绝对值与相反数教学案例
- 格式:doc
- 大小:27.50 KB
- 文档页数:2
绝对值与相反数(1)教案教学目标:1.能借助数轴说出数的绝对值意义,理解绝对值的概念,会求一个有理数的绝对值;2.经历将实际问题数学化的过程,感受数学与生活的关系,贯彻数形结合的思想.教学重点会求已知数的绝对值;教学难点理解绝对值的概念,感受数形结合的思想方法教学流程课前导学:阅读课本P 22-23完成课本P 24 T1、2教学过程:情境创设小明家在学校正西方3 km处,小丽家在学校正东方2 km处,他们上学所花的时间与各家到学校的距离有关.你会用数轴上的点表示学校、小明家、小丽家的位置吗?探究真学:做一做:用数轴上的点表示学校、小明家、小丽家的位置.1.画数轴,用数轴的原点O表示学校的位置,规定向东为正,数轴上的1个单位长度表示1km;2.设点A、点B分别表示小明家、小丽家,则点A在原点O左侧且到原点O的距离为3个单位长度,点B在原点O右侧且到原点O的距离为2个单位长度.数轴上表示一个数的点到原点的距离叫做这个数的绝对值.数a的绝对值记为|a|,读作“a的绝对值”.请你结合数轴,根据定义说出-3、2、0的绝对值.0的绝对值是0. 任何一个数的绝对值都是非负数.【交流展学】1. 学生在课前预习时已完成;2.以小组为单位交流;3. 邀请两个小组上来结合小黑板展示小组成果.议一议:你能说出数轴上的点A、B、C、D、E所表示的数的绝对值吗?【典型深学】例1 求4、5.3-的绝对值.解:如图,在数轴上分别画出表示4、-3.5的点A 、点B .因为点A 与原点的距离是4,所以4的绝对值是4;因为点B 与原点的距离是3.5,所以-3.5的绝对值是3.5.例2 已知一个数的绝对值是25,求这个数. 解:如图,数轴上到原点的距离是25的点有两个,它们是点A 和点B ,分别表示25、25-. 所以绝对值是25的数有两个,它们是25、25-. 小结与思考:绝对值的几何意义是数轴上表示一个数的点与原点的距离。
距离不可能是负数,所以绝对值不可能是负数。
相反数与绝对值教案教案标题:相反数与绝对值教案教案目标:1. 理解相反数的概念并能够找到一个数的相反数。
2. 理解绝对值的概念并能够计算一个数的绝对值。
3. 能够应用相反数和绝对值的概念解决实际问题。
教学准备:1. 教师准备一份包含相反数和绝对值的概念解释的幻灯片或教案手册。
2. 每位学生准备一支铅笔和一张纸。
教学步骤:引入:1. 引导学生回顾正数和负数的概念,并提问他们是否知道如何找到一个数的相反数。
概念解释:2. 使用幻灯片或教案手册向学生解释相反数的概念。
强调相反数是指数轴上与给定数距离相等但方向相反的数。
例如,-3和3是一对相反数。
3. 提供一些示例,帮助学生理解如何找到一个数的相反数。
例如,如果给定数是5,其相反数是-5。
练习:4. 让学生在纸上完成一些相反数的练习。
例如,找到-7的相反数、找到-12的相反数等。
教师可以逐一检查学生的答案,并提供反馈。
引入绝对值:5. 引导学生思考如何计算一个数的绝对值,并提问他们是否知道绝对值的概念。
概念解释:6. 使用幻灯片或教案手册向学生解释绝对值的概念。
强调绝对值是指一个数距离原点的距离,它总是非负的。
例如,|5|等于5,|-5|也等于5。
练习:7. 让学生在纸上完成一些绝对值的练习。
例如,计算|8|、计算|-3|等。
教师可以逐一检查学生的答案,并提供反馈。
应用:8. 提供一些实际问题,要求学生运用相反数和绝对值的概念解决。
例如,如果一个温度计显示-10°C,那么温度的绝对值是多少?如果一个人从原点出发向右走了8步,然后向左走了5步,他现在离原点有多远?总结:9. 总结相反数和绝对值的概念,并与学生一起回顾所学内容。
拓展:10. 鼓励学生在日常生活中寻找更多应用相反数和绝对值的例子,并分享给全班。
评估:11. 分发一份相反数与绝对值的小测验,以评估学生对所学概念的掌握程度。
这个教案旨在帮助学生理解相反数和绝对值的概念,并能够应用这些概念解决实际问题。
相反数与绝对值教案教案:相反数与绝对值教学内容:1.相反数的概念2.相反数的性质3.绝对值的概念4.绝对值的性质教学目标:1.理解相反数的概念和性质,能够找出一个数的相反数。
2.理解绝对值的概念和性质,能够求出一个数的绝对值。
3.学会在实际问题中应用相反数和绝对值。
教学准备:1.课件或黑板2.教学板书工具3.相关数学试题和练习题教学过程:一、创设情境打开教学导入(10分钟)1.引入相反数的概念。
2.提问学生:“两个数互为相反数是什么意思?”3.给出具体的例子让学生理解相反数的概念。
4.引导学生思考:相反数之间有什么关系?二、学习相反数的性质(15分钟)1.教师给出定义:互为相反数的两个数的和为0,他们与0的距离相等。
2.出示示意图:-3和3在数轴上的位置。
3.定理:一个数的相反数的相反数仍是这个数本身。
4.出示示意图:-(-5)等于55.引导学生进行相关练习。
三、学习绝对值的概念(15分钟)1.引入绝对值的概念:一个数离0的距离。
2.出示示意图:5和-5在数轴上的位置。
3.引导学生发现:绝对值永远是正数,即使是0。
4.引导学生进行相关练习。
四、学习绝对值的性质(15分钟)1.出示示意图:,-3,等于32.学习绝对值的运算性质:,-a,=,a,对于任意的实数a。
3.出示示意图:,-(-2),等于24.教师出示练习题进行巩固。
五、应用相反数和绝对值解决实际问题(20分钟)1.分组活动:学生根据教师提供的实际问题,选择使用相反数或绝对值解决,并进行讨论和解答。
2.教师给出反馈和指导。
六、温故与总结(5分钟)1.找几个学生回答本节课学到了哪些内容。
2.教师进行总结。
教学延伸:1.学生可以设计一些有关相反数和绝对值的游戏或趣味活动,加深对概念和性质的理解。
2.学生可以解决一些与相反数和绝对值相关的实际问题,如温度计上的温度变化,海拔的正负,存取款等。
教学反思:本节课通过情境导入,让学生在具体实例中体会相反数和绝对值的概念,然后通过定义和性质的学习,让学生深入理解相反数和绝对值,并能够应用到实际问题中。
绝对值与相反数教案绝对值与相反数教案【篇一:相反数与绝对值教案】相反数与绝对值一、学习目标:知识与能力1、了解相反数的意义,会求有理数的相反数;2、了解绝对值的概念,会求有理数的绝对值;3、会利用绝对值比较两负数的大小。
过程与方法在绝对值概念的形成过程中,培养学生数形结合的思想情感、态度与价值观进一步培养学生分类讨论的思想和观察、归纳与概括的能力。
二、重点、难点:理解相反数并掌握双重符号的化简原则,难点是能正确理解绝对值在数轴上表示的意义。
三、学习过程:(一)自主学习1、互为相反数:(1) 观察数轴上两对点-4.5和4.5,+3和-3,他们的位置关系怎样?有什么区别和联系?(2)(3) 什么样的数被称为互为相反数?指出下列各数的相反数;-3, -0.025, 5, -4, 0(4)在数轴上,表示互为相反数的点分别在()的两侧,并且到()的距离相等;(1)什么叫绝对值? (2)在数轴上,-4.5,-3,-0.5,0,0.5,3,4.5到原点的距离是多少?一个数与他的绝对值之间存在着怎样的联系?(3)求出下列各数的绝对值:∣+5∣= ∣-4∣= ∣+0.04∣=∣2.5∣= ∣0∣= ∣-1.104∣=3、两负数比较大小:(1)负数绝对值大了,离原点就越远,就越靠近数轴的()边,因此,两负数比较大小,绝对值大的数()。
(2)根据例1解答:比较:-4∕7和-6∕11(二)合作交流:1、独立完成,小组内交流;2、进行组际交流;(三)精讲点拨:1、互为相反数是两个数的关系,注意互为相反数的绝对值相等;2、0的相反数和绝对值都是它本身;3、两负数比较大小,绝对值大的反而小;(四)有效训练1、若x+1与-3互为相反数,则x=();2、说出下列各数的相反数和绝对值:0.25, -18 , -0.002 , 0 , 53.比较下列各组数的大小:(1)0和-1(2)0.25和0(3)-0.125和-0.12(五)拓展提升:1、若-x=-(-3.5),则x=______;若a=-6.3,则-a=______;2、若|a|=6,则a=______; (2)若|-b|=0.87,则b=______;3、若x+|x|=0,则x是______数;通过本节课的学习你都学到了哪些知识?五、达标检测:课本p35:练习1、2、3;六、作业:课本p36:习题2.3a组【篇二:相反数与绝对值教案】2.2相反数与绝对值(导学案)青岛版七年级数学(上)学习目标:1.了解相反数的意义;会求已知数的相反数;2.了解绝对值的含义;会求有理数的绝对值;3.会利用绝对值比较两个负数的大小。
相反数与绝对值教案一、教学目标1. 让学生理解相反数的概念,能够求出一个数的相反数。
2. 让学生理解绝对值的概念,能够求出一个数的绝对值。
3. 培养学生运用相反数和绝对值解决问题的能力。
二、教学内容1. 相反数的概念及求法。
2. 绝对值的概念及求法。
3. 相反数和绝对值在实际问题中的应用。
三、教学重点与难点1. 重点:相反数和绝对值的概念及求法。
2. 难点:相反数和绝对值在实际问题中的应用。
四、教学方法1. 采用直观演示法,通过示例让学生直观地理解相反数和绝对值的概念。
2. 采用自主探究法,引导学生通过观察、思考、讨论,探索相反数和绝对值的求法。
3. 采用练习法,让学生通过多做练习,巩固所学知识。
五、教学准备1. 教学课件或黑板。
2. 练习题。
六、教学过程1. 导入:通过一个简单的例子,如5的相反数是-5,引导学生思考相反数的概念。
2. 讲解:讲解相反数的概念,强调一个数的相反数就是在这个数前面添上“-”号。
3. 练习:让学生做一些求相反数的练习,如-3的相反数是什么,2.5的相反数是什么等。
七、绝对值的概念及求法1. 导入:通过一个实际问题,如一个人向正北方向走了5米,又向正南方向走了3米,问他现在离出发点多少米,引导学生思考绝对值的概念。
2. 讲解:讲解绝对值的概念,强调一个数的绝对值就是这个数到原点的距离。
3. 练习:让学生做一些求绝对值的练习,如-3的绝对值是什么,2.5的绝对值是什么等。
八、相反数和绝对值在实际问题中的应用1. 举例:讲解相反数和绝对值在实际问题中的应用,如在数轴上表示两个数的位置关系。
2. 练习:让学生解决一些实际问题,如在数轴上表示两个数的距离,判断两个数的大小关系等。
2. 让学生反思自己在学习过程中遇到的困难和问题,并进行讨论。
十、作业布置1. 让学生做一些有关相反数和绝对值的练习题,巩固所学知识。
2. 让学生思考一下,相反数和绝对值在实际生活中有哪些应用,下次上课时分享。
二 相反数 绝对值学习目标:1、 知道在数轴上表示互为相反数的点的位置关系,会求一个数的相反数;2、 明确在一个数的前面添上一个“+”号或“-”号所表示的意义;3、 知道绝对值的意义及其表示方法、会求一个有理数的绝对值会利用绝对值比较两个有理数的大小;相反数回忆旧知在数轴上分别标出表示:+1 -1 +3 -3 0 +0.3 -0.3 +221 -221的点.1、 观察这9对点,说一说每对点在位置上有怎样的特征.二、探索新知相反数的概念:像±1、±3、±221、±0.3这样,只有符号不同的两个数,其中一个数叫做另一个数的相反数,或说他们互为相反数.规定:0的相反数是01、 一个数前面放上一个“+”号,得到的仍是这个数;一个数前面放上一个“-”号,得到的是这个数的相反数. 例如:58)58(-=-+ ,+(+3)=+3 ,-(-6)=+6 ,-(+1.5)=-1.53、挑战自我化简下列有理数的表达式:(1)-[+(-6)]=_______;(2)+[+(-5)]=______;(3)-[-(-9)]=_____;(4)+{+[-(-7)]}=_________;(5)-{+[-(-1)]}=_________.4、化简有多重符号的数时,怎样能够迅速确定最终所得有理数的符号?小窍门:例如:1、-(-(-(-(-(-1)))))=______;2、-(-(-(-(-6))))=______.三、巩固新知1、求下列各数的相反数: 0 3 -6 89 -2.8 21 -221 4.5 8871一个数的相反数的相反数是()。
40 6.89 说出下列各数的相反数: 0 5.1 -79 -31-102绝对值一、回忆旧知1、用数轴上的点表示各有理数: 3 -3 0-2.5 2.52、表示3的点到原点的距离是_______;表示-3的点到原点的距离是_______;表示2.5的点到原点的距离是______;表示-2.5的点到原点的距离是_______;二、探索新知1、绝对值的概念例如:+5的绝对值是+5 . 记作:-6的绝对值是+6. 记作:绝对值符号:∣∣1∣=记作:∣+3∣= ∣-2∣= ∣+21∣= ∣1.4∣=∣-33规定:0的绝对值是0 记作:∣0∣=1. 初学乍练求下列各数的绝对值:25125 -0.16 0 16546 -0.00013.议一议:怎样求有理数(正数、负数、零)的绝对值?有理数的绝对值的求法⎪⎩⎪⎨⎧________________0__________________________的绝对值是负数的绝对值是正数的绝对值是 数学符号语言:︱a ︱=⎪⎩⎪⎨⎧<=>)_____()0_____()0_____(o a a a 注意:①︱a ︱≧0 任意一个有理数的绝对值是非负数,即︱a ︱≧0②一个有理数是由性质符号和这个数的绝对值两部分组成;③绝对值相同,但符号相反的两个数互为相反数,例如:+3和-3 、+2.1和-2.1等。
冀教版七年级数学上册《绝对值和相反数》教案及教学反思一、教学设计1.教学内容本课程教学的是《绝对值和相反数》。
该课程主要包括以下三个部分:•绝对值的定义及性质•相反数的定义及性质•绝对值和相反数的实际应用2.教学目标本课程的教学目标主要包括以下几个方面:•学生能正确理解绝对值和相反数的概念及本质•学生掌握绝对值的计算方法及其基本性质•学生掌握相反数的计算方法及其基本性质•学生能够运用绝对值和相反数解决实际问题3.教学方法本课程采用多种不同的教学方法,包括讲授法、练习法、实验法、小组讨论法等。
4.教学步骤第一步:引入课题引导学生回顾数学知识,引出“绝对值”和“相反数”的概念,探究实际生活中的应用。
第二步:讲授知识讲解绝对值和相反数的概念、性质、计算方法及其在实际问题中的应用。
第三步:练习及巩固通过一些练习来巩固学生对绝对值和相反数的理解和掌握,加深对绝对值和相反数的印象和认识。
第四步:拓展应用引导学生运用所掌握的知识解决实际问题,培养学生的数学思维能力和解决实际问题的能力。
第五步:总结反思对本节课的知识点、难点、疑点以及授课过程中存在的问题、教师的讲授方式、学生的学习情况和反应进行总结和反思,并对后续的教学进行布置和建议。
二、教学反思本节课的教学过程相对比较顺利,学生在课堂上的表现也比较出色。
主要表现在以下几个方面:1.教学运用了多种不同的教学法本课程采用了多种不同的教学方法,包括讲授法、练习法、实验法、小组讨论法等。
这样的方式可以让每个学生都有机会参与到教学当中,提高课程的互动性和探索性。
2.教学中强调了实际生活中的应用本节课在讲解绝对值和相反数的时候,更加注重与实际生活中的应用进行联系,让学生能够更加真实地理解和把握知识点,而不仅仅是停留在抽象的概念上。
3.课堂气氛比较活跃在教学过程中,教师时不时会与学生互动,通过问题、练习等形式来检测学生掌握知识的情况,引导学生探究知识。
这样的方式可以让学生更加活跃地参与到课堂中,培养学生的好奇心和探究精神。
相反数与绝对值教案一、教学目标:知识与技能:1. 学生能够理解相反数的概念,能够求出一个数的相反数。
2. 学生能够理解绝对值的概念,能够求出一个数的绝对值。
3. 学生能够运用相反数和绝对值的概念解决一些简单的实际问题。
过程与方法:1. 通过实例引导学生理解相反数和绝对值的概念,培养学生观察、思考的能力。
2. 通过练习题,让学生巩固相反数和绝对值的求法,提高学生的计算能力。
情感态度与价值观:1. 培养学生对数学的兴趣,激发学生学习数学的积极性。
2. 培养学生合作学习的精神,培养学生的团队意识。
二、教学重点与难点:重点:1. 相反数的概念及求法。
2. 绝对值的概念及求法。
难点:1. 相反数的求法。
2. 绝对值的求法。
三、教学准备:教师准备:1. 相反数和绝对值的定义。
2. 相反数和绝对值的例题。
3. 练习题。
学生准备:1. 预习相反数和绝对值的概念。
2. 准备好笔记本,记录重点知识。
四、教学过程:1. 引入新课:教师通过生活中的实例,如温度、方向等,引导学生思考相反数的概念。
2. 讲解相反数:教师给出相反数的定义,并通过示例讲解相反数的求法。
3. 讲解绝对值:教师给出绝对值的定义,并通过示例讲解绝对值的求法。
4. 练习求相反数和绝对值:教师给出一些数的相反数和绝对值,让学生进行练习。
5. 总结:教师引导学生总结相反数和绝对值的概念及求法。
五、课后作业:1. 完成练习题。
2. 找一些生活中的实例,运用相反数和绝对值的概念,与同学交流分享。
六、教学评估:教师应通过课堂观察、练习题和学生作业来评估学生对相反数和绝对值的理解程度。
重点关注学生是否能正确求出一个数的相反数和绝对值,是否能运用这些概念解决实际问题。
七、教学反馈与调整:八、拓展活动:教师可以设计一些拓展活动,如数学小游戏、数学日记等,让学生在轻松愉快的氛围中进一步巩固相反数和绝对值的知识。
例如,设计一个游戏,让学生通过卡片游戏找出配对的相反数或绝对值相等的数。
相反数与绝对值教案第一章:相反数的定义与性质1.1 教学目标了解相反数的定义掌握相反数的性质学会求一个数的相反数1.2 教学内容相反数的定义:一个数a的相反数是一个数-b,使得a + (-b) = 0。
相反数的性质:1) 每个数都有唯一的相反数。
2) 一个数的相反数的相反数等于它本身。
3) 任何数与它的相反数相加等于零。
1.3 教学活动通过实例讲解相反数的定义和性质。
让学生通过练习题来加深对相反数概念的理解。
教师提问,学生回答,共同总结相反数的性质。
1.4 练习题1. -5的相反数是什么?2. 证明:任何数a加上它的相反数-a等于零。
第二章:绝对值的定义与性质2.1 教学目标理解绝对值的定义掌握绝对值的性质学会求一个数的绝对值2.2 教学内容绝对值的定义:一个数a的绝对值是数轴上表示a的点到原点的距离。
绝对值的性质:1) 任何数的绝对值都是非负数。
2) 非零数的绝对值等于它的相反数的绝对值。
3) 零的绝对值是零。
2.3 教学活动通过数轴解释绝对值的定义和性质。
让学生通过练习题来加深对绝对值概念的理解。
教师提问,学生回答,共同总结绝对值的性质。
2.4 练习题1. -3的绝对值是多少?2. 证明:对于任意实数a,|a| = |-a|。
第三章:相反数与绝对值的关系3.1 教学目标理解相反数与绝对值之间的关系学会利用相反数和绝对值解方程3.2 教学内容相反数与绝对值的关系:一个数的相反数的绝对值等于它本身的绝对值。
3.3 教学活动通过实例讲解相反数与绝对值的关系。
让学生通过练习题来加深对相反数与绝对值关系的理解。
教师提问,学生回答,共同总结相反数与绝对值的关系。
3.4 练习题1. 如果一个数的绝对值是4,这个数的相反数是什么?2. 解方程:|x 2| = |x + 2|。
第四章:相反数与绝对值的应用4.1 教学目标掌握相反数和绝对值的基本运算学会解决实际问题中涉及相反数和绝对值的问题4.2 教学内容相反数和绝对值在实际问题中的应用,如距离问题、温度问题等。
绝对值与相反数教学案例
【教学目标】
1.理解有理数的绝对值和相反数的意义.
2.会求已知数的相反数和绝对值.
3.会用绝对值比较两个负数的大小.
4.经历将实际问题数学化的过程,感受数学与生活的关系.
【教学过程设计建议(第一课时)】
1.情境创设
除课本提供的情境外,还可以根据学生的实际,创设一些类似的情境,如乘车去某地,票价、耗油、行
车时间等均与距离有关,也可以提出一些问题引导学生思考,如小明说他昨天从学校出发沿东西大街
走了3 km,你能在数轴上表示出小明昨天到达的位置吗?
2.探索活动
“议一议”的活动,应引导学生从利用“形(数轴)”比较有理数大小转化为用“数(绝对值)”来比较.
(1)通过两个正数在数轴上的位置比较两个数的大小.可以让学生再多比较几对数的大小,然后归纳出两个正数的大小与这两个正数的绝对值的大小关系;
(2)用相同的方法归纳出两个负数的大小与这两个负数的绝对值的大小关系;
(3)在经历了(1)、(2)之后,引导学生归纳,得出用绝对值比较有理数大小的方法.
3.例题教学
例2的第(1)小题是两个正数的大小比较;第(2)小题是两个负数的大小比较,在比较一3与一6的大小时,可让学生再次观察温度计上的刻度,借助“一6℃比一3℃冷”的生活经验,认识两个负数的大小与这两个负数的绝对值的大小关系.
【教学过程设计建议(第二课时)】
1.情境创设
数轴上点A在原点的左边,点B在原点的右边,并且点A与点B到原点的距离相同.根据小明、小丽的观察发现,讨论5与一5的关系.如:
小明、小丽的观察结论正确吗?
你能说得比小明、小丽更完整一些吗?
此外,还可以设计一些距离相同但方向相反的实际问题,引入互为相反数的概念.
2.探索活动
(1)给出相反数的描述性定义后,要让学生大量举例以巩固概念.
(2)围绕“只有符号不同”展开讨论,让学生充
分发表看法.搞清它的意义是判断两个数是否互为相反数的需要,要及时肯定学生中的较好的解释,如:
“两个数的符号不同,绝对值相等.”
“除0以外,绝对值相等的数有两个,一个是正数,一个是负数,它们仅仅是符号不同.”
“写已知数的相反数,只要在这个数的前面添一个负号.”
“有理数由符号和绝对值两部分组成,如果改变有理数的符号,那么数轴上表示有理数的点就从原点的一侧变到另一侧.”
(3)通过“议一议”,归纳出一个数的绝对值与这个数本身或它的相反数的关系.需要注意的是,在写一个数的绝对值时,要紧扣课本第27页上的结论,要求学生首先关注对该数的判断:是正数还是负数;然后再选择法则:正数该如何,负数该如何,0该如何;最后
给出结果.否则今后极易发生这样的错误:|a|=a,|-a|=a.
3.例题教学
例4的解答中标注的理由,例5的卡通人旁白,
都只是为了强调本节课的重要结论和相反数的定义,渗透“推理要有依据”,学生作业和考试时不作要求.。