-2m-3), ∴MF=(-m-1)-( m 2-2m-3)=-m 2+m+2. 【点睛】本题考查了待定系数法求二次函数的解析式、待定系数法求一次函数的解析式、二次函数图象上点的坐标特征.在(1)中注意待定系数法的应用步骤,在(2)中用m 表示出点M 、F 的坐标是解题的关键.23.(1)(1,-1),x<1;(2)y =x 2+2x -3,6. 【分析】(1)先将y =x 2﹣2x 化为顶点式,即可得出顶点坐标,再根据二次函数的性质可求出y 随x 的增大而减小时自变量的取值情况;(2)根据函数图象的平移规律,可求出新抛物线的解析式,再利用新抛物线的函数解析式求出△ABC 的底和高,即可求出面积. 【详解】解:(1)∵y =x 2﹣2x =(x -1)2-1, 则顶点坐标为(1,-1),∵y =x 2﹣2x 为二次函数,且a =1, ∴开口向上,对称轴为x=1, ∴在x<1时,y 随x 的增大而减小. 故答案为:(1,-1),x<1.(2)将抛物线y =x 2﹣2x =(x -1)2-1向左平移2个单位得y =(x -1+2)2-1=(x +1)2-1,再向下平移三个单位,得y=(x+1)2-1-3=(x+1)2-4,化简得y=x2+2x-3,即新抛物线的解析式为y=x2+2x-3,∵抛物线y=x2+2x-3与x轴交于两点A、B两点,∴令y=0,则x2+2x-3=0,解得x1=-3,x2=1,∴AB=4,令x=0,y=-3,∴C点坐标为(0,-3),S△ABC中,底边为AB,三角形的高即为C点到x轴的距离,∴S△ABC=12×4×3=6.【点睛】此题考查了二次函数的综合问题,熟练掌握二次函数的图象与性质的相关知识并能灵活运用是解题的关键.24.(1)(6-t),(12-2t);(2)S=t2-6t+36;(3)PQ∥AC,理由见解析【分析】(1)由题意可得出答案;(2)根据△PQD的面积=矩形ABCD的面积-△APD的面积-△PBQ的面积-△CDQ的面积可得出答案;(3)由二次函数的性质及中位线定理可得出答案.【详解】解:(1)根据题意得:AP=t(cm),BQ=2t(cm),则BP=(6-t)cm,CQ=(12-2t)cm,故答案为:(6-t),(12-2t);(2)∵BP=6-t(cm),CQ=12-2t(cm),∴△PQD的面积=矩形ABCD的面积-△APD的面积-△PBQ的面积-△CDQ的面积=12×6-12×12t-12×2t×(6-t)-12×6(12-2t)=t2-6t+36,∴S=t2-6t+36;(3)∵S=t2-6t+36=(t-3)2+27,且1>0,∴当t=3时,S最小;即经过3s时,△PQD的面积最小,此时,PQ∥AC.理由:∵t=3,∴AP=PB=3(cm),CQ=BQ=6(cm),∴PQ∥AC..【点睛】本题考查了矩形的性质,二次函数的最值,中位线定理,熟练掌握二次函数的性质是解题的关键.25.(1)y=x2﹣4x+3,m的值为3,见解析;(2)y=x2【分析】(1)由二次函数图象经过点(1,0),(3,0),设出交点式,利用待定系数法求函数解析式,进一步代入点得出m的值;然后利用表中的点描点,画出函数图象即可;(2)将抛物线解析式化为顶点式,再根据“上加下减、左加右减”的原则进行解答即可.【详解】解:(1)抛物线y=ax2+bx+c(a≠0)过点(1,0),(3,0),可设抛物线解析式为y =a(x﹣1)(x﹣3)∵过点(0,3),∴3=3a,解得a=1,∴y=(x﹣1)(x﹣3)=x2﹣4x+3,当x=4时,y=16﹣16+3=3,∴抛物线的解析式为y=x2﹣4x+3,m的值为3,函数图象如下:(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴将函数y=x2﹣4x+3向左平移2个单位,再向上平移1个单位,得y=(x﹣2+2)2﹣1+1,即y=x2,所以平移后的函数解析式为y=x2.【点睛】本题考查了待定系数法、抛物线的平移和画函数图象,解题关键是熟练运用待定系数法,掌握抛物线平移规律.26.()()2114y x =-++或223y x x =--+;()2见解析;()33x <-或1x >【分析】(1)由抛物线的顶点坐标是()1,4-,设抛物线的解析式为()214y a x =++,由抛物线()214y a x =++过点(0,3),1a =-即可;(2)列表,描点在平面直角坐标系中描出点(-3,0),(-2,3),(-1,4),(0,3),(1,0)用平滑曲线连接即可;(3)由函数值小于0,可得函数图像再x 轴下方,在-3左侧和1右侧即可. 【详解】解:(1)∵抛物线的顶点坐标是()1,4-, 设抛物线的解析式为()214y a x =++, 抛物线()214y a x =++过点(0,3),4=3a +,1a =-,抛物线的解析式为()214y x =-++; (2)列表: x … -3 -2 -1 0 1 … y …343…0)连线:用平滑曲线连接,(3)∵函数值小于0,∴函数图像再x 轴下方,在-3左侧和1右侧, 当x<-3或x>1时,函数值小于0.【点睛】本题考查抛物线的解析式,画函数图像,函数图像的位置关系,掌握抛物线的解析式的求法,描点画函数图像的方法,函数图像与x轴关系自变量范围是解题关键.。
浙教版九年级数学上册第一章二次函数检测题含答案第1章二次函数检测卷一、选择题(本大题共10小题,每小题4分,共40分) 1.下列各点不在抛物线y=x2-2图象上的是( ) A.(-1,-1) B.(2,2) C.(-2,0) D.(0,-2)2.二次函数y=(x-3)(x+2)的图象的对称轴是( ) A.x=3 B.x=-2 C.x=-12 D.x=123.抛物线y=-3x2+2x-1与坐标轴的交点个数为( )A.0个B.1个C.2个D.3个4.童装专卖店销售一种童装,若这种童装每天获利y(元)与销售单价x(元)满足关系y=-x2+50x-500,若要想获得最大利润,则销售单价x为( )A.25元B.20元C.30元D.40元5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是( )第5题图A.a>0B.当-1<x<3时,y>0C.c<0D.当x≥1时,y随x的增大而增大6.若A(-134,y1)、B(-1,y2)、C(53,y3)为二次函数y=-x2-4x+k的图象上的三点,则y1、y2、y3的大小关系是( )A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y37.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为( )A.y=2(x+3)2+4 B.y=2(x+3)2-4C.y=2(x-3)2-4 D.y=2(x-3)2+48.若二次方程(x-a)(x-b)-2=0的两根是m,n,且a<b,m<n,则实数a,b,m,n的大小关系是( ) A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b9.(资阳中考)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:第9题图①4ac-b2<0;②4a+c<2b;③3b+2c<0;④m(am +b)+b<a(m≠-1),其中正确结论的个数是( ) A.4个B.3个C.2个D.1个10.如图,抛物线y1=a(x+2)2-3与y2=12(x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:第10题图①无论x取何值,y2的值总是正数;②a=1;③当x =0时,y2-y1=4;④2AB=3AC;其中正确结论是( ) A.①②B.②③C.③④D.①④二、填空题(本大题共6小题,每小题5分,共30分) 11.抛物线y=49(x-3)2与x轴的交点为A,与y轴的交点为B,则△AOB的面积为______.12.某二次函数的图象与x轴交于点(-1,0),(4,0),且它的形状与抛物线y=-x2形状相同.则这个二次函数的解析式为____ .13.某人乘雪橇沿如图所示的斜坡笔直滑下,滑下的路程s(米)与时间t(秒)间的关系式为s=10t+t2,若滑到坡底的时间为2秒,则此人下滑的高度为____米.第13题图14.如图,在平面直角坐标系中,二次函数y=ax2+c(a<0)的图象过正方形ABOC的三个顶点A、B、C,则ac的值是____.第14题图15.(荆州中考)若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为.16.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表:x …-1 0 1 3 …y …-1 3 5 3 …下列结论:①ac<0;②当x>1时,y的值随x值的增大而减小;③3是方程ax2+(b-1)x+c=0的一个根;④当-1<x<3时,ax2+(b-1)x+c>0.其中正确的是____.三、解答题(本大题共8小题,共80分)17.(8分)已知二次函数y=-x2+4x-3,其图象与y轴交于点B,与x轴交于A,C两点.求△ABC的周长和面积.18.(8分)在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.第18题图19.(8分)在关于x,y的二元一次方程组x+2y=a,2x-y=1中.(1)若a=3,求方程组的解;(2)若S=a(3x+y),当a为何值时,S有最值.20.(8分)在平面直角坐标系中,△AOB的位置如图所示.已知∠AOB=90°,AO=BO,点A的坐标为(-3,1).第20题图(1)求点B的坐标;(2)求过A,O,B三点的抛物线的函数表达式;(3)设点B关于抛物线的对称轴l的对称点为B′,求△AB′B的面积.21.(10分)某校九年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高209m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运动的轨迹为抛物线,篮圈距地面3m.(1)建立如图所示的平面坐标系,求抛物线的解析式并判断此球能否准确投中?(2)此时,若对方队员乙在甲前面1米处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?第21题图22.(12分)(衢州中考)已知二次函数y=x2+x的图象,如图所示.(1)根据方程的根与函数图象之间的关系,将方程x2+x=1的根在图上近似地表示出来(描点),并观察图象,写出方程x2+x=1的根(精确到0.1);(2)在同一直角坐标系中画出一次函数y=12x+32的图象,观察图象写出自变量x取值在什么范围时,一次函数的值小于二次函数的值;(3)如图,点P是坐标平面上的一点,并在网格的格点上,请选择一种适当的平移方法,使平移后二次函数图象的顶点落在P点上,写出平移后二次函数图象的函数表达式,并判断点P是否在函数y=12x+32的图象上,请说明理由.第22题图23.(12分)某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化如下表:价格x(元/个) …30 40 50 60 …销售量y(万个) … 5 4 3 2 …同时,销售过程中的其他开支(不含造价)总计40万元.(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式;(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?24.(14分)如图,抛物线y=ax2+bx与x轴交于O、A两点,与直线y=x交于点B,点A、B的坐标分别为(3,0)、(2,2).点P在抛物线上,过点P作y轴的平行线交射线OB于点Q,以PQ为边向右作矩形PQMN,且PN=1,设点P的横坐标为m(m>0,且m≠2).第24题图(1)求这条抛物线的解析式;(2)求矩形PQMN的周长C与m之间的函数关系式;(3)当矩形PQMN是正方形时,求m的值.活页参考答案上册第1章二次函数检测卷1.C 2.D 3.B 4.A 5.B 6.C 7.A 8.A 9.B 10.D11.612.y=-x2+3x+4或y=x2-3x-413.1214.-215.-1或2或116.①③④17.令x=0,得y=-3,故B点坐标为(0,-3),解方程-x2+4x-3=0,得x1=1,x2=3.故A、C两点的坐标为(1,0),(3,0).所以AC=3-1=2,AB=12+32=10,BC=32+32=32,OB=│-3│=3.C△ABC =AB+BC+AC=2+10+32;S△ABC=12AC•OB=12×2×3=3.18.(1)y=(x-1)2-4,即y=x2-2x-3; (2)令y=0,得x2-2x-3=0,解方程,得x1=-1,x2=3.所以二次函数图象与x轴的两个交点坐标分别为(3,0)和(-1,0).所以二次函数图象向右平移1个单位后经过坐标原点.平移后所得图象与x轴的另一个交点坐标为(4,0).19.(1)a=3时,方程组为x+2y=3①,2x-y=1②;②×2得,4x-2y=2③,①+③得,5x=5,解得x =1,把x=1代入①得,1+2y=3,解得y=1,所以,方程组的解是x=1,y=1;(2)方程组的两个方程相加得,3x+y=a+1,所以S=a(3x+y)=a(a+1)=a2+a,所以,当a=-12×1=-12时,S有最小值.20.第20题图(1)过点A作AC⊥x轴,过点B作BD⊥x轴,垂足分别为C,D,则∠ACO=∠ODB=90°,∴∠AOC+∠OAC =90°.∵∠AOB=90°,∴∠AOC+∠BOD=90°.∴∠OAC=∠BOD.又∵AO=BO,∴△ACO≌△ODB(AAS).∴OD=AC=1,DB=OC=3.∴点B的坐标为(1,3);(2)∵抛物线过原点,∴可设抛物线的函数表达式为y=ax2+bx.将点A(-3,1),B(1,3)的坐标代入,得9a-3b=1,a+b=3,解得a=56,b=136.∴所求抛物线的函数表达式为y=56x2+136x; (3)由(2)得,抛物线的对称轴为直线x=-1310,点B的坐标为(1,3),∴点B′的坐标为-185,3.设BB′边上的高为h,则h=3-1=2.|BB′|=1+185=235.∴S △AB′B=12BB′•h=12×235×2=235. 21.(1)根据题意可知,抛物线经过(0,209),顶点坐标为(4,4),则可设其解析式为y=a(x-4)2+4,解得a=-19.则所求抛物线的解析式为y=-19(x-4)2+4.又篮圈的坐标是(7,3),代入解析式得,y=-19(7-4)2+4=3.所以能够投中;(2)当x=1时,y=3,此时3.1>3,故乙队员能够拦截成功.22.(1)∵令y=0得:x2+x=0,解得:x1=0,x2=-1,∴抛物线与x轴的交点坐标为(0,0),(-1,0).作直线y=1,交抛物线于A、B两点,分别过A、B两点,作AC⊥x轴,垂足为C,BD⊥x轴,垂足为D,点C 和点D的横坐标即为方程的根.根据图1可知方程的解为x1≈-1.6,x2≈0.6;(2)∵将x=0代入y=12x +32得y=32,将x=1代入得:y=2,∴直线y=12x +32经过点(0,32),(1,2).直线y=12x+32的图象如图2所示,由函数图象可知:当x<-1.5或x>1时,一次函数的值小于二次函数的值;(3)先向上平移54个单位,再向左平移12个单位,平移后的顶点坐标为P(-1,1).平移后的表达式为y=(x+1)2+1,即y=x2+2x+2.点P在y=12x+32的函数图象上.理由:∵把x=-1代入得y=1,∴点P的坐标符合直线的解析式.∴点P在直线y=12x+32的函数图象上.第22题图23.(1)根据表格中数据可得出:y与x是一次函数关系,设解析式为:y=ax+b,则30a+b=5,40a+b =4,解得:a=-110,b=8.∴函数解析式为:y=-110x+8; (2)根据题意得:z =(x-20)y-40=(x-20)(-110x+8)-40=-110x2+10x-200=-110(x2-100x)-200=-110[(x-50)2-2500]-200=-110(x-50)2+50,∵-110<0,∴x =50,z最大=50.∴该公司销售这种计算器的净得利润z与销售价格x的函数解析式为z=-110x2+10x -200,销售价格定为50元/个时净得利润最大,最大值是50万元;第23题图(3)当公司要求净得利润为40万元时,即-110(x-50)2+50=40,解得:x1=40,x2=60.作函数图象的草图,通过观察函数y=-110(x-50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60.而y与x的函数关系式为:y =-110x+8,y随x的增大而减少,∴若还需考虑销售量尽可能大,销售价格应定为40元/个.24.(1)把A(3,0)、B(2,2)两点坐标代入y=ax2+bx,得9a+3b=0,4a+2b=2,计算得出a=-1,b=3.故抛物线所对应的函数表达式为y=-x2+3x. (2)∵点P在抛物线y=-x2+3x上,∴可以设P(m,-m2+3m),∵PQ∥y轴,∴Q(m,m).①当0<m<2时,如图1中,PQ=-m2+3m-m=-m2+2m,C=2(-m2+2m)+2=-2m2+4m+2. ②当m>2时,如图2中,PQ=m-(-m2+3m)=m2-2m,C=2(m2-2m)+2=2m2-4m+2. (3)∵矩形PQMN是正方形,∴PQ=PN=1,当0<m<2时,如图3中,-m2+2m=1,计算得出m=1.当m>2时,如图4中,m2-2m=1,计算得出m=1+2(或1-2不合题意舍弃).第24题图。
九年级数学二次函数专题精练含答案一、单选题1.关于二次函数22(4)6y x =-+的最大值或最小值,下列说法正确的是( ) A .有最大值4 B .有最小值4 C .有最大值6 D .有最小值6 2.已知抛物线24y x x c =-++经过点(4,3),那么下列各点中,该抛物线必经过的点是( )A .(0,2)B .(0,3)C .(0,4)D .(0,5) 3.在平面直角坐标系中,已知抛物线245y x x =-+,将该抛物线沿y 轴翻折所得的抛物线的表达式为( )A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =--- 4.正方形的边长为4,若边长增加x ,那么面积增加y ,则y 关于x 的函数表达式为( ) A .216y x =+ B .2(4)y x =+ C .28y x x =+ D .2164y x =- 5.把抛物线22y x =向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是( )A .22(2)1y x =-+-B .22(2)1y x =--+C .22(2)1y x =++D .22(2)1y x =--6.如图,二次函数2y ax bx c =++的图象关于直线1x =对称,与x 轴交于1(,0)A x ,2(,0)B x 两点,若121x -<<-,则下列四个结论:①234x <<,①320a b +>,①24b a c ac >++,①a c b >>.正确结论的个数为( )A .1个B .2个C .3个D .4个7.对于抛物线23(1)2y x =-+-,下列说法正确的是( )A .抛物线开口向上B .当1x >-时,y 随x 增大而减小C .函数最小值为﹣2D .顶点坐标为(1,﹣2)8.关于二次函数()215y x =-+,下列说法正确的是( )A .函数图象的开口向下B .函数图象的顶点坐标是()1,5-C .该函数有最大值,是大值是5D .当1x >时,y 随x 的增大而增大 9.已知A (−3,−2) ,B (1,−2),抛物线y =ax 2+bx +c (a >0)顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①c ≥−2 ;①当x >0时,一定有y 随x 的增大而增大;①若点D 横坐标的最小值为−5,点C 横坐标的最大值为3;①当四边形ABCD 为平行四边形时,a =12. 其中正确的是( )A .①①B .①①C .①①D .①①① 10.已知二次函数2243y mx m x =--(m 为常数,0m ≠),点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,则m 的取值范围是( )A .m 1≥或0m <B .m 1≥C .1m ≤-或0m >D .1m ≤-11.已知函数()211y ax a x =-++,则下列说法不正确的个数是( )①若该函数图像与x 轴只有一个交点,则1a =①方程()2110ax a x -++=至少有一个整数根①若11x a<<,则()211y ax a x =-++的函数值都是负数 ①不存在实数a ,使得()2110ax a x -++≤对任意实数x 都成立A .0B .1C .2D .312.如图,在正方形ABCD 中,4AB =,点P 从点A 出发沿路径A B C →→向终点C 运动,连接DP ,作DP 的垂直平分线MN 与正方形ABCD 的边交于M ,N 两点,设点P 的运动路程为x ,PMN 的面积为y ,则下列图象能大致反映y 与x 函数关系的是( )A .B .C .D .二、填空题13.已知点(3,a )在抛物线y =-2x 2+2x 上,则=a ______.14.如图是二次函数21y ax bx c =++ 和一次函数y 2=kx +t 的图象,当y 1≥y 2时,x 的取值范围是_____.15.小亮同学在探究一元二次方程2ax bx c 0++=的近似解时,填好了下面的表格:根据以上信息请你确定方程2ax bx c 0++=的一个解的范围是________.16.已知二次函数223y x x =--+,当12a x时,函数值y 的最小值为1,则a 的值为_______.17.已知抛物线2122y x bx =+-与x 轴交于A ,B 两点,与y 轴交于C 点.(1)若(1,0)A -,则b =______.(2)若(1,0)M -,(1,0)N ,抛物线2122y x bx =+-与线段MN 没有交点,则b 的取值范围为______.三、解答题18.已知抛物线经过点()1,0A -,()5,0B ,()0,5C ,求该抛物线的函数关系式 19.如图,抛物线212y x bx c =++与直线132y x =+分别相交于A 、B 两点,其中点A 在y 轴上,且此抛物线与x 轴的一个交点为()3,0C -.(1)求抛物线的解析式(2)在抛物线对称轴l 上找一点M ,使MBC ∆的周长最小,请求出这个周长的最小值.20.如图,一次函数y A 、B ,二次函数2y bx c ++图象过A 、B 两点.(1)求二次函数解析式;(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.21.如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A (﹣2,0)和点B (8,0),与y 轴交于点C (0,﹣8),连接AC ,D 是抛物线对称轴上一动点,连接AD ,CD ,得到①ACD .(1)求该抛物线的函数解析式.(2)①ACD 周长能否取得最小值,如果能,请求出D 点的坐标;如果不能,请说明理由.(3)在(2)的条件下,在抛物线上是否存在点E ,使得①ACE 与①ACD 面积相等,如果存在,请求出点的坐标;如果不存在,请说明理由.参考答案1--10DBCCD BBDDA 11--12CA13.-1214.﹣1≤x ≤215.3.24x 3.25<<16.1-17. 32- 3322b -<< 18.解:①抛物线经过点()1,0A -,()5,0B ,()0,5C ,①设抛物线的表达式为()()15y a x x =+-,将点()0,5C 代入得:55a =-,解得:1a =-,①()()21545y x x x x =-+-=-++.①该抛物线的函数关系式为245y x x =-++.19..解:(1)抛物线212y x bx c =++与直线132y x =+交于y 轴上一点A , 令0,x = 则3,y = ∴ 点()0,3A把()0,3A ,()3,0C -代入212y x bx c =++得: 39302c b c =⎧⎪⎨-+=⎪⎩, 解得:523b c ⎧=⎪⎨⎪=⎩, ∴抛物线的解析式是215322y x x =++; (2)将直线132y x =+与二次函数215322y x x =++联立得方程组: 213215322y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩ 215133,222x x x ∴++=+ 240,x x ∴-=解得:0x =或4x =-,04,,31x x y y ==-⎧⎧∴⎨⎨==⎩⎩()0,3A ,()4,1B ∴-BC ∴==如图,要使MBC △的周长最小,则MB MC +最小,设二次函数215322y x x =++与x 轴的另一交点为D ,抛物线的对称轴为:552,1222x=-=-⨯()3,0C-∴点()2,0D-,连接,BD交对称轴于,MMD MC∴=,此时,MB MC MB MD BD+=+=最小,此时:BD=MBC∴20.解:(1)对于y x=x=0时,y=当y=0时,03x-=,妥得,x=3①A(3,0),B(0,把A(3,0),B(0,2y bx c++得:+=0b cc⎧⎪⎨=⎪⎩解得,bc⎧=⎪⎨⎪=⎩①抛物线的解析式为:2y x x=-(2)抛物线的对称轴为直线12bxa=-==故设P(1,p),Q(m,n)①当BC为菱形对角线时,如图,①B ,C 关于对称没对称,且对称轴与x 轴垂直,①①BC 与对称轴垂直,且BC //x 轴①在菱形BQCP 中,BC ①PQ①PQ ①x 轴①点P 在x =1上,①点Q 也在x =1上,当x =1时,211y①Q (1,); ①当BC 为菱形一边时,若点Q 在点P 右侧时,如图,①BC //PQ ,且BC =PQ①BC //x 轴,①令y =2y 解得,120,2x x ==①(2,C①PQ=BC=22①PB=BC=2①迠P在x轴上,①P(1,0)①Q(3,0);若点Q在点P的左侧,如图,同理可得,Q(-1,0)综上所述,Q点坐标为(1,)或(3,0)或(-1,0)21.解:(1)由题意可得:0=4206488a b ca b cc-+⎧⎪=++⎨⎪=-⎩,解得:1238abc⎧=⎪⎪=-⎨⎪=-⎪⎩,①抛物线的解析式为:y=12x2﹣3x﹣8;(2)△ACD周长能取得最小值,①点A(﹣2,0),点B(8,0),①对称轴为直线x=3,①①ACD周长=AD+AC+CD,AC是定值,①当AD+CD取最小值时,△ACD周长能取得最小值,①点A,点B关于对称轴直线x=3对称,①连接BC交对称轴直线x=3于点D,此时AD+CD有最小值,设直线BC 解析式为:y =kx ﹣8,①0=8k ﹣8,①k =1,①直线BC 解析式为:y =x ﹣8,当x =3,y =﹣5,①点D (3,﹣5);(3)存在,①点A (﹣2,0),点C (0,﹣8),①直线AC 解析式为y =﹣4x ﹣8,如图,①①ACE 与①ACD 面积相等,①DE ①AC ,①设DE 解析式为:y =﹣4x +n ,①﹣5=﹣4×3+n ,①n =7,①DE 解析式为:y =﹣4x +7, 联立方程组可得:2471382y x y x x =-+⎧⎪⎨=--⎪⎩,解得:12111x y ⎧=⎪⎨=-⎪⎩,22111x y ⎧=⎪⎨=⎪⎩, ①点E1,﹣1,).九年级上册数学二次函数同步练习一、单选题1.下列函数中,是二次函数的是( ) A .y =(2x ﹣1)2 B .y =(x +1)2﹣x 2 C .y =ax 2D .y =2x +32.若抛物线258(3)23m m y m x x -+=-+-是关于x 的二次函数,那么m 的值是( )A .3B .2-C .2D .2或33.若抛物线y =x 2-x -2经过点A (3,a ),则a 的值是( ) A .2B .4C .6D .84.已知二次函数2135y x x =-+,则其二次项系数a ,一次项系数b ,常数项c 分别是( ) A .1,3,5a b c ==-= B .1,3,5a b c ===C .5,3,1a b c ===D .5,3,1a b c ==-=5.如果函数2(2)25y a x x =-+-是二次函数,则a 的取值范围是( ) A .2a ≠ B .a≥0C .a=2D .a>06.下列函数中①31y x ;①243y x x =-;①1y x=;①225=-+y x ,是二次函数的有() A .①①B .①①C .①①D .①①7.若抛物线2y x bx c =-++经过点()2,3-,则247c b --的值是( ) A .6B .7C .8D .208.函数y=ax2+bx+c(a ,b ,c 是常数)是二次函数的条件是( ) A .a≠0,b≠0,c≠0 B .a<0,b≠0,c≠0 C .a>0,b≠0,c≠0 D .a≠0二、填空题 9.若()2321m m y m x --=+是二次函数,则m 的值为______.10.若22ay x -=是二次函数,则=a ________.11.在二次函数21y x =-+中,二次项系数、一次项系数、常数项的和为_____. 12.下列函数一定是二次函数的是__________.①2y ax bx c =++;①3y x =-;①2431y x x =-+;①2(1)y m x bx c =-++;①y =(x -3)2-x 213.当常数m ≠______时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当常数m =___时,这个函数是一次函数. 14.已知函数2135m y x -=-① 当m = _________时,y 是关于x 的一次函数; ① 当m =_________时,y 是关于x 的二次函数 .15.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.16.已知二次函数2y x bx 3=-++,当x 2=时,y 3=.则这个二次函数的表达式是________. 三、解答题17.下列函数中(x ,t 是自变量),哪些是二次函数? 22322113,25,22,1522y x y x x y x s t t =-+=-+=+=++.18.已知函数y =(m 2-2)x 2+(m x +8. (1)若这个函数是一次函数,求m 的值; (2)若这个函数是二次函数,求m 的取值范围.19.若函数y=(a -1)x b+1+x 2+1是二次函数,试讨论a 、b 的取值范围.20.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2)与长x 之间的函数关系式,并指出自变量的取值范围.参考答案:1.A 2.C 3.B 4.D 5.A 6.B 7.B 8.D 9.4 10.2± 11.0 12.①13. 4,-2 4 14. 1 3215.316.2y x 2x 3=-++17.2132y x =-+和215s t t =++是二次函数18.(1)m (2)m ≠m ≠19.①a≠0;①b=0或-1,a 取全体实数①当a=1,b 为全体实数时,y=x 2+1是二次函数 20.y= 21152x x -+, x 的取值范围为0<x<30.九年级数学上册二次函数的图象与性质练习题(附答案)一.选择题1.如果在二次函数的表达式y =ax 2+bx +c 中,a >0,b <0,c <0,那么这个二次函数的图象可能是( )A.B.C.D.2.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.﹣2B.2C.±2D.03.已知A(,y1),B(2,y2),C(﹣,y3)是二次函数y=3(x﹣1)2+k图象上三点,则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y2>y1D.y2>y3>y14.二次函数的部分图象如图所示,对称轴是直线x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+3 5.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.6.关于抛物线y=﹣x2+2x﹣3的判断,下列说法正确的是()A.抛物线的开口方向向上B.抛物线的对称轴是直线x=﹣1C.抛物线对称轴左侧部分是下降的D.抛物线顶点到x轴的距离是27.已知二次函数y=x2﹣4x+5(0≤x≤3),则它的最大值是()A.1B.2C.3D.58.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x<1时,y随x值的增大而增大;⑤当y>0时,x<﹣1或x>3.其中,正确的说法有()A.①②④B.①②⑤C.①③⑤D.②④⑤9.已知函数y=2(x+1)2+1,则()A.当x<1 时,y随x的增大而增大B.当x<1 时,y随x的增大而减小C.当x<﹣1 时,y随x的增大而增大D.当x<﹣1 时,y随x的增大而减小10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中不正确的有()个.①abc>0;②2a+b=0;③9a+3b+c<0;④4ac﹣b2<0;⑤a+b≥m(am+b)(m为任意实数).A.3B.2C.1D.0二.填空题11.已知四个二次函数的图象如图所示,那么a1,a2,a3,a4的大小关系是.(请用“>”连接排序)12.抛物线y=3x2+6x+11的顶点坐标为.13.二次函数y=3(x﹣1)2+5的最小值为.14.已知二次函数y=2x2+bx+4顶点在x轴上,则b=.15.二次函数y=x2﹣2x+1在2≤x≤5范围内的最小值为.16.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论是(填写序号).三.解答题17.已知二次函数的顶点坐标为A(1,﹣4),且经过点B(3,0).(1)求该二次函数的解析式;(2)判断点C(2,﹣3)是否在该函数图象上,并说明理由.18.如图,已知直线l过点A(4,0),B(0,4)两点,它与二次函数y=ax2的图象在第一象限内交于点P,若S△AOP=4,试求二次函数的表达式.19.如图,直线L1:y=bx+c与抛物线L2:y=ax2的两个交点坐标分别为A(m,4),B(1,1).(1)求m的值;(2)过动点P(n,0)且垂直于x轴的直线与L1,L2的交点分别为C,D,当点C位于点D上方时,请直接写出n的取值范围.20.已知二次函数y=a(x+a)(x+a﹣1).(1)当a=2时,求该二次函数图象的对称轴.(2)当a<0时,判断该二次函数图象的顶点所在的象限,并说明理由.(3)当0<x<3时,y随着x增大而增大,求a的取值范围.21.已知二次函数y=ax2(a≠0)与一次函数y=kx﹣2的图象相交于A、B两点,如图所示,其中A(﹣1,﹣1),求△OAB的面积.22.抛物线y=﹣x2+bx+c经过点A(3,0)和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.23.如图,在平面直角坐标系中,直线AB与抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点,抛物线与y轴交于点C.(1)求一次函数和二次函数的解析式;(2)求△ABC的面积.参考答案一.选择题1.解:∵a>0,b<0,c<0,∴﹣>0,∴抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,故选:C.2.解:∵y=(m+2)x|m|+2是y关于x的二次函数,∴|m|=2且m+2≠0.解得m=2.故选:B.3.解:∵二次函数y=3(x﹣1)2+k图象的对称轴为直线x=1,而A(,y1)到直线x=1的距离最近,C(﹣,y3)到直线x=1的距离最远,∴y3>y2>y1.故选:C.4.解:由图象知抛物线的对称轴为直线x=﹣1,设抛物线解析式为y=a(x+1)2+k,将(﹣3,0)、(0,3)代入,得:,解得:,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,故选:D.5.解:A、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;B、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a>0,由直线可知,a<0,故本选项错误.故选:A.6.解:∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线开口向下,对称轴为x=1,顶点坐标为(1,﹣2),在对称轴左侧,y随x的增大而增大,∴A、B、C不正确;∵抛物线顶点到x轴的距离是|﹣2|=2,∴D正确,故选:D.7.解:y=x2﹣4x+5=(x﹣2)2+1,由于0≤x≤3,所以当x=2时,y有最小值1,当x=0时,y有最大值5.故选:D.8.解:根据图象可知:①对称轴﹣>0,故ab<0,正确;②方程ax2+bx+c=0的根为x1=﹣1,x2=3,正确;③x=1时,y=a+b+c<0,错误;④当x<1时,y随x值的增大而减小,错误;⑤当y>0时,x<﹣1或x>3,正确.正确的有①②⑤.故选:B.9.解:∵y=2(x+1)2+1,∴当x>﹣1时,y随x的增大而增大,故选项A错误,当x<﹣1时,y随x的增大而减小,故选项B错误、选项C错误、选项D正确;故选:D.10.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点坐标在x轴上方,∴c>0,∴abc<0,所以①错误;∵b=﹣2a,∴2a+b=0,所以②正确;∵x=3时,y<0,∴9a+3b+c<0,所以③正确.∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,即4ac﹣b2<0,所以④正确;∵抛物线的对称轴为直线x=1,∴函数的最大值为a+b+c,∴a+b+c≥am2+bm+c(m为任意实数),即a+b≥m(am+b),所以⑤正确.故选:C.二.填空题11.解:如图所示:①y=a1x2的开口小于②y=a2x2的开口,则a1>a2>0,③y=a3x2的开口大于④y=a4x2的开口,开口向下,则a4<a3<0,故a1>a2>a3>a4.故答案为:a1>a2>a3>a412.解:∵y=3x2+6x+11=3(x+1)2+8,∴抛物线y=3x2+6x+11的顶点坐标为(﹣1,8),故答案为(﹣1,8).13.解:由于二次函数y=3(x﹣1)2+5中,a=3>0,所以当x=1时,函数取得最小值为5,故答案为5.14.解:∵二次函数y=2x2+bx+4顶点在x轴上,∴=0,解得b=,故答案为:±4.15.解:∵二次函数y=x2﹣2x+1=(x﹣1)2,∴当x>1时,y随x的增大而增大,∴在2≤x≤5范围内,当x=2时,y取得最小值,此时y=(2﹣1)2=1,故答案为:1.16.解:∵抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵x=﹣1时,y<0,∴a﹣b+c<0,即a+c<b,所以②错误;∵抛物线与x轴的一个交点为(﹣2,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(4,0),所以③错误;∵抛物线开口向上,∴a>0,∴b=﹣2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以④正确.故答案为①④.三.解答题17.解:(1)设二次函数的解析式是y=a(x﹣h)2+k,∵二次函数的顶点坐标为A(1,﹣4),∴y=a(x﹣1)2﹣4,∵经过点B(3,0),∴代入得:0=a(3﹣1)2﹣4,解得:a=1,∴y=(x﹣1)2﹣4,即二次函数的解析式为y=x2﹣2x﹣3;(2)点C(2,﹣3)在该函数图象上,理由是:把C(2,﹣3)代入y=x2﹣2x﹣3得:左边=﹣3,右边=4﹣4﹣3=﹣3,即左边=右边,所以点C在该函数的图象上.18.解:设直线l的解析式为y=kx+b,把A(4,0),B(0,4)分别代入得,解得,∴直线l的关系式为y=﹣x+4,设P(t,﹣t+4),∵S△AOP=4,∴×4×(﹣t+4)=4,解得t=2,∴P(2,2),把P(2,2)代入y=ax2得4a=2,解得a=,∴二次函数的表达式为y=x2.19.解:(1)把B(1,1)代入y=ax2得:a=1,∴抛物线解析式为y=x2.把A(m,4)代入y=x2得:4=m2,∴m=±2.∵点A在二象限,∴m=﹣2.(2)观察函数图象可知:当﹣2<x<1时,直线在抛物线的上方,∴n的取值范围为:﹣2<n<1.20.解:(1)当a=2时,y=2(x+2)(x+1),∴二次函数的对称轴为x=.(2)由题知二次函数与x轴的交点坐标为(﹣a,0),(1﹣a,0);∵a<0,∴二次函数的开口方向向下;又﹣a>0,1﹣a>0,所以对称轴所在直线为x==>0,当x=时,y=﹣>0,所以顶点坐标(,﹣)在第一象限.(3)由(2)知,二次函数的对称轴为直线x=,∵当0<x<3时,y随着x增大而增大,∴当a>0时,≤0,解得a≥;当a<0,≥3,解得a≤﹣.∴a的取值范围为a≥或a≤﹣.21.解:∵一次函数y=kx﹣2的图象相过点A(﹣1,﹣1),∴﹣1=﹣k﹣2,解得k=﹣1,∴一次函数表达式为y=﹣x﹣2,∴令x=0,得y=﹣2,∴G(0,﹣2),∵y=ax2过点A(﹣1,﹣1),∴﹣1=a×1,解得a=﹣1,∴二次函数表达式为y=﹣x2,由一次函数与二次函数联立可得,解得,,∴S△OAB=OG•|A的横坐标|+OG•点B的横坐标=×2×1+×2×2=1+2=3.22.解:(1)∵抛物线经过A、B(0,3)∴由上两式解得∴抛物线的解析式为:;(2)由(1)抛物线对称轴为直线x=把x=代入,得y=4则点C坐标为(,4)设线段AB所在直线为:y=kx+b,则有,解得∴AB解析式为:∵线段AB所在直线经过点A、B(0,3)抛物线的对称轴l于直线AB交于点D∴设点D的坐标为D将点D代入,解得m=2∴点D坐标为,∴CD=CE﹣DE=2过点B作BF⊥l于点F∴BF=OE=∵BF+AE=OE+AE=OA=∴S△ABC=S△BCD+S△ACD=CD•BF+CD•AE∴S△ABC=CD(BF+AE)=×2×=23.解:(1)∵抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点∴,解得:,∴抛物线解析式为y=﹣x2+2x+3,设直线AB的解析式为y=mx+n(m≠0),则,解得,∴直线AB的解析式为y=x+1;(2)令x=0,则y=﹣x2+2x+3=3,∴C(0,3),则OC=3,BC=2,BC∥x轴,∴S△ABC=×BC×OC==3.九年级数学上册二次函数单元综合测试卷一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+12.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2 5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣66.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+17.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.49.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°二.填空题(共6小题)11.函数是二次函数,则m的值为.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?21.如图,抛物线与x轴交于A(﹣1,0)、B(4,0),与y轴交于C.(1)求抛物线的解析式;(2)如图1,已知线段DE与线段BC关于平面内某点成中心对称,其中DE的两端点刚好一个落在抛物线上,一个落在对称轴上,求落在对称轴上的点的坐标;(3)如图2,点M为第二象限抛物线上,作MN∥BC交抛物线于点N,直线NB、MC 交于点P,求P点的横坐标.22.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y'),给出如下定义:若y'=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)点(﹣5,﹣2)的“可控变点”坐标为;(2)若点P在函数y=﹣x2+16的图象上,其“可控变点”Q的纵坐标y′是7,求“可控变点”Q的横坐标;(3)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,求实数a的取值范围.23.在平面直角坐标系中,抛物线y=x2+bx+c经过A(﹣4,0),点M为抛物线的顶点,点B在y轴上,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线解析式;(2)直线AB的函数解析式为,点M的坐标为.(3)在y轴上找一点Q,使得△AMQ的周长最小,具体作法如图②,作点A关于y轴的对称点A',连接MA′交y轴于点Q,连接AM,AQ,此时△AMQ的周长最小,请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A,O,C,N为顶点的四边形是平行四边形?若存在请直接写出点N的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+1解:A.根据二次函数的定义,y=4x是一次函数,不是二次函数,故A不符合题意.B.根据二次函数的定义,y=3x﹣5不是二次函数,是一次函数,故B不符合题意.C.根据二次函数的定义,y=是反比例函数,不是二次函数,故C不符合题意.D.根据二次函数的定义,y=2x2+1是二次函数,故D符合题意.故选:D.2.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.解:A、由图知a>0,﹣=1,c>0,即b<0,∵已知a>b>c,故本选项错误;B、由图知a<0,而已知a>b>c,且a+b+c=0,必须a>0,故本选项错误;C、图C中条件满足a>b>c,且a+b+c=0,故本选项正确;D、∵a+b+c=0,即当x=1时a+b+c=0,与图中与x轴的交点不符,故本选项错误.故选:C.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)解:∵二次函数可化为y=(x﹣3)2+5,∴二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是(3,5),故选:D.4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2解:y=x2+2x﹣1=(x2+2x+1)﹣2=(x+1)2﹣2,即y=(x+1)2﹣2.故选:D.5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣6解:y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2,∴当x<2时,y随着x增大而增大,∴当x=时有最大值y=﹣2(﹣2)2+2=﹣2.5,故选:C.6.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+1解:设所求的抛物线解析式为y=a(x﹣3)2+1,∵所求抛物线与函数y=的图象相同且开口方向相反,∴a=﹣,∴所求的抛物线解析式为y=﹣(x﹣3)2+1.故选:D.7.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1解:当x=﹣1时,y1=(x﹣1)2=(﹣1﹣1)2=4;当x=1时,y2=(x﹣1)2=(1﹣1)2=0;当x=2时,y3=(x﹣1)2=(2﹣1)2=1,所以y2<y3<y1.故选:C.8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.4解:根据表格数据可知:抛物线的对称轴是直线x==,∴③错误;∵抛物线与x轴的一个交点为(﹣2,0),∴抛物线与x轴的另一个交点为(3,0),∴方程ax2+bx+c=0有两根为x1=﹣2,x2=3;故①正确;从表格可知当x=0时,y=6,∴抛物线与y轴的交点为(0,6);∴②正确;从表格可知:当x<时,y随x的增大而增大,当x>时,y随x的增大而减小,∴抛物线开口向下,故④错误.故选:B.9.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对解:∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°,∴∠OBE=∠OCF=45°,∵BE=CF,∴△BOE≌△COF,∴OE=OF,∠BOE=∠COF,∴∠BOE+∠COE=∠COF+∠COE,即∠EOF=∠BOC=90°,且S△COE+S△COF=S△COE+S△BOE,即S四边形OECF=S△BOC=S正方形ABCD=×4×4=4,由垂线段最短可得,当OE⊥BC时,OE=BC=×4=2,△OEF面积取最小值为×2×2=2,∴结论Ⅰ和Ⅱ都对,结论Ⅲ错,故选:A.10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°解:把(25,0.725),(50,0.06),(60,0.09)代入y=ax2+bx+c得:,解得,∴y=0.0001x2﹣0.008x+0.21=0.0001(x﹣40)2+0.05,∵0.0001>0,∴x=40时,y最小为0.05,∴燃气灶烧开一壶水最节省燃气的旋钮角度约为40°,故选:B.二.填空题(共6小题)11.函数是二次函数,则m的值为3.解:∵函数是二次函数,∴m2﹣7=2且m+3≠0,解得:m=3.则m的值为3.故答案为:3.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为5.解:∵y=x2﹣4x+c,∴抛物线开口向上,对称轴为直线x=﹣=2,∴点A,B关于直线x=2对称,∵点A横坐标为﹣1,∴点B横坐标为5,故答案为:5.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=5.解:∵|2﹣a|=3,∴2﹣a=±3,解得:a=﹣1或5,又二次函数y=ax2开口向上,则a>0,故a=5.故答案为:5.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是3.解:∵点A(m,n)在抛物线y=x2﹣3x+1上,∴n=m2﹣3m+1,∴m﹣n=﹣m2+4m﹣1=﹣(m﹣2)2+3,∴当m=2时,m﹣n有最大值为3,故答案为:3.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为﹣.解:设A(x1,0),B(x2,0),令y=0,则y=﹣x2+2x+c=0,由根与系数的关系得:x1+x2=2,x1•x2=﹣c,则AB=|x1﹣x2|===2,令x=0,则y=c,∴C(0,c),∵CD∥x轴,∴点D纵坐标为c,当y=c时,则﹣x2+2x+c=c,解得:x=2,或x=0,∴D(2,c),∴CD=2,∵AB+CD=3,∴2+2=3,解得:c=﹣,故答案为:﹣.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为142.解:连接AC,过B作BH⊥AC于H,以B为圆心,BG为半径作圆,交BH于G',如图:∵四边形ABCD是矩形,∴∠EBF=90°,∵EF=10,点G是EF的中点,∴BG=EF=10=5,∴G在以B为圆心,5为半径的弧上,当G运动到G'时,S△ACG最小,此时四边形AGCD 面积的最小值,最小值即为四边形AG'CD的面积,∵AB=12=CD,BC=16=AD,∴AC=20,S△ACD=×12×16=96,∴BH==,∴G'H=BH﹣5=﹣5=,∴S△ACG'=AC•G'H=×20×=46,∴S四边形AG'CD=S△ACD+S△ACG'=46+96=142,即四边形AGCD面积的最小值是142.故答案为:142.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.解:(1)由图象可知,抛物线经过点(﹣1,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当y=0时,x的值为﹣1和3;(2)∵抛物线经过点(﹣1,0),(3,0),(0,﹣3),∴设抛物线的解析式为y=a(x+1)(x﹣3),代入(0,﹣3)得,﹣3=﹣3a,解得a=1,∴抛物线的解析式为y=(x+1)(x﹣3),令y=5得5=(x+1)(x﹣3),解得x1=4,x2=﹣2,∴当y>5时,求x的范围是x>4或x<﹣2;(3)∵y=(x+1)(x﹣3)=(x﹣1)2+4,∴抛物线开口向上,顶点为(1,4),对称轴为直线x=1,∴y随x的增大而增大时,x的范围是x>1.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.解:(1)y=x2﹣6x+8=x2﹣6x+9﹣1=(x﹣3)2﹣1;(2)开口向上,对称轴是直线x=3,顶点坐标是(3,﹣1);(3)x>3时,y随x的增大而增大;x<3时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,答:小球飞行高度达到最高时的飞行时间为2s.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?解:(1)根据题意,降价2元则销售量为60+2×10=80(斤),销售利润为:(30﹣15﹣2)×80=1040(元),。
二次函数周检测题(3)含答案
1.已知二次函数y =x 2-3x +m(m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程x 2-3x +m =0的两个实数根是( )
A .x 1=1,x 2=-1
B .x 1=1,x 2=2
C .x 1=1,x 2=0
D .x 1=1,x 2=3 2.如图,已知抛物线y =ax 2+bx +c 与x 轴的一个交点为A(1,0),对称轴是直线x =-1,则ax 2+bx +c =0的解是( )
A .x 1=-3,x 2=1
B .x 1=3,x 2=1
C .x =-3
D .x =-2 3.二次函数y =x 2-2x -3与x 轴的两个交点之间的距离为( ) A 、2 B 、3 C 、4 D 、5
4.下列抛物线中,与x 轴有两个交点的是( )
A .y =3x 2-5x +3
B .y =4x 2-12x +9
C .y =x 2-2x +3
D .y =2x 2+3x -4 5.已知抛物线y =ax 2-2x +1与x 轴没有交点,那么该抛物线的顶点所在的象限是( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限 6.若抛物线y =kx 2-2x +1的图象与x 轴: (1)只有一个交点,则k =____;
(2)有两个交点,则k 的取值范围是 . 7.根据下列表格的对应值,判断方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)一个解的范围是( )
A. 3<x<3.23 B .3.23<x<3.24 C .3.24<x<3.25 D .3.25<x<3.26 8.二次函数y =x 2-x -2的图象如图所示,则函数值y<0时x 的取值范围是( ) A .x<-1 B .x>2 C .-1<x<2 D .x<-1或x>2 9.画出二次函数y =x 2-2x 的图象,利用图象回答: (1)方程x 2-2x =0的解是什么? (2)x 取什么值时,函数值大于0? (3)x 取什么值时,函数值小于0?
10.已知抛物线y =x 2-2x +1与x 轴的一个交点为(m ,0),则代数式m 2-2m +2017的值 为( )A .2015 B .2016 C .2017 D .2018
11.抛物线y =2x 2-22x +1与坐标轴的交点个数是( )A .0 B .1 C .2 D .3
x
3.23
3.24
3.25
3.26
ax 2+bx +c
-0.06
-0.02
0.03
0.09
12.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是( )
A.-1<x<5 B.x>5 C.x<-1 D.x<-1或x>5
13.若m,n(n<m)是关于x的一元二次方程1-(x-a)(x-b)=0的两个根,且b<a,则m,n,b,a的大小关系是( )
A.m<a<b<n B.a<m<n<b C.b<n<m<a D.n<b<a<m
14.如图,抛物线y=-x2+2x+m(m<0)与x轴相交于点A(x
1,0),B(x
2
,
0),点A在点B的左侧.当x=x
2
-2时,y____0.(填“>”“=”或“<”)
15.若关于x的一元二次方程a(x+m)2-3=0的两个实数根分别为x
1
=-1,x
2
=3,则抛物线y=a(x+m-2)2-3与x轴的交点坐标
为.
16.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:
(1)写出方程ax2+bx+c=0的两个根;
(2)写出不等式ax2+bx+c>0的解集;
(3)写出y随x的增大而减小的自变量x的取值范围;
(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.
17.已知二次函数y=2x2-mx-m2.
(1)求证:对于任意实数m,二次函数y=2x2-mx-m2的图象与x轴总有公共点;
(2)若这个二次函数的图象与x轴有两个公共点A,B,且B点坐标为(1,0),求A点坐标.18.已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于
A(x
1,0),B(x
2
,0)(x
1
<x
2
)两点,与y轴交于点C,x
1
,x
2
是
方程x2+4x-5=0的两根.
(1)若抛物线的顶点为D,求S
△ABD ∶S
△ABC
的值;
(2)若∠ADC=90°,求二次函数的解析式.
答案:
1. B
2. A
3. C
4. D
5. D
6. (1) 1 (2) k<1且k≠0
7. C 8. C 9. 解:画图象略(1)x
1=0,x
2
=2 (2)x<0或x>2 (3)0<x<2
10. B 11. C 12. D 13. D 14. < 15. (1,0),(5,0)
16. 解:(1) x
1=1,x
2
=3 (2) 1<x<3 (3) x>2 (4) k<2
17. (1) 解:令y=0,则2x2-mx-m2=0,
Δ=(-m)2-4×2×(-m2)=9m2≥0,
∴对于任意实数m,该二次函数的图象与x轴总有公共点
(2) 解:由题意得2×12-m-m2=0,整理得m2+m-2=0,
解得m
1=1,m
2
=-2,当m=1时,二次函数为y=2x2-x-1,
当y=0时,2x2-x-1=0,解得x
1=1,x
2
=-
1
2
,∴A(-
1
2
,0);
当m=-2时,二次函数为y=2x2+2x-4,令y=0时,
则2x2+2x-4=0,解得x
1=1,x
2
=-2,∴A(-2,0).
综上所述,A点坐标为(-1
2
,0)或(-2,0)
18. 解:(1)解方程x2+4x-5=0得x
1=-5,x
2
=1,
∴A(-5,0),B(1,0),可设抛物线为y=a(x+5)(x-1),即y=ax2+4ax-5a,则D(-2,-9a),C(0,-5a),
∴S
△ABD ∶S
△ABC
=(
1
2
×6×|-9a|)∶(
1
2
×6×|-5a|)=9∶5
(2)连接AC,因为∠ADC=90°,则AC2=AD2+CD2,
∴52+25a2=22+16a2+32+81a2,∴a2=1
6
,∵a>0,∴a=
6
6
,
故二次函数的解析式为y=
6
6
(x+5)(x-1),
即y=
6
6
x2+
26
3
x-
56
6。