FDTD Solutions—专业的微纳光学仿真软件
- 格式:pdf
- 大小:8.73 MB
- 文档页数:89
Lumerical公司是一家致力于提供光电子设计软件解决方案的国际知名企业。
其旗下的FDTD解决方案是一款基于有限差分时域(FDTD)算法的光学结构仿真软件,被广泛应用于光学通信、光电子器件设计、纳米光学等领域。
在本文中,我们将重点介绍Lumerical的FDTD解决方案在光学结构仿真方面的特点和应用。
1. FDTD算法有限差分时域(FDTD)算法是一种数值求解Maxwell方程组的方法,可以用于模拟光学结构中的电磁波传输、吸收、散射等过程。
FDTD算法是一种非常灵活、高效的仿真方法,能够准确地模拟复杂的光学结构,包括光子晶体、光波导、光栅等。
相比于传统的有限元法(FEM)和有限差分法(FDFD),FDTD算法具有更好的模拟效果和更快的计算速度。
2. Lumerical的FDTD解决方案Lumerical公司推出的FDTD解决方案是基于FDTD算法的一款专业光学结构仿真软件。
该软件集成了强大的仿真引擎和直观的用户界面,可以帮助用户快速、准确地设计和优化光学器件。
与传统的FDTD软件相比,Lumerical的FDTD解决方案具有以下几个突出特点:(1)高性能计算引擎:Lumerical的FDTD解决方案采用了最新的并行计算技术,能够充分利用多处理器和多核心,实现快速、高效的仿真计算。
(2)丰富的模拟功能:该软件支持多种光学模式的仿真,包括线偏振光、圆偏振光、自由空间光波等。
用户可以根据需要进行灵活的设置和仿真,以获取更准确的仿真结果。
(3)直观的用户界面:Lumerical的FDTD解决方案具有简洁直观的用户界面,支持图形化编辑和仿真设置,使用户能够快速上手并进行高效的工作。
3. 应用案例Lumerical的FDTD解决方案在光学结构仿真方面具有广泛的应用,下面将介绍几个典型的应用案例:(1)光子晶体器件设计:光子晶体是一种具有周期性结构的光学材料,在光子学器件中有重要的应用。
利用Lumerical的FDTD解决方案,用户可以对光子晶体的光子带隙、光子波导等性质进行准确的仿真和优化,为器件设计和性能调控提供重要参考。
Sim3D_Max采用在非均匀网格的FDTD算法既可以独立运行,也可以与DIFFRACT无缝结合。
与DIFFRACT配合可以处理在涉及近场交互模式与亚波长结构以及在复杂光学系统的传输问题。
例如在光学存储应用中,Sim3D_Max允许设置纳米级物体结构,从而研究反射或透射,如沟槽、坑和光学磁盘表面凸起。
Sim3D_Max可以将DIFFRACT输出的矢量场作为输入场(实现从激光二极管光源到光学磁盘表面的完整传播),并返回到DIFFRACT的反射光束用于在返回路径的进一步传播,一直到光电探测器。
重要特色:
与DIFFRACTTM波动光学系统模拟软件无缝结合;
平面波、高斯型、双极型、波导以及用户自定义光源;
在2D和3D中支持非一致网格;
PML、PEC、周期性以及Floquet- Bloch的边界条件;
色散、金属和绝缘材料模型;
光学数据存储,半导体光刻技术及检验,光子器件,金属材料等;支持3D模型和GDSII文件输入, 2D和3D输出格式;
支持多核并行计算处理;
支持硬件加速器。
Lumerical Solutions公司FDTD Solutions 7.0版为微纳光学设计提供优化和共形网格化技术2010/10/29/11:27来源:MarketwireMarketwire2010年10月26日不列颠哥伦比亚省温哥华消息——全球纳米光学设计软件供应商LumericalSolutions公司今天宣布,其旗舰产品FDTDSolutions7.0版已经进行了创新性升级。
升级项目包括集成参数扫描分析与优化计算、业内首个面向纳米光学设计的共形网格和一个方便复杂器件设计的扩展仿真元器件库。
Lumerical首席技术官JamesPond博士表示:“FDTDSolutions7.0延续了Lumerical的传统:在易用的电脑辅助设计环境下整合最先进的算法,为突破性创新提供得力设计工具。
FDTDSolutions7.0与非常适用的优化算法相结合,是目前最好的工业级纳米光学设计软件。
设计人员和研究人员现在可以通过评估和优化他们的最佳设计概念来迅速取得进展。
”为优化、计算速度和精确性而设计FDTDSolutions7.0能让终端用户通过其独有的共形网格技术工具,获得更高的计算效率和精度。
在数字成像和太阳能等快速发展的行业,通过采用共形网格技术而获得更高精度的仿真结果,受到越来越多的追捧。
共形网格技术是通过麦克斯韦积分方程对不同介质之间界面的复杂描述,可达到亚晶胞精度。
与其它为低频应用(在这些应用中多数金属接近完美导体)而设计的类似技术不同的是,Lumerical的技术建立在其专有的高精度多系数材料特性拟合上,能精确模拟实际光学器件设计中任意色散介质之间的界面。
加利福尼亚州帕洛阿尔托的博世研究与技术中心高级工程师InnaKozinsky博士表示:“我们使用FDTDSolutions解决薄膜太阳能电池中的光传播问题。
现实生活中的太阳能电池器件相当复杂,包含多层材料,而FDTDSolutions7.0的共形网格使我们能够优化太阳能电池活性层的吸收,而不是手工设置非常精细的网格和分析大量的仿真结果。