理学非线性光学 四波混频与相位共轭a
- 格式:ppt
- 大小:1.01 MB
- 文档页数:43
2015非线性光学复习绪论非线性光学进展发展阶段,重要事件(时间),著作第一章光与物质相互作用的经典理论非简谐振子模型, 电极化强度 P(n), 极化率的一般性质补充一晶体学基面础晶系的划分,晶体的对称性,点群表及国际符号,点群国际符号对应方向补充二晶体性质的数学描述张量的基本知识,张量分量的坐标变换,对称矩阵及逆变换,坐标变换矩阵,宏观对称性对张量分量的约化第三章光波在非线性介质传播的电磁理论光波在晶体中传播特性,波法线菲涅耳方程,光在单轴晶体中的传播规律,折射率椭球及折射率曲面,耦合波方程,相位匹配概念及方法,相位匹配条件及偏振分析第四章二阶非线性光学效应线性电光效应,光学整流效应,谐波、和频及差频,有效非线性系数,光参量放大与振荡,参量振荡的频率调谐第五章三阶非线性光学效应自聚焦效应、三次谐波的产生,四波混频,双光子吸收,受激Raman散射第七章四波混频与光学相位共轭四波混频与光学相位共轭第一章 非线性光学极化率的经典描述线性光学过程的经典理论1、光和物质相互作用的经典理论组成物质的原子、分子,在入射光波电磁场作用下感生出电偶极矩, 运动产生电磁波辐射。
2、谐振模型原子(分子)中电子在光频电磁场驱动下,作带阻尼的强迫运动。
3、光的散射与吸收、发射非线性光学可观察的非线性光学效应,通常要用激光,甚至脉冲强激光1、非线性过程A 、强光在介质中感应出非线性响应(本构方程)B 、介质反作用,非线性的改变光场(Maxwell eqs ) 耦合波方程组 2、电极化强度 P (n) (1.2-35~38) 3、非简谐振子模型ω02 x + a x 2 + b x 3 + … 谐振子 非简谐振子线性 二阶 三阶 … 非线性4、非线性光学极化率的对称性 ㈠ 两个普遍关系真实性条件: ),,;(),,;(1)(1)(11n n j j i n n j j i n n ωωωχωωωχσσ--=-* (E ,P 实数) 本征对易对称性: ),,;(),,;(1)(1)(11n n j j i n n j j i n n P ωωωχωωωχσσ -=-∧算符∧P 代表数对),(,),,(11n n j j ωω 的任何交换 ㈡ 透明(无损耗)介质:① 完全对易对称性: 上式中的算符∧P 还包括数对),(σωi 与其它数对的任何交换.这一对称性把同一阶的不同非线性光学效应的极化率分量之间建立关系.② Kleinman 对称性: 当介质为弱色散时, 非线性光学极化率基本上与频率无关. 例如二阶非线性极化率),;()2(βασωωωχ-ijk 若满足此对称性时便有=-=-=-),;(),;(),;()2()2()2(βασβασβασωωωχωωωχωωωχjki jik ijk 它使极化率的独立分量数目大为减少. 简并度:1212!(......)!!......!r r N M M M N M M M +++=㈢ 空间对称性:晶体具有空间对称性,各阶非线性极化率的分量之间有一定关系,使极化率的独立分量数目大为减少.设坐标变换:j ij i e A e =',n 阶张量T , 经过座标变换,变成T ')(...)(......n f abc lf kc jb ia n l ijk T A A A A T ='如果坐标变换是按对称操作Rˆ进行,则有T T ='。
⾮线性光学考试知识答案1 说出电极化率的 4 种对易对称性,并说明满⾜的条件本征对易对称性(不需要任何条件)、完全对易对称性(介质⽆耗)、时间反演对称性(介质⽆耗)、空间对称性χ(1)是对称张量(介质⽆耗);2 说出下式的物理意义:表⽰由频率为ωm ,场振动⽅向为x ⽅向的场分量E x (ωm ),频率为ωn 、场振动⽅向为y ⽅向的场分量E y (ωn )以及频率为ωl ,场振动⽅向为z ⽅向的场分量E z (ω1 )三者间的⾮线性相互作⽤所引起的在x ⽅向上的三阶⾮线性电极化强度的⼀个分量。
3 对于⼆次谐波和三次谐波,相⼲长度的物理意义参量过程中的位相匹配有和物理意义举例说明两种实现位相匹配的⽅法1)Lc 物理意义: 三次谐波强度第⼀次达到其最⼤值的路程长度,典型值为1~100mm.如K=0,Lc 为⽆穷⼤。
2) 位相匹配的物理意义:在位相匹配条件下,⼆次谐波和三次谐波等⾮线性效应产⽣过程效率会⼤到最⾼,相应的位相不匹配条件下,产⽣效率会⼤⼤降低。
(3)0(,,)()()()exp[()]xxyz m n l x m y n z l m n l E E E i t εχωωωωωωωωω-++3)利⽤晶体的双折射特性补偿晶体的⾊散效应,实现相位匹配。
在⽓体⼯作物质中,利⽤缓冲⽓体提供必要的⾊散,实现相位匹配。
4 为什么参量振荡器能够产⽣连续输出频率,⽽激光器只能输出单个频率能量守恒ω3=ω1+ω2 动量守恒 n 3ω3=n 1ω1+n 2ω2改变温度、⾓度(对⾮常光)、电场、压⼒等可改变晶体的折射率,从⽽改变参量振荡器的输出频率1,2。
因此参量振荡器可实现连续调谐。
⽽激光振荡器是利⽤原⼦跃迁的机理⼯作的,不能连续调谐。
这是参量振荡器和激光振荡器的区别5 在拉曼散射中,为何观察不到⾼阶斯托克斯散射在受激拉曼散射中,⾼阶斯托克斯散射光却较强⾼阶斯托克斯光的散射⾓有什么变化规律由p ,s ⾮线性作⽤产⽣。
一实验目的1.了解偶氮染料聚合物的非线性光学特性2.掌握四波混频的基本知识和实验方法3.掌握泵浦,探测光和信号光三者的关系4.了解四波混频的应用范围二实验装置半导体激光器一台,反射镜若干,CCD一个,微机一台及其他光学元件三实验原理1.基础知识(1)偶氮染料的分子结构偶氮染料是一类具有光异构特征的有机光学材料,其分子结构是在两个芳环之间以N=N双键连接为特征。
它们的基本结构特征,即骨架决定了它们的主要吸收峰的范围(最大吸收峰在可见光区内)。
偶氮染料还具有一定共轭性,一般来说,共轭程度越大,分子的基态与第一激发态之间的能级差越小,其吸收峰发生红移。
偶氮染料的第二结构特征(苯环上的取代基)对吸收峰的位置具有一定影响。
取代基的电子效应(诱导效应和共轭效应)影响分子中电子云密度分布,使分子的基态与激发态之间的能级差发生变化,其吸收峰发生移动。
(a)光异构过程(b) 偶氮分子的能级结构图1(2)偶氮染料的光异构特性偶氮染料是一种偏振敏感的有机染料,它具有反式(trans)和顺式(cis)两种分子结构,如图1(a)所示(其中R1和R2表示不同的取代基,本实验所用甲基橙的取代基R1为NaO3S , R2 为N(CH3)2 )。
它们的分子主轴均为氮氮双键。
两者对应能态的能量是反式结构能量低,结构稳定;顺式结构能量高,结构不稳定,所以一般情况下偶氮分子多以稳定的反式结构存在。
图 1 (b) 是偶氮分子的能级结构图,由图可见,当用激光激发时,反式偶氮分子的基态粒子So吸收一个光子后,跃迁到第一激发态的某一振动能级Sv上,并迅速驰豫到第一激发态的最低能级S1上。
处于S1能级上的粒子可以进一步吸收一个光子并跃迁到第二重激发态S2上,也可经过系间跃迁无辐射驰豫到三重激发态T1上,这种跃迁由S1与T1间能级差决定。
差距越小,跃迁越容易。
T1态的粒子可以吸收光子跃迁到T2态上,也可通过无辐射跃迁回到So态上。
同时当激光强度达到一定值后,S2、T2等能级上的粒子还可以进一步吸收光子跃迁到更高一级激发态上去。
四波混频(Four-wave mixing) 现象产生的条件理论应用和危害定义:在量子力学术语中,一个或几个光波的光子被湮灭,同时产生了几个不同频率的新光子,且在此过程中,净能量和动量是守恒的。
起源:光纤中的三阶电极化率1、四波混频现象——理论描述22222*1111121112341234222222*2221222212342134222233313233122(2)22(2)22(222i kzi kzA A A i A i A CD A C A A A iC A A A e z t tA A A i A i CD A A A C A A iC A A A e z t tA A A i A i C A A A z t tαββγγαββγγαββγ−Δ−Δ∂∂∂++=−+++++∂∂∂∂∂∂++=−+++++∂∂∂∂∂∂++=−+++∂∂∂22*34312422222*44414244123441232)(2)22i kzi kzC A A iC A A A eA A A i A i A C A C A A A iC A A A e z t tγαββγγΔΔ++∂∂∂++=−+++++∂∂∂2、四波混频产生的条件1、非线性光纤2、输入一个或以上不同频率的光波(简并条件下两个光波)3、输入光波的强度较强4、能量守恒:ω1+ω2=ω3+ω45、动量守恒:即满足相位匹配条件3、四波混频的理论方程•For FWM in DSF with not very long, we neglect the walk-offbetween the four waves and dispersion-induced pulse broaden, thus in Eq. (2) we have β11≈β12≈β13≈β14≡1/v g and β2j =0, where v g is the group velocity. Introducing a retarded frame in which T =t -z /v g , and decomposing the complex amplitude A j into their abosolute amplitudes and phases (j =1,2,3,4), eight equations with realvariables are obtained22222*1111121112341234222222*2221222212342134222233313233122(2)22(2)22(222i kzi kzA A A i A i A CD A C A A A iC A A A e z t t A A A i A i CD A A A C A A iC A A A e z t tA A A i A i C A A A z t tαββγγαββγγαββγ−Δ−Δ∂∂∂++=−+++++∂∂∂∂∂∂++=−+++++∂∂∂∂∂∂++=−+++∂∂∂22*34312422222*44414244123441232)(2)22i kzi kzC A A iC A A A e A A A i A i A C A C A A A iC A A A e z t tγαββγγΔΔ++∂∂∂++=−+++++∂∂∂FWMSelf phase modulation/ Cross phase modulation Fiber absorptionWalk-offGroup-velocity dispersion22222*1111121112341234222222*2221222212342134222233313233122(2)22(2)22(222i kzi kzA A A i A i A CD A C A A A iC A A A ez t tA A A i A i CD A A A C A A iC A A A e z t tA A A i A i C A A A z t tαββγγαββγγαββγ−Δ−Δ∂∂∂++=−+++++∂∂∂∂∂∂++=−+++++∂∂∂∂∂∂++=−+++∂∂∂22*34312422222*44414244123441232)(2)22i kzi kzC A A iC A A A e A A A i A i A C A C A A A iC A A A e z t tγαββγγΔΔ++∂∂∂++=−+++++∂∂∂Neglecting fiber absorption, walk-off between pulses, group-velocity dispersion (GVD)-induced pulse broadening:(,)exp()j j j A z T P i φ=2222*1123412342222*2123421342222*3123431242222*412344123(2)(2)(2)(2)i kz z i kzz i kzz i kz z A i A CD A C A A A iC A A A eA i CD A A A C A A iC A A A e A i C A A A Cd A A iC A A A eA i A C A Cd A A A iC A A A e γγγγγγγγ−Δ−ΔΔΔ∂=++++∂=++++∂=++++∂=++++相对相位1/2112341/211234123411/2212341/221234123421/2312342()sin (2)()cos /2()sin (2)()cos /2()sin z z zzz zzP C PP P P e z P CDP CP P e C PP P P e P z P C PP P P e z CDP P P CP e C PP P P e P z P C PP P P e z αααααααγθφγγθγθφγγθγ−−−−−−−∂=∂∂=++++∂∂=∂∂=++++∂∂=−∂1/231234123431/2412341/24123412344(2)()cos /2()sin (2)()cos /z zzz zCP P P CP e C PP P P e P z P C PP P P e z P CP CP P e C PP P P e P zαααααθφγγθγθφγγθ−−−−−∂=++++∂∂=−∂∂=++++∂1234(,)(,)(,)(,)(,)T z kz T z T z T z T z θφφφφ=Δ++−−Then from the 2nd , 4th , 6th , and 8th equations wecan obtain12341/2111112341234[(1)(1)] ()cos ()zzk CD C P CD C P P P e zC PP P P e P P P P ααθγγθ−−−−−−∂=Δ+−−+−−++∂++−−4、四波混频的应用及害处四波混频的应用四波混频的害处1.四波混频应用分类1PIA based on FWMP hase-inputSignal IdlerPump 1Pump 2PSA based on FWM 3P hase-s ensitive a mplification (PSA ): FWM with idler inputPump 1Pump 2Signal Idler1/21123412341(2)()cos /z z zP CDP CP P e C PP P P e P zααφγγθ−−∂∂=++++∂应用优势及挑战快速全光纤化……挑战?5(1) Wavelength conversion6(2) All-optical amplifier: PIA8(2) All-optical amplifier: PSAAmplifier with low noise-figure; Suppression of phase noise; Phase regeneration2. Applications of FWM(3) Optical phase conjugationEs ( z, t ) = As exp(−iωt )PumpEc ( z, t ) = As* exp(−iωt )Signal PumpPC signal9相位共轭系统又称频谱反转相位共轭器(OPC)Es ( z , t ) = As exp(−iωt )泵浦 共轭光 信号Ec ( z , t ) = As* exp(−iωt )泵浦5/18/20111利用相位共轭器的优点 仅利用一个器件就可以极大抑制多种非线性; 同时补偿偶数阶色散; 对调制格式、光纤种类透明; 已铺设好的系统易于升级.25/18/2011相位共轭 (OPC)的抑制原理相位共轭器(OPC)Es ( z , t ) = As exp(−iωt )Ec ( z , t ) = As* exp(−iωt )功率5/18/2011OPC功率对称系统:α(-z)= -α(z)3相位共轭技术抑制各种非线性损伤 1983年,脉冲自相位调制(SPM); 1994年,信道间四波混频; 2004年,信道间交叉相位调制 信道内非线性作用…5/18/20114相位共轭实验的原理泵浦 信号ωω0 ω0+Ωω新生成的共轭光A = Ap + As exp(−iΩt )k输入:∂Ai* = −2iγ Pp As e iΔkz ∂z四波 混频+∞ k −1 i βk ( z) ⎛ ∂ ⎞ ∂A α 2 + A+∑ ⎜ ⎟ A = iγ A A k ! ⎝ ∂t ⎠ ∂z 2 k =2非线性克尔效应5/18/201152. Applications of FWM(4) All-optical regeneration102. Applications of FWM(5) Slow light112. Applications of FWM(5) Slow light4000 3000 延迟量 /ps 2000 1000 0 -1000 1540 SMF3.4ns15451550 波长 λ /nm15551560122. Applications of FWM(6) RZ pulse generationO-TDM switchAll-optical samplingAll-optical logic gateAll-optical switching 142. Applications of FWM Others。
四川大学精品课程《光学》
§9.6 光学相位共轭
一.光学相位共轭
设两列波的波函数互为复共轭函数,即它们的复振幅分别为
r k ⋅=i e P A P E )()(~ r k ⋅−=i e P A P E )()(~
*——共轭波
利用光学非线性效应,使任意光束中的每一个平面波分量的传播方向及其在任一处的相位因子发生反演——光学共轭。
反射镜
(a ) (b )
图9.6-3 球面波在共轭镜和反射镜上的反射
反射镜
(a ) (b )
图 9.6-2 平面波在共轭镜和普
通反射镜面的反射
二.简并四波混频产生相位共轭
产生相位共轭的方法包括:四波混频、受激布里渊散射,以及其它非线性效应。
本节中讨论简并四波混频法。
图9.6-4 简并四波混频产生共轭波示意图
三.相位共轭的应用
利用光束的相位共轭特性,可以矫正或改善光路中的相位畸变。
利用相位共轭的再成像特性,可实现无透镜成像。
三次谐波与四波混频(2013年12月31)摘要:讨论了各向同性介质中的三阶非线性过程,以及四波混频和它的特殊情况。
关键词:三阶非线性过程,四波混频。
一、 各向同性介质中的三阶非线性过程只有不具有中心对称性的介质或者各向异性介质才具有二阶非线性,但是所有介质都存在着三阶非线性。
一般(3)χ比(2)χ小得多,故三阶效应要比二阶效应弱得多。
在三阶非线性现象中,也存在着光与介质不发生能量交换,而参与作用的光波之间发生能量交换的非线性效应,这被称为波动非线性效应。
设输入光场()E t 是由沿z 方向传播的三个不同频率的单色光场组成312123().i t i t i t E t E e E e E e c c ωωω---=+++ (1.1) 相应的各向同性介质中的三阶非线性极化强度为(3)(3)30()()P t E tεχ= (1.2) 将式(1.1)代入式(1.2),可见(3)()P t 是具有不同频率的(包括零频)的各项极化强度之和,可以写成(3)()()n i t n nP t P e ωω-=∑ (1.3)式中n 取±,负号表示复数共轭量,包括极化强度的各种频率成分:11211231231200,0,3,,,2ωωωωωωωωωωωω+++-+等。
这些频率项分别表示三次谐波、四波混频、相位共轭、光克尔效应、自聚焦、饱和吸收、双光子吸收、受激散射等三阶非线性光学效应。
三倍频效应是频率为ω的光场入射介质产生频率为3ω光场的过程,其极化强度为(3)(3)30(3)(3;,,)()P E ωεχωωωωω= (1.4) 这里D=1. 很少有晶体能实现三倍频的相位匹配,而且输入激光的强度往往受到光损伤的限制。
气体激光损伤极限强度比固体要高几个数量级,研究表明碱金属蒸汽在可见光区极化率(3)χ有很强的共振增强,因此具有较强的三倍频效应。
以功率比表示的三倍频的转换效率为222(3)223243039()sin ()2P P L kL c P c n n S ωωωωωωηχε∆== (1.5) 定义相干长度c c /,L=L kL /2/2c L k ππ=∆∆=当时,,三倍频效率很快下降;当0k ∆=,相位匹配,有最大的转换效率。