-静力学分析报告
- 格式:doc
- 大小:334.86 KB
- 文档页数:6
竭诚为您提供优质文档/双击可除水静力学实验报告篇一:水力学实验报告思考题答案(想你所要)水力学实验报告实验一流体静力学实验实验二不可压缩流体恒定流能量方程(伯诺利方程)实验实验三不可压缩流体恒定流动量定律实验实验四毕托管测速实验实验五雷诺实验实验六文丘里流量计实验实验七沿程水头损失实验实验八局部阻力实验实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。
另对装有水油(图1.2及图1.3)u型测管,应用等压面可得油的比重s0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得s0。
实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
2.当pb ,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。
3.若再备一根直尺,试采用另外最简便的方法测定γ0。
最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。
4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。
流体静力学实验实验报告一、实验背景流体静力学是研究流体在静力平衡下的性质和行为的学科,涉及到流体的压力、密度和静力平衡等基本概念。
通过实验研究流体静力学可以帮助我们深入了解流体的性质和应用。
二、实验目的本实验的目的是通过对水的流体静力学特性的测量,掌握流体的压力、密度和浮力的基本原理,并学会使用相应的实验仪器和测量方法。
三、实验仪器和材料1. U型管:用于测量液体的压力和压力差。
2. 水平支架:用于固定实验仪器。
3. 液体容器:用于装载待研究的液体。
4. 液体:一定量的水用于实验。
5. 液体注射器:用于向U型管注入液体。
6. 尺子:用于测量U型管液面高度差。
四、实验原理1. 流体静力学基本概念在流体静力学中,有几个重要的概念需要了解:- 压力:液体或气体对单位面积施加的力,单位为帕斯卡(Pa)。
- 密度:单位体积内的质量,单位为千克每立方米(kg/m^3)。
- 浮力:液体或气体对浸入其中的物体所产生的向上的力,大小等于被排开的液体或气体的重量。
2. 流体压力的测量利用U型管可以测量流体的压力和压力差。
当两端的液面高度相等时,称为等静压力。
当液面高度不相等时,可以根据液面高度差来计算压力差。
3. 测试物体的浮力将一个物体浸入液体中,液体对物体产生的浮力等于物体的重力,可以通过测量液面升高的高度来计算浮力的大小。
1. 准备工作a. 将U型管固定在水平支架上,确保U型管两端的高度相等。
b. 准备液体,注意液体的纯净度和温度。
c. 将液体注入液体容器中。
2. 测量液体压力和压力差a. 将一根液体注射器连接到U型管的一端,并抽出液体注射器中的空气。
b. 将液体注射器的另一端放入液体容器中,并记录液体在U型管两端的高度差。
c. 移动液体注射器,使液体在U型管两端的高度相等,并记录高度。
3. 测试物体的浮力a. 将一个已知质量的物体悬挂在弹簧秤上,记录其重力的大小。
b. 将物体浸入液体容器中,记录液面升高的高度。
最新流体静力学实验报告实验目的:本实验旨在验证流体静力学的基本原理,特别是压力随深度增加而线性增长的规律,并探究不同液体的压强与其密度之间的关系。
实验设备:1. 流体静力学压力传感器2. 测量缸3. 不同密度的液体(如水、酒精、甘油)4. 精密天平5. 计时器6. 数据采集系统实验步骤:1. 准备实验设备,确保所有仪器均处于良好工作状态。
2. 将测量缸放置在稳定的平台上,并确保缸内无气泡。
3. 使用精密天平测量并记录液体的初始质量。
4. 将压力传感器安装在测量缸底部,并连接至数据采集系统。
5. 缓慢注入液体至测量缸中,记录液体的深度和压力传感器读数。
6. 改变液体的种类,重复步骤3至5,确保涵盖不同密度的液体。
7. 收集所有数据,并使用计时器记录实验时间。
实验结果:通过数据采集系统,我们得到了不同深度下液体的压力读数。
数据显示,对于所有液体,压力随深度的增加而线性增长,与流体静力学的预期一致。
此外,液体的密度越大,相同深度下的压力也越大。
实验分析:实验结果验证了流体静力学的基本方程P = ρgh,其中P代表压强,ρ代表液体密度,g代表重力加速度,h代表深度。
实验数据的线性关系表明,液体的压强确实与深度成正比,与液体的种类无关。
通过对比不同密度液体的压力数据,我们可以进一步理解液体密度对压强的影响。
结论:本次实验成功地验证了流体静力学的基本原理,即液体的压力随深度线性增加,并且液体的密度越大,压强也越大。
这些发现对于理解液体行为和设计相关工程应用具有重要意义。
未来的工作可以包括探究温度变化对液体压强的影响,以及非牛顿流体在不同条件下的行为。
线性静力学分析实例——以悬臂梁为例线性静力学问题是简单且常见的有限元分析类型,不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。
在ABAQUS 中,该类问题通常采用静态通用(Static ,General )分析步或静态线性摄动(Static ,Linear perturbation )分析步进行分析。
线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。
这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。
在一般的分析中,应尽量选用精度和效率都较高的二次四边形/ 六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I、C3D8I)的性价比很高。
对于复杂模型,可以采用分割模型的方法划分二次四边形/ 六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/ 四面体单元进行网格划分。
悬臂梁的线性静力学分析1.1 问题的描述一悬臂梁左端受固定约束,右端自由,结构尺寸如图1-1 所示,求梁受载后的Mises 应力、位移分布。
材料性质:弹性模量 E 2e3 ,泊松比0.3均布载荷:F=103N图1-1 悬臂梁受均布载荷图1.2 启动ABAQUS启动ABAQUS有两种方法,用户可以任选一种1)在Windows 操作系统中单击“开始” -- “程序” --ABAQUS 6.10 -- ABAQUS/CA。
E(2)在操作系统的DOS窗口中输入命令:abaqus cae 。
启动ABAQUS/CA后E ,在出现的Start Section (开始任务)对话框中选择Create Model Database 。
1.3 创建部件在ABAQUS/CA顶E 部的环境栏中,可以看到模块列表:Module:Part ,这表示当前处在Part (部件)模块,在这个模块中可以定义模型各部分的几何形体。
《流体静力学实验》实验报告开课实验室: 学院 年级、专业、班姓名成绩课程 名称 流体力学与水泵实验实验项目 名 称流体静力学实验指导教师教师评语教师签名:年 月 日一、实验目的1.验证静力学的基本方程。
2.学会使用测压管与U 形测压计的量测技能。
3.理解绝对压强与相对压强及毛细管现象。
4.灵活应用静力学的基本知识进行实际工程量测。
二、实验原理重力作用下不可压缩流体静力学基本方程 静止流体中任意点的测压管水头相等,即(1.1)同样静止流体在任意点的静压强也可以写成如下形式:h p p a γ+=0 (1.2) 式中γ——液体的重度;h ——U 形管中液面上升的高度。
对装有水油U 型测管,应用等压面可得油的比重S 0有下列关系:(1.3)《不可压缩流体恒定流动的能量方程实验》实验报告开课实验室: 学院 年级、专业、班姓名成绩课程 名称 流体力学实验实验项目 名 称不可压缩流体恒定流动的能量方程实验指导教师教师评语教师签名:年 月 日一、实验目的1.掌握均匀流的压强分布规律以及非均匀流的压强分布特点。
2.验证不可压缩流体恒定流动中各种能量间的相互转换。
3.学会使用测压管与测速管测量压强水头、流速水头与总水头。
4.理解毕托管测速原理。
二、实验原理实际流体再流动过程中除遵循质量守恒原理外,必须遵循动能定理。
质量守恒原理再一维总流中的应用为总流的连续性方程,动能定理再一维总流中的应用为能量方程。
他们分别如下:连续性方程:伯努利能量方程:在使用能量方程时,必须注意两个过流断面间的水头损失,应包括所用的沿程水头损失和所用的局部水头损失。
实际流体中,总水头线始终沿程降低,实验中可以从测速管的液面相对于基准面的高度读出。
测速管水头线可以沿程升高,也可以是沿程降低,具体要视过流断面的平均流速大小而定。
对于某断面而言,测速管水头等于该断面的总水头减去其流速水头。
同样,断面平均流速也可以用总水头减去该断面的测压管水头得到。
静力学中的主要问题
在静力学中,主要涉及以下几个问题:
1. 平衡条件:平衡条件是静力学的基本问题之一。
它研究物体在静止状态下受到的力的平衡关系。
根据平衡条件,物体在静止状态下,其合力为零,合力矩也为零。
2. 力的分解与合成:在静力学中,常常需要将一个力分解为两个或多个分力,或者将多个力合成为一个合力。
力的分解与合成是解决静力学问题的基础,通过分解与合成可以简化问题的求解过程。
3. 杆件和梁的平衡:在静力学中,经常需要研究杆件和梁的平衡问题。
这包括杆件和梁受到的外力、支持反力的计算,以及杆件和梁内部应力分布等问题。
4. 悬挂系统的平衡:悬挂系统的平衡问题是静力学中的一个重要问题。
悬挂系统包括各种绳索、链条等构成的复杂结构,在平衡时需要考虑各个部分的受力情况,以及平衡条件的满足。
5. 摩擦力的作用:静力学中,摩擦力是一个重要的考虑因素。
摩擦力会影响物体的平衡状态,需要根据摩擦力的大小和方向进行合理的计算和分析。
这些是静力学中的主要问题,通过对这些问题的研究和解决,可以深入理解物体在静止状态下的力学行为。
1。
静力学实验报告实验目的:通过静力学实验研究物体在平衡状态下受力的平衡条件和力的合成、分解。
实验器材:1. 静力学实验装置2. 不同质量的标称值箱体3. 定滑轮和活动滑轮4. 直尺5. 细线6. 弹簧秤7. 电子天平实验原理:1. 力的平衡条件:当一个物体处于静止状态或匀速直线运动时,物体所受合外力的合力必须为零。
2. 力的合成:两个力的合力可以通过力的矢量加法得到,即两个力相加得到合力。
3. 力的分解:一个位于斜面上的力可以分解成平行于斜面的力和垂直于斜面的力。
实验步骤:1. 将实验装置放在水平桌面上,调整使水平板的高度与桌面平行。
2. 将箱体挂在弹簧秤上,读取其质量值,并记录。
3. 将装有箱体的弹簧秤吊挂在天平杆上,并将天平杆固定在实验装置上的滑轮上。
4. 将一个滑轮和箱体挂在细线的两端,并固定在实验装置上的滑轮上。
5. 在滑轮的另一端挂一个不同质量的标称值箱体,并调整细线的长度,使得系统保持平衡。
6. 测量细线的长度并记录。
7. 用直尺测量滑轮到桌面的水平距离并记录。
8. 将新的标称值箱体替换上一步的箱体,并重复步骤5-7。
9. 根据测量值和实验原理进行数据处理和分析。
实验结果:根据实验数据,我们可以计算出合力的大小和方向。
通过比较不同质量的箱体对应的合力,在合力的大小上可以验证力的平衡条件。
在合力的方向上,我们可以通过计算不同角度斜面上的力的分解,验证力的合成和分解原理。
实验讨论:通过实验,我们验证了力的平衡条件,并且观察到合力大小和方向的变化。
在力的合成和分解实验中,我们也观察到了力的矢量加法和分解的原理。
实验过程中,我们注意到实验装置和各个测量参数的精度对实验结果的影响,因此在实验时要注意减小误差。
实验结论:通过本次实验,我们深入了解了静力学中力的平衡条件和力的合成、分解原理。
实验结果验证了合力大小和方向的变化,进一步加深了对力的概念的理解。
实验中还发现实验装置和测量参数的精度对实验结果有一定的影响,因此在实验中要小心处理和测量各个参数。
一、实验目的1. 理解流体静力学基本方程式及等压面的概念;2. 计算密封容器内静止液体表面及其内部某空间点的静水压强;3. 观察液体表面压强变化时,液体压强的传递现象和传递规律;4. 学会用静水压强法求液体的容重。
二、实验原理静水压强实验是基于流体静力学原理进行的。
在重力作用下的均质静止液体中,任一点的压强为pp0 h。
式中p0为液面压强,h为该点处于液面下的深度,为液体容重,h就是从该点到液面的单位面积上的液柱重量。
静止液体内任一点相对于某一水平基准面的位置高度z与该点的压强高度之和,等于同一常数,即常数。
如果作用在静止液体边界上的压强有所增减,则液体内部任意点任意方向上的压强将发生同样大小的增减。
这就是静水压强传递的帕斯卡定律。
三、实验装置1. 静压强实验仪:包括U形管、测压管、连通器、密封水箱、调压箱等;2. 量筒:用于测量液体体积;3. 仪器架:用于固定实验装置。
四、实验步骤1. 将实验装置组装完毕,确保各部件连接牢固;2. 向水箱中加入一定量的液体,注意液面高度;3. 调整调压箱,使密封水箱内气体压强与大气压相等;4. 观察U形管中液面高度,记录液面压强;5. 改变密封水箱内气体压强,观察U形管中液面高度变化,记录液面压强;6. 改变水箱中液体深度,观察测压管中液面高度变化,记录液面压强;7. 改变水箱中液体深度,测量不同深度处的液体体积,计算液体容重;8. 比较不同深度处的液体压强,验证帕斯卡定律。
五、实验结果与分析1. 实验数据表1:不同深度处的液体压强数据深度h(m) | 液面压强p(Pa)--------- | -------------0.1 | 980.60.2 | 1961.20.3 | 2932.80.4 | 3904.40.5 | 4875.02. 实验结果分析(1)根据实验数据,可以看出随着液体深度的增加,液面压强也随之增大,符合流体静力学基本方程式pp0 h;(2)在改变密封水箱内气体压强时,U形管中液面高度变化,验证了帕斯卡定律;(3)根据液体深度和液体体积,计算得到不同深度处的液体容重,与理论值基本一致。
流体静力学实验报告流体静力学实验报告引言流体静力学是研究流体在静止状态下的力学性质和行为的学科。
通过实验可以更好地理解流体静力学的基本原理和特性。
本实验旨在通过测量流体静力学中的压力、密度和浮力等参数,探究流体静力学的基本规律。
实验目的1. 理解流体静力学的基本概念和原理;2. 学会使用测量仪器和设备进行流体静力学实验;3. 掌握测量流体参数的方法和技巧;4. 分析实验结果,验证流体静力学的基本规律。
实验仪器和设备1. 压力计:用于测量流体的压力;2. 密度计:用于测量流体的密度;3. 漂浮物:用于测量流体的浮力;4. 实验容器:用于容纳流体。
实验原理1. 压力原理:根据帕斯卡定律,流体静压力在任何方向上都相等。
通过测量流体的压力,可以推导出流体的密度和深度等参数。
2. 密度原理:流体的密度是指单位体积内的质量。
通过测量流体的质量和体积,可以计算出流体的密度。
3. 浮力原理:根据阿基米德原理,物体在液体中受到的浮力等于所排除液体的重量。
通过测量漂浮物的浮力,可以计算出液体的密度。
实验步骤1. 将实验容器装满待测流体,并确保容器内没有气泡。
2. 将压力计的测量管插入流体中,记录下测量管的位置。
3. 通过压力计测量流体的压力,并记录下相应的数值。
4. 使用密度计测量流体的质量和体积,并计算出流体的密度。
5. 将漂浮物放入流体中,测量漂浮物所受到的浮力,并计算出液体的密度。
6. 重复以上步骤,取多组数据进行比较和分析。
实验结果与分析通过实验测量得到的压力、密度和浮力等数据可以进行比较和分析。
根据测量结果可以得出以下结论:1. 流体的压力与深度成正比,压力随深度增加而增加。
2. 流体的密度与质量和体积成正比,密度随质量和体积增加而增加。
3. 流体的浮力与液体的密度和漂浮物的体积成正比,浮力随密度和体积增加而增加。
结论通过本次实验,我们深入了解了流体静力学的基本原理和特性。
实验结果验证了流体静力学的基本规律,加深了我们对流体静力学的理解。
流体静力学实验报告实验目的,通过流体静力学实验,掌握流体静力学的基本原理和实验方法,加深对流体静力学的理论知识的理解,提高实验操作能力和数据处理能力。
一、实验原理。
1. 流体静压力。
流体静压力是指流体在静止状态下由于重力作用所产生的压力。
在重力场中,流体的静压力是与深度成正比的,即P = ρgh,其中P为静压力,ρ为流体密度,g为重力加速度,h为流体的深度。
2. 斯蒂芬定律。
斯蒂芬定律是描述流体静力学的重要定律之一,它规定了流体中的静压力随深度的增加而增加。
斯蒂芬定律的数学表达式为P = ρgh,其中P为静压力,ρ为流体密度,g为重力加速度,h为流体的深度。
二、实验仪器与设备。
1. 水槽,用于放置流体,观察流体静压力的变化。
2. 液压传感器,用于测量流体静压力的大小。
3. 液压传感器连接线,用于将液压传感器与数据采集仪器连接。
三、实验步骤。
1. 将水槽中注满水,使水深适中。
2. 将液压传感器放置于水槽底部,使其与水接触。
3. 连接液压传感器与数据采集仪器,并进行校准。
4. 通过数据采集仪器记录不同深度下的流体静压力值。
5. 根据实验数据,绘制流体静压力与深度的关系曲线。
四、实验数据处理与分析。
根据实验记录的数据,我们可以得到不同深度下的流体静压力值。
通过绘制流体静压力与深度的关系曲线,我们可以直观地观察到斯蒂芬定律的成立。
实验结果表明,流体静压力与深度成正比,符合斯蒂芬定律的描述。
五、实验结论。
通过本次流体静力学实验,我们深入理解了流体静压力的基本原理和斯蒂芬定律的规律性。
实验结果验证了斯蒂芬定律的成立,加深了我们对流体静力学的理论知识的理解。
六、实验总结。
本次实验通过实际操作和数据处理,使我们对流体静力学的理论知识有了更深入的认识,提高了我们的实验操作能力和数据处理能力。
同时,也增强了我们对流体静力学实验的兴趣和探索欲望。
七、实验改进。
在今后的实验中,我们可以增加不同流体和不同深度的实验数据,进一步验证斯蒂芬定律的普适性,提高实验的全面性和可靠性。
货架静力分析报告模板1. 引言本次报告旨在对货架进行静力学分析,评估其承载能力和安全性。
通过详细的测试和计算,我们将为您提供关于该货架的结构强度和稳定性的评估。
2. 货架参数货架的参数如下:- 高度:H- 宽度:W- 深度:D- 负荷:P请注意,以上参数将在分析中使用。
3. 静力学原理在进行分析之前,我们需要了解货架的静力学原理。
这将帮助我们理解如何计算和评估其结构的稳定性和强度。
静力学原理中的关键概念包括:- 重力:物体受到的引力,可简化为质量和重力加速度的乘积。
- 支反作用:当一个力作用在物体上时,物体会受到一个相等大小、方向相反的反作用力。
- 力的合成:多个力作用在同一对象上时,可以将它们合成为一个等效的力,其大小和方向是原来各力的矢量和。
4. 货架分析根据静力学原理,我们将对货架进行详细的分析,并计算其结构的强度和稳定性。
4.1 负荷计算首先,我们将计算货架上的总负荷。
这包括货物本身的重量以及额外施加在货架上的荷载。
总负荷P = 货物重量+ 额外荷载4.2 垂直方向的力平衡考虑到重力,我们需要确保货架在垂直方向上的力平衡,以避免结构的破坏。
根据静力学原理,垂直方向上的力平衡方程为:ΣFy = 0其中,ΣFy是所有垂直方向上的力的合力。
根据该方程,我们可以计算出垂直方向上的受力情况。
4.3 水平方向的力平衡除了垂直方向的力平衡,我们还需要确保货架在水平方向上的力平衡,以保持稳定性。
根据静力学原理,水平方向上的力平衡方程为:ΣFx = 0其中,ΣFx是所有水平方向上的力的合力。
根据该方程,我们可以计算出水平方向上的受力情况。
4.4 结构强度的评估为了评估货架的结构强度,我们需要计算其构件的受力情况。
这包括垂直支撑杆、连接件等。
通过应用静力学方程,我们可以计算出每个构件受力的大小和方向。
然后,我们将与构件的材料性能进行对比,以评估其结构强度是否能够满足设计要求。
5. 结果与讨论在本次静力学分析中,我们成功地计算了货架的结构强度和稳定性。
第1篇一、前言力学作为物理学的基础学科,涉及力学原理、力学模型、力学计算等方面。
在力学学习过程中,我经历了许多挑战和困惑,也收获了许多经验和教训。
本报告将对我学习力学的经历进行总结和反思,以便更好地掌握力学知识,提高自己的综合素质。
二、力学学习过程中的挑战与困惑1. 理解力学概念困难在学习力学过程中,我发现许多力学概念较为抽象,如牛顿运动定律、功和能、动量守恒等。
这些概念需要通过大量的实例和公式来理解和掌握,但有时仍然难以完全理解。
2. 数学计算能力不足力学学习中,需要运用数学知识进行计算,如积分、微分、矩阵等。
然而,我在数学方面的能力相对较弱,导致在力学计算中遇到困难。
3. 力学模型与实际问题之间的差距在实际应用中,力学模型往往过于理想化,无法完全反映现实情况。
这使得我在解决实际问题时,难以找到合适的力学模型,导致问题解决效果不佳。
4. 力学实验操作不规范力学实验是力学学习的重要环节,但我在实验操作过程中,由于对实验原理和步骤不够熟悉,导致实验结果不准确。
三、力学学习过程中的经验与教训1. 深入理解力学概念为了更好地理解力学概念,我采取了以下方法:(1)查阅相关教材和资料,了解概念的定义、原理和应用;(2)通过实例分析,将力学概念与实际生活联系起来;(3)多做习题,巩固对力学概念的理解。
2. 提高数学计算能力为了提高数学计算能力,我采取了以下措施:(1)加强数学基础知识的复习,如代数、几何、三角等;(2)多做数学题,特别是力学相关的计算题;(3)请教老师或同学,解决在计算过程中遇到的问题。
3. 熟悉力学模型,提高问题解决能力为了提高问题解决能力,我采取了以下方法:(1)了解各种力学模型的特点和适用范围;(2)通过实例分析,掌握力学模型在实际问题中的应用;(3)多做力学题目,积累解决实际问题的经验。
4. 规范力学实验操作为了提高力学实验能力,我采取了以下措施:(1)熟悉实验原理和步骤,确保实验操作的正确性;(2)仔细观察实验现象,及时记录实验数据;(3)分析实验结果,总结实验规律。
静力学接触分析如图所示,这个模型由四个部分组成,A区域受到一个垂直向下的力100N,B区域被完全固定,管状工件与夹具之间摩擦系数为0.4,其余各接触面的摩擦系数为0.1;此外还要施加螺栓(螺丝直径6mm)预紧力3000N,管状工件的材料为铜合金,其余为结构钢;在静力学分析的条件下,保证螺杆不会失效。
提示:1、接触区的网格划分尽量细化;2、要施加螺栓预紧力就需要对模型进行处理,做出一个切片(如下图);3、接触区的设置也极为重要。
分析流程:1、导入几何模型(做切片处理);2、添加材料属性,定义材料;3、划分网格(接触区的网格划分尽量细化);4、施加载荷和约束(预紧力的施加);5、求解(在重要零件或截面查看位移、应力);6、查看结果,得出结论;7、检验结果的正确性。
a、前处理b、求解c、后处理解题步骤:1、 导入模型:打开workbench ,双击static structural ,右键单击A3栏(即geometry )选择import geometry ,导入Pipe Clamp.x_t 模型,确定单位mm ;2、 切片处理:双击A3栏,进入Pipe Clamp.x_t 模型,如图1所示,新建坐标系(C 面),冻结模型(tools freeze ),在C 面处生成切片(create slice ),再将螺栓的两个solid 通过from new part 生成一个solid ;图1 螺栓切片处理3、 添加材料:返回到unsaved project-workbench 界面,双击A2栏(即engineering data ),双击outline filter 界面的A3栏(即general materials ),添加材料铜合金(即copper alloy ); 4、 定义材料:双击A4栏(即model ),将管状工件的assignment 设置为copper alloy ,其他材料均为structural steel ;5、 划分网格:单击mesh ,在其下拉菜单中选择preview surface mesh ,产生如图2所示相对粗糙的四面体网格,展开明细栏中的statistics 项目,检查模型节点输与单元数;图2 划分网格(粗糙)图3 statistics 项目6、 网格细分:选择装配图中的接触面,如图4所示,点击鼠标右键选择insert >refinement ,点击preview surface mesh ,观察其网格变化,并检查模型节点输与单元数,如图5、6所示;---------------------------------------------------------------------------------此为第一种方法 点击鼠标右键选择insert> contact sizing ,选择接触面和单元大小-------此为第二种方法图4 选择细化表面图5 网格细化图6 statistics 项目7、施加载荷:单击左侧的static structural,选择A表面,鼠标右键选择insert>force,力的大小设为100N,方向如图7所示;8、施加约束:选择B表面,鼠标右键选择insert>fixed support;9、加预紧力:选择如图所示D表面,鼠标右键选择insert>bolt pretension,设定力的大小为3000N;图7 施加约束与载荷10、添加摩擦系数:选择connections,在明细栏中将type改为frictional,管状工件与夹具之间的摩擦系数设为0.4,其余接触面的摩擦系数均为0.1;图8 设置摩擦面系数11、求解:单击solution,在弹出的工具条中,deformation下选择total查看装配图总变形;stress下选择equivalent stress查看装配图V on Mises等效应力;deformation下选择total查看螺栓总变形;stress下选择equivalent stress查看螺栓V on Mises等效应力;选择body,点击管状工件,鼠标右键选择insert>deformation>directional,查看管状工件X方向上的位移;右键单击solution选择insert,添加contact tool,查看螺栓与夹具在接触面处的frictional stress和pressure.12、查看结果:单击solve进行求解(图解);图9 装配图在X方向上的总位移图10 装配图Von Mises等效应力图11 螺栓在X方向上位移图12 螺栓Von Mises等效应力图13 螺栓与夹具接触面的frictional stress(摩擦应力)图14 螺栓与夹具接触面的pressure(压力)图15 管状工件在X方向上的位移13、查看报告:单击report preview,查看报告:表1:装配图、螺栓的位移和应力(如图9、10、11、12、15所示)表2:螺栓与夹具之间的受力分析(如图13、14所示)14、分析与结论:两种不同的细化网格对应力的结果产生很大影响(步骤6),但位移基本相同。
一、实验背景静力学实验是工程流体力学及水力学领域的基础实验之一,通过实验验证静力学基本原理,加深对流体静力学现象的理解。
本次实验主要验证了流体静力学基本方程,研究了位置水头、压力水头和测压管水头的关系,并观察了真空度的产生过程。
二、实验目的1.验证流体静力学基本方程;2.研究位置水头、压力水头和测压管水头的关系;3.观察真空度的产生过程;4.提高解决静力学实际问题的能力。
三、实验方法本次实验采用流体静力学实验装置,包括测压管、连通管、通气阀、加压打气球、真空测压管、截止阀、U型测压管、油柱、水柱和减压放水阀等。
实验步骤如下:1.连接实验装置,确保各部分连接牢固;2.将水箱注满水,并打开通气阀,使装置内部气压平衡;3.记录各测点B、C、D的标高,并计算相对位置高度zC、zC、zD;4.调整连通管两端液面高度,使测压管液面保持水平;5.打开加压打气球,逐步增加压力,观察各测点液面变化;6.记录各测点液面高度,计算压力水头、位置水头和测压管水头;7.关闭加压打气球,观察真空度产生过程;8.计算油的相对密度。
四、实验结果分析1.验证流体静力学基本方程通过实验数据计算,验证了流体静力学基本方程p=ρgh在本次实验中成立。
在实验过程中,测点B、C、D的静水压强与理论计算值基本一致,证明了该方程的正确性。
2.研究位置水头、压力水头和测压管水头的关系实验结果表明,位置水头、压力水头和测压管水头之间存在以下关系:(1)位置水头:表示被测点在基准面的相对位置高度,与被测点在液体中的深度成正比;(2)压力水头:表示被测点的静水压强,与被测点在液体中的深度和液体容重成正比;(3)测压管水头:表示静水力学实验仪显示的测管液面至基准面的垂直高度,与被测点的压力水头和位置水头之和相等。
3.观察真空度的产生过程在实验过程中,随着加压打气球的逐步加压,测压管液面逐渐上升,当压力超过大气压时,测压管液面开始下降,形成真空区域。
实验结果表明,真空度产生的原因是液体内部压力低于大气压。
流体静力学实验报告一、实验目的1.了解流体的静压力和压强的概念与计算方法。
2.掌握流体静力学实验的基本原理和操作方法。
3.学会使用测压仪器进行流体静力学实验的测量。
二、实验仪器与装置1.测压仪器:压力表2.供水装置:包括水槽、水泵等3.测压管:用于检测流体中的压力变化4.流体容器:用于装载水样品或其他流体5.其他辅助装置:如测量尺、取样器等三、实验原理流体静力学研究流体静止时的力学性质,包括静压力、压强等。
其中,静压力是指流体所施加的垂直于其上表面的力与单位面积之商,用公式表示为P=F/A,其中P为静压力,F为所施加的垂直于上表面的力,A为单位面积。
压强则是指在流体中其中一点上的压力与该点的垂直于周围曲面的面积之商,计算公式为p=F/S,其中p为压强,F为该点上的压力,S为垂直于该点的周围曲面的面积。
四、实验步骤1.准备工作:检查实验仪器与装置的完整性与正常工作状态。
2.测量静压力:将压力表与流体容器连接,将流体容器置于水槽中,打开水泵,调节水泵流量,记录不同液位下压力表上的压强值。
3.测量压强:使用取样器从流体容器中取出一定体积的流体样品,将流体样品倒入测压管中,然后用压力表测量测压管上的压强。
4.计算数据:根据实验原理,计算出实验过程中测得的静压力与压强的数值。
五、实验结果根据实验数据计算可得,在不同液位下的压强分别为:液位1:0.5m液位2:1m,压强为4000Pa液位3:1.5m,压强为6000Pa六、实验数据分析通过本次实验,我们可以发现液体的压强与液位高度成正比关系。
当液位上升时,液体的压强也随之增大。
这是因为液体受到重力作用,使液体分子间产生压力,同样作用于容器内的其他液体分子上,从而产生压强。
七、实验心得通过这次流体静力学实验,我深刻认识到了流体静力学的重要性,并掌握了实验操作的方法。
实验过程中需要仔细观察与记录实验数据,同时在数据的计算与分析中更加注重细致与准确。
通过实验,我对流体静力学的概念和计算方法有了更深入的了解,这对后续的学习与研究带来了很大的帮助。
中国石油大学(华东)工程流体力学实验报告实验日期:成绩:班级:学号:姓名:教师:同组者:实验一、流体静力学实验一、实验目的:填空1.掌握用液式测压计测量流体静压强的技能;2.验证不可压缩流体静力学基本方程,加深对位置水头、压力水头和测压管水头的理解;3. 观察真空度(负压)的产生过程,进一步加深对真空度的理解;4.测定油的相对密度;5.通过对诸多流体静力学现象的实验分析,进一步提高解决静力学实际问题的能力。
二、实验装置1、在图1-1-1下方的横线上正确填写实验装置各部分的名称本实验的装置如图所示。
1. 测压管;2. 带标尺的测压管;3. 连通管;4. 通气阀;5. 加压打起球;6. 真空测压管;7. 截止阀;8. U形测压管;9. 油柱;10. 水柱;11. 减压放水阀图1-1-1 流体静力学实验装置图2、说明1.所有测管液面标高均以标尺(测压管2)零读数为基准;2.仪器铭牌所注B ∇、C ∇、D ∇系测点B 、C 、D 标高;若同时取标尺零点作为 静力学基本方程 的基准,则B ∇、C ∇、D ∇亦为B z 、C z 、D z ;3.本仪器中所有阀门旋柄 以顺 管轴线为开。
三、实验原理 在横线上正确写出以下公式1.在重力作用下不可压缩流体静力学基本方程 形式之一:z+p/γ=const (1-1-1a )形式之二:h p p γ+=0 (1-1b )式中 z ——被测点在基准面以上的位置高度;p ——被测点的静水压强,用相对压强表示,以下同; 0p ——水箱中液面的表面压强; γ——液体重度;h ——被测点的液体深度。
2. 油密度测量原理当U 型管中水面与油水界面齐平(图1-1-2),取其顶面为等压面,有01w 1o p h Hγγ== (1-1-2)另当U 型管中水面和油面齐平(图1-1-3),取其油水界面为等压面,则有即02w 2o w p h H H γγγ=-=- (1-1-3)图1-1-2 图1-1-3由(1-1-2)、(1-1-3)两式联解可得: 代入式(1-1-2)得油的相对密度o d1o o12wh dh h γγ==+ (1-1-4)根据式(1-1-4),可以用仪器(不用额外尺子)直接测得o d 。
至少15个零件的装配体动静力学分析,并给出工程背景,撰写分析报告
本实验是对旋阀结构做动静力学分析,旋阀的结构如图5.1所示
图 5.1 旋阀的结构
按照如图5.2所示的方式对旋阀结构做网格划分
图5.2 划分网格后的旋阀结构
在进行静力学分析时,将与旋转轴相接触的套分别对X、Y、Z三个方向进行约束,然后在旋转杆上加上1000Pa的压强,然后对其进行运算,应力应变图分别如图5.3和图5.4所示。
图5.3旋阀整体等效应力图
图 5.4 旋阀整体等效弹性应变图
对旋阀进行动力学分析时,约束施加的和静力学分析时的一样,将与旋转轴相接触的套分别对X、Y、Z三个方向进行约束,然后计算输出旋阀的六阶模态振型的图像,如图
图5.5 一阶频率图
图 5.6 二阶频率图
图5.7 三阶频率图
图5.8 四阶频率图
图5.9 五阶频率图
图5.10 六阶频率图。
静力学分析报告
一、制作人员:
二、模型名称:桁架
三、创意来源:
四、模型视图:
五、模型简化
因为桁架本身由硬杆组成,所以简化结构
如下图所示,并求各点的受力情况。
假设桁架受到集中力G的影响
1以节点A为探究对象
∑m A F=0 F B Y∗4−F∗3=0
F B Y=0.75F
∑F Y=0 F A Y+F B Y=0
F A Y=0.25F
2以节点B为探究对象
F12F13
B F B Y
∑F Y=0 F13cos45°+F B Y=0
F13=−3√2 4
F
∑F X=0 −F13cos45°−F12=0
F12=−3 4
F
3以节点G为探究对象
F
F10 G
F11F13′
∑F Y=0 −F13′cos45°−F−F11=0
F11=−0.25F
∑F X=0 F13′cos45°−F10=0
F8=−0.75F
4以节点H为探究对象
F9F11′
F8 H F12′
∑F Y=0 F9cos45°+F11′=0
F9=√2 4
F
∑F X=0 −F9cos45°−F8+F12′=0
F8=0.5F
5以节点I为探究对象
F7
F6I F8′
∑F Y=0
F7=0
∑F X=0 −F6+F8′=0
F6=0.5F
6以节点E为探究对象
F4E F10′
F5F7′F9′
∑F Y=0 F9′cos45°−F5cos45°=0
F5=√2 4
F
∑F X=0 −F5cos45°+F9′cos45°−F4+F10′=0
F4=−0.25F
7以节点D为探究对象
F3F5′
F2 D F6′
∑F Y=0 F3+F5′cos45°=0
F3=1 F
∑F X=0 F5′cos45°−F2+F6′=0
F4=0.25F
8以节点C为探究对象
C F4′
F1F3′
∑F Y=0 −F3′−F1cos45°=0
F1=√2 4
F
∑F X=0 F4′−F1cos45°=0
F4=−1 4
F
六、优化方案
经综合受力分析及材料本身重量考虑:13号杆受力较大,所以用质量轻,强度高的材料较好
八、制作目的:
1.采取分组的形式,培养学生的合作精神和有序的工作能力;
2.在制作过程中,培养自己独立思考、敢于创新的精神;
3.理论与实际结合,培养动手能力;
4.亲手设计有助于理解桥的主要结构的作用;
5.通过纸桥的设计在探索中理解材料的强度与他的几何形状有关。
九、最终优化:。