电子的自旋算符与自旋波函数
- 格式:ppt
- 大小:987.50 KB
- 文档页数:54
§6.2 电子的自旋算符和自旋函数重点:自旋算符和波函数的引入及意义(一)自旋算符与轨道角动量满足同样的对易关系:(6.2-1a)分量式为:(6.2-1b)及(6.2-2)由于在空间任意方向上的投影只能取两个数值,所以三个算符的本征都是,即(6.2-3)的本征值用磁量子数示的式子,可以把的仿照轨道角动量z方向分量算符本征值表为(6.2-4)其中为自旋磁量子数。
因为自旋角动量平方算符:所以的本征值是(6.2-5)仿照的本征值用角量子数表示的式子,的本征值也可写成(6.2-6)比较(6.2-5)与(6.2-6)式,可得,我们称s为自旋量子数,它只能取一个数值,即。
(二)自旋波函数电子具有自旋,所以描写电子状态的波函数除包括描写其质心坐标x、y、z的自变量外,还需引入描写自旋变量S z,所以电子的波函数庆写为(6.2-7)由于S z只能取两个数值,所以上式实际上相当于两个波函数(6.2-8)根据波函数的统计解释,和表示t时刻的x、y、z点附近单位体积内找到电子自旋分别和的几率。
因此考虑到电子自旋以后,电子波函数的归一化条件为(6.2-9)和对x、y、z的依赖关系当电子的自旋和轨道运动相互作用小到可以略去时,这时是相同时,我们可以把(6.2-10)是描写自旋状态自旋函数,称为自旋波函数。
它的自旋变量S z只是取和式中(6.2-12)和任何力学量的算符一样,它的本征函数应是正交归一的,即(6.2-13)的态中,找到自旋的电子的几率为1,找到自显然,对于本征值为的电子的几率为零,因此,的函数数值可取为旋为(6.2-14)相似地有(6.2-15)首先把电子的波函数(6.2-8)式用下列二行一列矩阵表示(6.2-16)则(6.2-17)分别表示电子处于及的自旋态,而(6.2-18)是的共轭矩阵,于是波函数的归一化条件为(6.2-19)由(6.2-14)、(6.2-15)式,可将自旋波函数用下列二行一列矩阵来表示(6.2-20)其共厄矩阵为(6.2-21)正交归一关系为(6.2-22)当波函数用上述二行一列矩阵表示,则自旋算符应是二行二列矩阵,以便算符作用在波函数上仍得出二行一列的矩阵。
量子力学知识总结认真、努力、坚持、反思、总结…物理111 杨涛量子力学知识点小结一、绪论1.光的粒子性是由黑体辐射、光电效应和康普顿效应(散射)三个实验最终确定的。
2.德布罗意假设是任何物质都具有波粒二象性,其德布罗意关系为E h ν=和h p n κλ==3.波尔的三个基本假设是定态条件假设、n mE E h ν-=频率条件假设、化条件)(索末菲等推广的量子21或量子化条件假设⎰⎰+==h n pdq nh pdq )(4.自由粒子的波函数()ip r Et Aeψ⋅-=5.戴维孙革末的电子在晶体上衍射实验证明了电子具有波动性。
二、波函数及薛定谔方程(一)波函数的统计解释(物理意义)A.波函数(,)r t ψ的统计解释2(,)r t d t r ψτ表示时刻在点位置处单位体积内找2sin d r drd d τθϕθ=到粒子的几率(注:)。
B. 波函数(,,,)x y z t ψ的统计解释2(,,,),,x y z t dxdydz t x y z ψ表示时刻在点()位置处单位体积没找到粒子的几率。
例:已知体系处于波函数(,,)x y z ψ所描写的状态,则在区间[,]x x dx +内找到粒子的概率是2(,,)x y z dydz dx ψ+∞+∞-∞-∞⎡⎤⎢⎥⎣⎦⎰⎰. 已知体系处于波函数(,,)r ψθϕ所描写的状态,则在球壳r r dr →+内找到粒子的概率是22200(,,)sin r d d r dr ππψθϕθϕθ⎡⎤⎢⎥⎣⎦⎰⎰,在立体角d Ω内找到粒子的概率是220(,,)r r dr d ψθϕ∞⎡⎤Ω⎢⎥⎣⎦⎰.(注:sin d d d θϕθΩ=) (二)态叠加原理:如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加1122c c ψψψ=+(12c c 、为复数)也是这个体系可能的状态。
含义:当体系处于1ψ和2ψ的线性叠加态1122c c ψψψ=+(12c c 、为复数) 时,体系既处于1ψ态又处于态2ψ,对应的概率为21c 和22c .(三)概率密度(分布)函数2()()x x x ψωψ=若波函数为,则其概率密度函数为()(四)薛定谔方程:22()2i U r t m∂ψ=-∇ψ+ψ∂ 22222222222222222()21cos 1 ()sin sin x y zr r r r r θθθθθϕ∂∂∂∇=+∂∂∂⎛⎫∂∂∂∂∂∇=+++ ⎪∂∂∂∂∂⎝⎭拉普拉斯算符直角坐标球坐标问题:1.描写粒子(如电子)运动状态的波函数对粒子(如电子)的描述是统计性的.2. 薛定谔方程是量子力学的一个基本假设,不是通过严格的数学推导而来的(五)连续性方程:()**0( )2J tiJ mω∂+∇⋅=∂≡ψ∇ψ-ψ∇ψ注:问题:波函数的标准条件单值、连续、有界。