七年级数学第二章测试题
- 格式:doc
- 大小:277.00 KB
- 文档页数:4
人教版七年级上册数学第二章测试卷一、选择题(每题3分,共30分)1. 单项式-frac{2xy^2}{5}的系数是()A. -2B. -(2)/(5)C. (2)/(5)D. 22. 下列式子中,是整式的是()A. (1)/(x)B. (1)/(x + 1)C. x + yD. √(x)3. 多项式3x^2 - 2x - 1的各项分别是()A. 3x^2,2x,1B. 3x^2, - 2x, - 1C. -3x^2,2x,1D. -3x^2, - 2x, - 14. 单项式3x^my^3与-2x^2y^n是同类项,则m + n=()A. 5B. 4C. 3D. 25. 化简a + 2b - b的结果是()A. a - bB. a + bC. a + 3bD. a + 26. 若A = x^2-2x + 1,B = 3x - 2,则A - B=()A. x^2-5x + 3B. x^2+x - 1C. x^2-5x - 1D. x^2-x + 37. 一个多项式与x^2-2x + 1的和是3x - 2,则这个多项式为()A. -x^2+5x - 3B. -x^2+x - 1C. x^2-5x + 3D. x^2-x + 38. 当x = 1时,代数式ax^3+bx + 1的值为3,则当x=-1时,代数式ax^3+bx + 1的值为()A. -1B. 1C. 3D. -39. 若M = 3x^2-5x + 2,N = 3x^2-4x + 2,则M与N的大小关系是()A. M>NB. M = NC. MD. 无法确定。
10. 某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则它最后的单价是()A. a元B. 0.99a元C. 1.21a元D. 0.81a元。
二、填空题(每题3分,共18分)11. 单项式frac{3π x^2y}{4}的次数是______。
12. 多项式2x^3-x^2y^2-3xy + x - 1是______次______项式。
第2章测试题一.单选题(共10题;共30分)1.-的绝对值是()A. -B.C. 3D. -32.如果m表示有理数,那么|m|+m的值()A. 可能是负数;B. 不可能是负数;C. 必定是正数;D. 可能是负数也可能是正数3.下列各数中:+3、-2.1、−、9、、-(-8)、0、-|+3|负有理数有()A. 2个B. 3个C. 4个D. 5个4.2的相反数是()A. 2B.C. -2D. -5.﹣3的绝对值是()A. -3B.C.D. 36.﹣的绝对值为()A. -2B. -C.D. 17.数轴上的点A到原点的距离是4,则点A表示的数为()A. 4B. -4C. 4或﹣4D. 2或﹣28.某大米包装袋上标注着“净含量10kg±150g”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是()A. 100gB. 150gC. 300gD. 400g9.在纪念“中国人民抗日战争暨世界反法西斯战争胜利70周年”知识竞赛中,如果把加10分记为“+10分”,那么扣20分应记为()A. 10分B. ﹣20分C. ﹣10分D. +20分10.若向东走15米记为+15米,则向西走28米记为()A. ﹣28米B. +28米C. 56米D. ﹣56米二.填空题(共8题;共33分)11.如果a﹣3与a+1互为相反数,那么a=________12.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是________(2)数轴上表示x与2的两点之间的距离可以表示为________(3)如果|x﹣2|=5,则x=________(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是________13.比较大小:﹣________ ﹣|﹣|.14.数轴上离开原点3个单位长的点所表示的数是________.15.在数轴上,﹣2对应的点为A,点B与点A的距离为,则点B表示的数为________.16.如果“盈利5%”记作+5%,那么亏损3%记作________.17.用“>”“<”或“=”连接:﹣π________﹣3.14.18.数轴上有两个点A和B,点A表示的数是,点B与点A相距2个单位长度,则点B所表示的实数是________.三.解答题(共6题;共37分)19.某校对七年级男生进行定跳远测试,以能跳1.7m及以上为达标.超过1.7m的厘米数用正cm):问:第一组有百分之几的学生达标?20.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)请问A,B两点之间的距离是多少?(3)在数轴上画出与点A的距离为2的点(用不同于A,B的其它字母表示),并写出这些点表示的数.21.随着人们的生活水平的提高,家用轿车越来越多地进入普通家庭.小明家买了一辆小轿车,他连续记录了7天中每天行驶的路程,以50km为标准,多于50km的记为“+”,不足50km的记(1)请你估计小明家的小轿车一月(按30天计)要行驶多少千米?(2)若每行驶100km需用汽油8L,汽油每升7.14元,试求小明家一年(按12个月计)的汽油费用是多少元?22.在数轴上把下列各数表示出来,并用“<”连接各数.﹣|﹣2.5|,112 , 0,﹣(﹣212),﹣(﹣1)100 , ﹣22.23.某服装店以每件82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如表所示:请你求出该服装店在售完这30套保暖内衣后,共赚了多少钱?24.某人用400元购买了8套儿童服装,准备以一定价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录下:+2,﹣4,+2,+1,﹣2,﹣1,0,﹣2当它卖它这8套儿童服装后是盈利还是亏损?盈利(亏损)多少钱?参考答案:一.单选题1.【答案】B【考点】绝对值【解析】【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】|-|=.故-的绝对值是.故选:B.【点评】此题考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【答案】B【考点】绝对值【解析】【解答】当m>0时,原式=2m>0.当m=0时,原式=0.当m<0时,原式=0.故选:B.【分析】分类讨论,化简原式后判断.采用分类讨论时,要把所有情况分析清楚.3.【答案】B【考点】正数和负数【解析】【分析】把各式化简得:3,-2.1,-,9,1.4,8,0,-3.【解答】-2.1为负数有限小数,-为负数无限循环小数,-|+3|是负整数,所以是负有理数.共3个.【点评】判断一个数是有理数还是无理数,要把它化简成最后形式再判断.概念:无限不循环小数和开根开不尽的数叫无理数整数和分数统称为有理数4.【答案】C【考点】相反数【解析】【解答】根据相反数的含义,可得2的相反数是:﹣2.故选:C.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可5.【答案】D【考点】绝对值【解析】【解答】解:∵﹣3的绝对值表示﹣3到原点的距离,∴|﹣3|=3,故选D.【分析】根据绝对值的定义直接解答即可.6.【答案】C【考点】绝对值【解析】【解答】解:∵|﹣|=,∴﹣的绝对值为.故选:C.【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.7.【答案】C【考点】数轴【解析】【解答】解:在数轴上,4和﹣4到原点的距离为4.∴点A所表示的数是4和﹣4.故选:C.【分析】在数轴上点A到原点的距离为4的数有两个,意义相反,互为相反数.即4和﹣4.8.【答案】D【考点】正数和负数【解析】【解答】解:根据题意得:10+0.15=10.15(kg),10﹣0.15=9.85(kg),因为两袋两大米最多差10.15﹣9.85=0.3(kg)=300(g),所以这两袋大米相差的克数不可能是400g;故选D.【分析】根据“正”和“负”所表示的意义得出每袋大米的最多含量和最小含量,再两者相减即可得出答案.9.【答案】B【考点】正数和负数【解析】【解答】解:把加10分记为“+10分”,那么扣20分应记为﹣20分,故选:B.【分析】根据正数和负数表示相反意义的量,加分记为正,可得答案.10.【答案】A【考点】正数和负数【解析】【解答】解:向东走15米记为+15米,则向西走28米记为﹣28米,故选:A.【分析】根据正数和负数表示相反意义的量,可得答案.二.填空题11.【答案】1【考点】相反数【解析】【解答】解:由题意得,a﹣3+a+1=0,解得a=1.故答案为:1.【分析】根据互为相反数的两个数的和等于0列出方程求解即可.12.【答案】7;|x﹣2|;7或﹣3;﹣3、﹣2、﹣1、0、1【考点】绝对值【解析】【解答】解:(1)数轴上表示5与﹣2两点之间的距离是|5﹣(﹣2)|=|5+2|=7,故答案为:7;(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,故答案为:|x﹣2|;(3)∵|x﹣2|=5,∴x﹣2=5或x﹣2=﹣5,解得:x=7或x=﹣3,故答案为:7或﹣3;(4)∵|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,|x+3|+|x﹣1|=4,∴这样的整数有﹣3、﹣2、﹣1、0、1,故答案为:﹣3、﹣2、﹣1、0、1;【分析】(1)根据距离公式即可解答;(2)利用距离公式求解即可;(3)利用绝对值求解即可;(4)利用绝对值及数轴求解即可.13.【答案】<【考点】有理数大小比较【解析】【解答】解:∵﹣|﹣34|=﹣34 ,∴两数均为负,取其相反数做商,即45÷34=1615>1.即45>34 ,∴﹣45<﹣34=﹣|﹣34|.故答案为:<.【分析】先去绝对值符号,能够发现两数均为负,取两数相反数(或绝对值)做商,与1比较,即可得出结论.14.【答案】±3【考点】数轴【解析】【解答】解:设数轴上离开原点3个单位长的点所表示的数是x,则|x﹣0|=3,解得x=±3.故答案为:±3.【分析】设数轴上离开原点3个单位长的点所表示的数是x,再由数轴上两点间的距离公式求出x的值即可.15.【答案】7 ﹣2或﹣ 7 ﹣2【考点】实数与数轴【解析】【解答】解:设B点表示的数是x, ∵﹣2对应的点为A,点B与点A的距离为 7 ,∴|x+2|= 7 ,解得x= 7 ﹣2或x=﹣ 7 ﹣2.故答案为: 7 ﹣2或﹣ 7 ﹣2.【分析】设B点表示的数是x,再根据数轴上两点间的距离公式即可得出结论.16.【答案】﹣3%【考点】正数和负数【解析】【解答】解:“盈利5%”记作+5%,那么亏损3%记作﹣3%, 故答案为:﹣3%.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.17.【答案】<【考点】实数大小比较【解析】【解答】解:∵|﹣π|=π,|﹣3.14|=3.14, 而π>3.14,∴﹣π<﹣3.14.故答案为<.【分析】先计算﹣π和﹣3.14的绝对值,然后根据两个负实数绝对值大的反而小进行大小比较.18.【答案】,【考点】实数与数轴【解析】【解答】解:当点B在点A的右侧时,点B所表示的实数是;当点B在点A的左侧时,点B表示的实数是;∴点B所表示的实数是或.三.解答题19.【答案】6÷10×100%=60%【考点】正数和负数【解析】【解答】根据题意,得超过1.7m的用正数表示,不足的用负数表示.由表格可知这10名男生的成绩是正数的有4个,刚好为0m的有2个,所以一共有6名成绩达标,则6÷10×100%=60%.答:第一组有60%的学生达标.【分析】此题考查的是正数和负数表示具有相反意义的量.由题意知超过 1.7m的用正数表示,也就是说成绩用正数表示的学生的成绩都超过了1.7m,而成绩刚好是1.7m的用0m来表示,即成绩用大于或等于0的数表示的学生都达标.20.【答案】解:(1)根据所给图形可知A:1,B:﹣2.5;(2)依题意得:AB之间的距离为:1+2.5=3.5;(3)设这两点为C、D,则这两点为C:1﹣2=﹣1,D:1+2=3.【考点】数轴【解析】【分析】(1)读出数轴上的点表示的数值即可;(2)两点的距离,即两点表示的数的绝对值之和;(3)与点A的距离为2的点有两个,一个向左,一个向右.21.【答案】解:(1)=50,50×30=1500(km).答:小明家的小轿车一月要行驶1500千米;(2)×8×7.14×12=10281.6(元),答:小明家一年的汽油费用是10281.6元.【考点】正数和负数【解析】【分析】(1)用7天的标准量加上7天的记录数据除以7,求出平均每天的行驶路程,然后乘以30计算即可得解;(2)用一个月的行驶路程除以100乘8乘7.14,再乘以12个月,计算即可得解.22.【答案】解:∵﹣|﹣2.5|﹣2.5,﹣(﹣212)=212=2.5,﹣(﹣1)100=﹣1,﹣22=﹣4, ∴如图所示:∴用“<”连接各数为:﹣22<﹣|﹣2.5|<﹣(﹣1)100<0<112<﹣(﹣212).【考点】数轴,有理数大小比较【解析】【分析】首先化简各数,进而在数轴上表示出来,即可得出大小关系.23.【答案】解:7×(100+5)+6×(100+1)+7×100+8×(100﹣2)+2×(100﹣5)=735+606+700+784+190=3015,30×82=2460(元),3015﹣2460=555(元),答:共赚了555元【考点】正数和负数【解析】【分析】首先由进货量和进货单价计算出进货的成本,然后再根据售价计算出赚了多少钱.24.【答案】解:售价:55×8+(2﹣4+2+1﹣2﹣1+0﹣2)=440﹣4=436,盈利:436﹣400=36(元).答:当它卖完这8套儿童服装后盈利36元【考点】正数和负数【解析】【分析】所得的正负数相加,再加上预计销售的总价,减去总进价即可得到是盈利还是亏损.。
七年级数学第二章《有理数》测试题一、选择题(每小题3分,共30分) 1.下列说法正确的是( )A .任何负数都小于它的相反数B .零除以任何数都等于零C .若b a ≠,则22b a ≠ D .两个负数比较大小,大的反而小2.如果一个数的绝对值等于它的相反数,那么这个数( ) A .必为正数 B .必为负数 C .一定不是正数 D .不能确定正负 3.当a 、b 互为相反数时,下列各式一定成立的是( ) A .1-=a b B .1=abC .0=+b aD .0 ab 4.π-14.3的计算结果是( )A .0B .π-14.3C .14.3-πD .π--14.35.a 为有理数,则下列各式成立的是( )A .02>aB .012<-aC .0)(>--aD .012>+a 6.如果一个数的平方与这个数的绝对值相等,那么这个数是( )A .0B .1C .-1D .0,1或-1 7.若3.0860是四舍五入得到的近似数,则下列说法中正确的是( )A .它有四个有效数字3,0,8,6B .它有五个有效数字3,0,8,6,0C .它精确到0.001D .它精确到百分位8.已知0<a ,01<<-b ,则a ,ab ,2ab 按从小到大的顺序排列为( )A .2ab ab a <<B .ab a ab <<2C .a ab ab <<2D .ab ab a <<29. 下列各组运算中,其值最小的是( )A .2)23(--- B .)2()3(-⨯- C .22)2()3(-÷- D .)2()3(2-⨯- 10.几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是( ) A .28 B .33 C .45 D .57 二、填空题(每小题3分,共24分)11.绝对值小于n (n 是正整数)的整数共有___________个。
人教版数学七年级上册第二章整式的加减一、选择题(每题3分,计24分) 1.下列各式中不是单项式的是( ) A .3a B .-51 C .0 D .a32.甲数比乙数的2倍大3,若乙数为x ,则甲数为( ) A .2x -3 B . 2x+3 C .21x -3 D .21x+3 3.如果2x 3n y m+4与-3x 9y 2n是同类项,那么m 、n 的值分别为( ) A .m=-2,n=3 B .m=2,n=3 C .m=-3,n=2 D .m=3,n=2 4.已知3221A a ab =-+,3223B a ab a b =+-,则A B +=( ) A .3222331a ab a b --+ B .322231a ab a b +-+ C .322231a ab a b +-+ D .322231a ab a b --+ 5.从减去的一半,应当得到( ). A.B.C.D.6.减去-3m 等于5m 2-3m-5的式子是( )A .5(m 2-1) B .5m 2-6m-5 C .5(m 2+1) D .-(5m 2+6m-5)7.在排成每行七天的日历表中取下一个33⨯方块.若所有日期数之和为189,则n 的值为( )A .21B .11C .15D .98.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真地复习老师讲的内容,他突然发现一道题222221131(3)(4)2222x xy y x xy y x -+---+-=- +_____________+2y 空格的地方被钢笔水弄污了,那么空格中的一项是( )A .7xy -B .7xyC .xy -D .xy 二、填空题(每题4分,计32分)9.单项式2r π-的系数是 ,次数是 . 10.当 x =5,y =4时,式子x -2y的值是 . 11.按下列要求,将多项式x 3-5x 2-4x+9的后两项用( )括起来. 要求括号前面带有“—”号,则x 3—5x 2—4x+9=___________________12.把(x —y )看作一个整体,合并同类项:5(x —y )+2(x —y )—4(x —y )=_____________.13.一根铁丝的长为54a b +,剪下一部分围成一个长为a 宽为b 的长方形,则这根铁丝还剩下_____________________.14.用语言说出式子a+b 2的意义:______________________________________15.某校为适应电化教学的需要新建阶梯教室,教室的第一排有a 个座位,后面每一排都比前一排多一个座位,若第n 排有m 个座位,则a 、n 和m 之间的关系为 .16.小明在求一个多项式减去x 2—3x+5时,误认为加上x 2—3x+5,•得到的答案是5x 2—2x+4,则正确的答案是_______________. 三、解答题(共28分)17.(6分)化简:(1))343(4232222x y xy y xy x +---+; (2))32(5)5(422x x x x +--.18.(6分)如图所示,在下面由火柴棒拼出的一系列的图形中,第n 个图形由n•个正方形组成.n=4n=3n=2n=1(1)第2个图形中,火柴棒的根数是________;(2)第3个图形中,火柴棒的根数是________;(3)第4个图形中,火柴棒的根数是_______;(4)第n个图形中,火柴棒的根数是________.19.(8分)有这样一道题:“当a=2009,b=—2010时,求多项式3323323a ab a b a a b a b a-+++--+2010的值.”76336310小明说:本题中a=2009,b=—2010是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出,a b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.20.(8分)一个三角形一边长为a+b,另一边长比这条边大•b,•第三边长比这条边小a —b.(1)求这个三角形的周长;(2)若a=5,b=3,求三角形周长的值.四、拓广探索(共16分)21.(8分)有一串单项式:x,-2x2,3x3,-4x4,……,-10x10,……(1)请你写出第100个单项式;(2)请你写出第n个单项式.22.(8分)如图所示,请你探索正方形的个数与等腰三角形的个数之间的关系.正方形个数 1 2 3 4 …n等腰三角形个数(1)照这样的画法,如果画15个正方形,可以得_______个等腰三角形;(2)若要得到152个等腰三角形,应画_______个正方形;2.1-2.2测试B1.(7分)已知x 2—xy=21,xy-y 2=—12,分别求式子x 2-y 2与x 2—2xy+y 2的值.2.(7分)同一时刻的北京时间、巴黎时间、东京时间如图所示.(1)设北京时间为)237(<<a a ,分别用代数式表示同一时刻的巴黎时间和东京时间; (2)2001年7月13日,北京时间22:08,国际奥委会主席萨马兰奇宣布,北京获得2008年第29届夏季奥运会的主办权.问这一时刻贩巴黎时间、东京时间分别为几时?3.(8分)按照下列步骤做一做:(1)任意写一个两位数;(2)交换这个两位数的十位数字和个位数字,得到一个新数;(3)求这两个两位数的差.再写几个两位数重复上面的过程,这些差有什么规律?这个规律对任意一个两位数都成立吗?为什么?4.(8分)有一包长方体的东西,用三种不同的方法打包,哪一种方法使用的绳子最短?哪一种方法使用的绳子最长?(a+b>2c)参考答案 一、选择题1.D 2.B 3.B 4.D 5.D 6.C 7.A 8.C 二、填空题9.2,π- 10.3 11.x 3—5x 2—(4x —9) 12.3(x —y ) 13.3a+2b14.a 与b 的平方的和 15.m=a+n —1 16.3x 2+4x —6 三、解答题17.(1)原式=xy x y xy y xy x -=-+--+2222343423; (2)原式=x x x x x x 3561510204222--=---. 18.(1)7;(2)10;(3)13;(4)3n+119.∵332332376336310a a b a b a a b a b a -+++--+2010=332(731)(66)(33)a a b a b +-+-++-+2010=2010.∴a=2009,b=—2010是多余的条件,故小明的观点正确.20. (1) 三角形的周长为:b a b a b a b b a b a 52)()()(+=+-++++++; (2)当a =5,b =3时,周长为:25. 四、拓广探索21.(1)—100x 100;(2)(—1)n+1x n. 22.0,4,8,12,4(n —1) (1)56;(2)4(n —1)=152,n=39. 2.1-2.2测试B 参考答案1.x 2-y 2= (x 2-xy )+(xy-y 2)=21—12=9, x 2-2xy+y 2= (x 2-xy )—(xy-y 2)=21+12=33. 2.(1)巴黎时间为a+5,东京时间为a+1; (2) 巴黎时间为3:08,东京时间为23:08. 3.(1)24;(2)42;(3)42—24=18;是9的倍数.设原两位数的十位数字为b,个位数字为a(b>a),则原两位数为10b+a,交换后的两位数为10a+b.10b+a-(10a+b)=10b+a-10a-b=9b-9a=9(b-a)4.第(1)种方法的绳子长为4a +4b +8c ,第(2)种方法的绳子长为4a +4b +4c ,第(3)种方法的绳子长为6a +6b +4c ,从而第(3)种方法绳子最长,第(2)种方法绳子最短。
北师大版(2024)七年级上册数学第2章有理数及其运算达标测试卷(时间:45分钟。
满分:100分)一、选择题(本大题共8小题,每小题3分,共24分。
每小题只有一个正确选项)1.计算(-7)-(-5)的结果是()。
A.-12B.12C.-2D.22.中国是最早采用正负数表示相反意义的量并进行负数运算的国家。
若收入500元记作+500元,则支出237元记作()。
A.+237元B.-237元C.0元D.-474元3.在3,-7,0,1四个数中,最大的数是()。
9A.3B.-7C.0D.194.近似数5.0×102精确到()。
A.十分位B.个位C.十位D.百位5.“绿水青山就是金山银山”,多年来,某湿地保护区针对过度放牧问题,投入资金实施湿地生态效益补偿,完成季节性限牧还湿29.47万亩(1亩≈666.67 m2),使得湿地生态环境状况持续向好。
其中数据29.47万用科学记数法表示为()。
A.0.294 7×106B.2.947×104C.2.947×105D.29.47×1046.下列说法,正确的是()。
A.23表示2×3B.-110读作“-1的10次幂”C.(-5)2中-5是底数,2是指数D.2×32的底数是2×37.(2023内蒙古中考)定义新运算“⊗”,规定:a⊗b=a2-|b|。
则(-2)⊗(-1)的运算结果为()。
A.-5B.-3C.5D.3<0。
则其中正8.如图,数轴上点A,B,C分别表示数a,b,c,有下列结论:①a+b>0;②abc<0;③a-c<0;④-1<ab确结论的个数是()。
A.1B.2C.3D.4二、填空题(本大题共5小题,每小题4分,共20分)9.(2024重庆奉节期末)若a是最小的正整数,b是最大的负整数,则a+b=。
10.(2023重庆渝中区校级月考)计算:-|-335|-(-225)+45=。
浙教版数学七年级上册第二章有理数的运算一、选择题1.下列各对数中,互为相反数的是( )A.+(﹣2)与﹣(+2)B.﹣(﹣3)与|﹣3|C.﹣32与(﹣3)2D.﹣23与(﹣2)32.已知数549039用四舍五入法后得到的是5.490×105,则所得近似数精确到( ).A.十位B.百位C.千分位D.万位3.两数相加,如果和小于任何一个加数,那么这两个数( )A.同为正数B.同为负数C.一正数一负数D.一个为0,一个为负数4.下列说法正确的是( )A.1是最小的自然数B.平方等于它本身的数只有1C.任何有理数都有倒数D.绝对值最小的数是05.用“▲”定义一种新运算:对于任何有理数a和b,规定a▲b=ab+b2,如2▲3=2×3+32=15,则(−4)▲2的值为( )A.−4B.4C.−8D.86.有理数a,b在数轴上的对应点如图所示,则下列式子中错误的是( )A.ab>0B.a+b<0C.a﹣b<0D.b﹣a<07.一件衣服的进价为100元,商家提高80%进行标价,为了吸引顾客,商店进行打7折促销活动,商家出售这件衣服时,获得的利润是( )A.26元B.44元C.56元D.80元8.若x、y二者满足等式x2−3y=3x+y2,且x、y互为倒数,则代数式x2−3(x+y)+5−y2−4xy的值为( )A.1B.4C.5D.99.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .1202110.计算机利用的是二进制数,它共有两个数码0,1,将一个十进制数转化为二进制,只需将该数写为若干个2n 的数字之和,依次写出1或0的系数即可,如十进制数字19可以写为二进制数字10011,因为19=16+2+1=1×24+0×23+0×22+1×21+1×20,32可以写为二进制数字100000,因为32=32=1×25+0×24+0×23+0×22+0×21+0×20,则十进制数字70是二进制下的( )A .4位数B .5位数C .6位数D .7位数二、填空题11.2022年11月20日晚,卡塔尔世界杯正式开幕,仅两天时间,抖音世界杯总话题播放量高达21480000000次,其中数21480000000用科学记数法表示为 .12.计算(−1)2023÷(−1)2004= .13.一个数的立方等于它本身,这个数是 14.如图所示的程序图,当输入﹣1时,输出的结果是 .15.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .16.如图,商品条形码是商品的“身份证”,共有13位数字.它是由前12位数字和校验码构成,其结构分别代表“国家代码、厂商代码、产品代码、校验码”.其中,校验码是用来校验商品条形码中前12位数字代码的正确性.它的编制是按照特定的算法得来的.其算法为:步骤1:计算前12位数字中偶数位数字的和a ,即a =9+1+3+5+7+9=34;步骤2:计算前12位数字中奇数位数字的和b ,即b =6+0+2+4+6+8=26;步骤3:计算3a 与b 的和c ,即c =3×34+26=128;步骤4:取大于或等于c 且为10的整数倍的最小数d ,即d =130;步骤5:计算d 与c 的差就是校验码X ,即X =130−128=2.如图,若条形码中被污染的两个数字的和是5,则被污染的两个数字中右边的数字是 .三、解答题17.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 18.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+5,−3,+10,−8,−6,+12,−10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线的最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?19.已知a、b互为倒数,c、d互为相反数,|m|=3,n是最大的负整数,求代数式(−ab)2024−3(c+d)−n+m2的值.20.在一条不完整的数轴上从左到右有A,B,C三点,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以C为原点,写出点A,B所对应的数,计算p的值;(2)若p的值是﹣1,求出点A,B,C所对应的数;(3)在(2)的条件下,在数轴上表示|﹣0.5|、(﹣1)3和A,B,C所对应的数,并把这5个数进行大小比较,用“<”连接.21.现定义一种新运算“*”,对任意有理数a、b,规定a*b=ab+a﹣b,例如:1*2=1×2+1﹣2.(1)求2*(﹣3)的值;(2)求(﹣3)*[(﹣2)*5]的值.22.目前,某城市“一户一表”居民用电实行阶梯电价,具体收费标准如下.一户居民一个月用电量(单位:度)电价(单位:元/度)第1档不超过180度的部分0.5第2档超过180度的部分0.7(1)若该市某户12月用电量为200度,该户应交电费 元;(2)若该市某户12月用电量为x度,请用含x的代数式分别表示0≤x≤180和x>180时该户12月应交电费多少元;(3)若该市某户12月应交电费125元,则该户12月用电量为多少度?23.如图,已知数轴上有A,B两点,分别代表−40,20,两只电子蚂蚁甲,乙分别从A,B两点同时出发,甲沿线段AB以1个单位长度秒的速度向右运动,到达点B处时运动停止;乙沿BA方向以4个单位长度秒的速度向左运动.(1)A,B两点间的距离为 个单位长度;乙到达A点时共运动了 秒.(2)甲,乙在数轴上的哪个点相遇?(3)多少秒时,甲、乙相距10个单位长度?(4)若乙到达A点后立刻掉头并保持速度不变,则甲到达B点前,甲,乙还能在数轴上相遇吗?若能,求出相遇点所对应的数;若不能,请说明理由.答案解析部分1.【答案】C2.【答案】B3.【答案】B4.【答案】D5.【答案】A6.【答案】D7.【答案】A8.【答案】A9.【答案】B10.【答案】D11.【答案】2.148×101012.【答案】−113.【答案】0或±114.【答案】715.【答案】0或4或﹣416.【答案】417.【答案】(1)解:如图所示(2)50(3)-818.【答案】(1)守门员最后回到了球门线的位置(2)12米(3)54米19.【答案】解:∵a、b互为倒数,c、d互为相反数,|m|=3,n是最大的负整数,∴ab=1,c+d=0,m2=9,n=−1,∴(−ab)2024−3(c+d)−n+m2=(−1)2024−3×0−(−1)+9=1−0+1+9=11.20.【答案】(1)解:若以C为原点,∵AB=2,BC=1,∴B表示﹣1,A表示﹣3,此时,p=(﹣3)+(﹣1)+0=﹣4;(2)解:设B对应的数为x,∵AB=2,BC=1,则A点表示的数为x﹣2,C表示的数为x+1,p=x+x+1+x﹣2=﹣1;x=0,则B点为原点,∴A表示﹣2,C表示1;(3)解:如图所示:故﹣2<(﹣1)3<0<|﹣0.5|<1.21.【答案】(1)解:2*(﹣3)=2×(﹣3)+2﹣(﹣3)=﹣6+2+3=﹣1;(2)解:(﹣3)*[(﹣2)*5]=(﹣3)*[(﹣2)×5+(﹣2)﹣5]=(﹣3)*(﹣17)=(﹣3)×(﹣17)+(﹣3)﹣(﹣17)=51﹣3+17=65.22.【答案】(1)104(2)解:当0≤x≤180时,该户12月应交电费为0.5x元;当x>180时,该户12月应交电费为0.5×180+0.7(x−180),=90+0.7x−126,=(0.7x−36)(元).(3)解:∵104<125,∴x>180,∴0.7x−36=125,∴x=230.答:该户12月用电量为230度.23.【答案】(1)60;15(2)解:60÷(4+1)=12,−40+12=−28.答:甲,乙在数轴上的−28点相遇(3)解:两种情况:相遇前,(60−10)÷(4+1)=10;相遇后,(60+10)÷(4+1)=14,答:10秒或14秒时,甲、乙相距10个单位长度;(4)解:乙到达A点需要15秒,甲位于−40+15=−25,乙追上甲需要25÷(1+4)=5(秒)此时相遇点的数是−25+5=−20,故甲,乙能在数轴上相遇,相遇点表示的数是−20.。
七年级数学上册第二章整式的加减水平测试的试题及答案七年级数学上册第二章整式的加减水平测试的试题及答案一、选择题(每题3分,共24分)1.下列说法中正确的是()。
A. 不是整式;B. 的次数是 ;C. 与是同类项;D. 是单项式2.ab减去等于()。
A. ;B. ;C. ;D.3.下列各式中与a-b-c的值不相等的是()A.a-(b+c)B.a-(b-c)C.(a-b)+(-c)D.(-c)-(b-a)4.将2(x+y)-3(x-y)-4(x+y)+5(x-y)-3(x-y)合并同类项得()A.-3x-yB.-2(x+y)C.-x+yD.-2(x+y)-(x-y)5.若-4x2y和-23xmyn是同类项,则m,n的值分别是()]A.m=2,n=1B.m=2,n=0C.m=4,n=1D.m=4,n=06.下列各组中的两项属于同类项的是()A. x2y与- xy3 ;B.-8a2b与5a2c;C. pq与- qp;D.19abc与-28ab7.下列各式中,去括号正确的是()A.x2-(2y-x+z)= x2-2y2-x+zB.3a-[6a-(4a-1)]=3a-6a-4a+1C.2a+(-6x+4y-2)=2a-6x+4y-2D.-(2x2-y)+(z-1)=-2x2-y-z-18.已知多项式,且A+B+C=0,则C为()(A) (B) (C) (D)二、填空题(每题3分,共2 4分)1.请任意写出的两个同类项:,;2.已知x+y=3,则7-2x-2y的值为;3.如果与是同类项,那么m=;n=;4.当2yx=5时, = ;5.一个多项式加上-3+x-2x2得到x2-1,那么这个多项式为;6.在代数式-x2+8 x-5+ x2+6x+2中,-x2和是同类项,8x和是同类项,2和是同类项.7.已知与是同类项,则5m+3n的值是.8.写一个代数式,使其至少含有三项,且合并同类项后的结果为三、解答题(共32分)1.计算:(1)(2)(3x2-xy-2y2)2(x2+xy2y2)2.先化简,再求值:,其中,。
一、选择题(每题3分,共30分)1. 下列数中,既是整数又是正数的是()A. -3B. 0C. 1.5D. -22. 如果a > b,那么下列不等式中正确的是()A. a + 3 > b + 3B. a - 3 < b - 3C. a + 2 < b + 2D. a - 2 > b - 23. 下列数中,绝对值最大的是()A. -5B. -4C. 0D. 34. 如果a、b、c是三个不同的整数,且a + b = 0,那么下列说法正确的是()A. a、b中必有一个是正数B. a、b中必有一个是负数C. a、b中一个是正数,一个是负数D. a、b中一个是05. 下列各数中,有理数是()A. √2B. πC. 0.1010010001……D. 3/26. 下列各数中,无理数是()A. √4B. 3/2C. -πD. 0.111111……7. 下列各数中,既是正数又是无理数的是()A. √9B. 2/3C. -√2D. 38. 下列各数中,负整数是()A. -2B. 0C. 1/2D. √49. 下列各数中,有理数乘以无理数的结果是()A. 有理数B. 无理数C. 0D. 无法确定10. 下列各数中,两个无理数相乘的结果是()A. 有理数B. 无理数C. 0D. 无法确定二、填空题(每题3分,共30分)11. 有理数0.3的小数点向右移动两位后,这个数变为______。
12. 有理数-0.5的相反数是______。
13. 有理数5的绝对值是______。
14. 有理数3/4与-1/2的和是______。
15. 有理数-3/4与-1/2的差是______。
16. 有理数2/3与-1/3的积是______。
17. 有理数-2与-3的商是______。
18. 有理数√9的平方根是______。
19. 有理数-√4的平方根是______。
20. 有理数0.001的小数点向左移动三位后,这个数变为______。
人教版七年级数学上册第二章测试题一、选择题(每题3分,共30分)1. 下列式子中,整式为()A. x + 1B. (1)/(x + 1)C. √(x + 1)D. (1)/(x^2)解析:整式为单项式和多项式的统称。
单项式是数或字母的乘积,多项式是几个单项式的和。
A选项x + 1是多项式,属于整式;B选项(1)/(x+1)分母中含有字母,是分式不是整式;C选项√(x + 1)是根式不是整式;D选项(1)/(x^2)分母中有字母,是分式不是整式。
所以答案是A。
2. 单项式-3π xy^2z^3的系数和次数分别是()A. - 3π,5B. -3,6C. -3π,6D. -3,5.解析:单项式的系数是指单项式中的数字因数,所以单项式-3π xy^2z^3的系数是-3π;单项式的次数是指单项式中所有字母的指数和,这里x的次数是1,y的次数是2,z的次数是3,所以次数为1+2 + 3=6。
所以答案是C。
3. 下面计算正确的是()A. 3a - 2a = 1B. 3a^2+2a = 5a^3C. 3a + 3b = 6abD. 2xy - 3yx=-xy解析:A选项,3a-2a=a,不是1;B选项,3a^2与2a不是同类项不能合并;C选项,3a与3b不是同类项不能合并;D选项,2xy和3yx是同类项,合并同类项时系数相减,字母和字母的指数不变,2xy-3yx=(2 - 3)xy=-xy。
所以答案是D。
4. 一个多项式与x^2-2x + 1的和是3x - 2,则这个多项式为()A. -x^2+5x - 3B. -x^2+x - 1C. x^2-5x + 3D. x^2-5x - 13解析:所求多项式等于和减去另一个多项式,即(3x - 2)-(x^2-2x + 1)=3x-2 -x^2+2x - 1=-x^2+(3x + 2x)-(2 + 1)=-x^2+5x - 3。
所以答案是A。
5. 化简-(a - b + c)的结果是()A. -a + b + cB. -a + b - cC. a - b + cD. a - b - c解析:去括号法则:括号前面是负号,去掉括号后括号里的各项都变号。
七年级上册数学第二章测试卷及答案人教版(二)1.(2020·吉林省初一期末)先化简,再求值:()()2222x y xy xy x y +--,其中1,1x y ==-【答案】3x 2y ,-3【解析】解:原式 = 2x 2y+2xy-2xy+x 2y = 3x 2y ,把x=1,y=-1代入原式 = 3x 2y = 3×12×(-1)= -32.(2020·广东省初一期末)先化简,再求值:已知6x 2﹣3(2x 2﹣4y )+2(x 2﹣y ),其中x =﹣1,y =12.【答案】2x 2+10y ;7【解析】解:原式=6x 2﹣6x 2+12y +2x 2﹣2y=2x 2+10y ,当x =﹣1,y =12时,原式=2×(﹣1)2+10×12=2+5=7.3.(2020·上饶市广信区第七中学初二月考)某同学在计算一个多项式乘以﹣3x 2时,因抄错运算符号,算成了加上﹣3x 2,得到的结果是x 2﹣4x+1,那么正确的计算结果是多少?【答案】﹣12x 4+12x 3﹣3x 2【解析】解:这个多项式是(x 2﹣4x+1)﹣(﹣3x 2)=4x 2﹣4x+1,(3分)正确的计算结果是:(4x 2﹣4x+1)•(﹣3x 2)=﹣12x 4+12x 3﹣3x 2.(3分)4.(2019·河北省初三三模),,A B C 均为多项式,小元在计算“A B -”时,误将符号抄错而计算成了“A B +”,得到结果是C ,其中221132A x x C x x =+-=+,,请正确计算AB -.【答案】2x --【解析】根据题意,得A B C +=,221(3)(1)2B C A x x x x ∴=-=+-+-=221312x x x x +--+=21212x x ++,∴2211(1)(21)22A B x x x x -=+--++=221112122x x x x +----=2x --.5.(2019·苏州市景范中学校初一期末)已知:223+2A B a ab -=,223A a ab =-+-.(1)求B ;(用含a 、b 的代数式表示)(2)比较A 与B 的大小.【答案】(1)-5a 2+2ab-6;(2)A >B .【解析】(1)∵2A-B=3a 2+2ab ,A=-a 2+2ab-3,∴B=2A-(3a 2+2ab )=2(-a 2+2ab-3)-(3a 2+2ab )=-2a 2+4ab-6-3a 2-2ab=-5a 2+2ab-6,(2)∵A=223a ab -+-,B=-5a 2+2ab-6,∴A-B=(223a ab -+-)-(-5a 2+2ab-6)=-a 2+2ab-3+5a 2-2ab+6=4a 2+3,∵无论a 取何值,a 2≥0,所以4a 2+3>0,∴A >B .6.(2017·江西省初一期末)已知代数式22223,31A x xyB x x =+-=++(1)求2A B -的值;(2)若2A B -的值与x 的取值无关,求y 的值.【答案】(1)265xy x --;(2)3【解析】(1)()222223231A B x xy x x -=+--++22223262x xy x x =+----265xy x =--;(2)由(1)得:()2265265A B xy x y x -=--=--,∵A-2B 的值与x 的取值无关,∴2y-6=0,∴y=3.7.(2020·南京市金陵中学河西分校初一期中)已知A=22x +3xy-2x-l ,B= -2x +xy-l .(1)求3A+6B ;(2)若3A+6B 的值与x 无关,求y 的值.【答案】(1) 15xy -6x -9 ;(2)25.解:(1)3A+6B=3(2x 2+3xy ﹣2x ﹣1)+6(﹣x 2+xy ﹣1)=6x 2+9xy ﹣6x ﹣3﹣6x 2+6xy ﹣6=15xy ﹣6x ﹣9;(2)原式=15xy ﹣6x ﹣9=(15y ﹣6)x ﹣9要使原式的值与x 无关,则15y ﹣6=0,解得:y=25.8.(2019·山西省初一期中)张老师给学生出了一道题:当20192020a b ==-,时,求: 3323323(763)(363103)a a b a b a a b a b a -+---++-的值.题目出完后,小明说:“老师给的条件20192020a b ==-,是多余的.”小红说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?【答案】因为代数式与a 、b 的取值无关,故小明说得对【解析】解:∵3323323(763)(363103)a ab a b a a b a b a -+---++-=3323323763363103a ab a b a a b a b a -+++--+=()()()3333322731066333a a a ab a b a b a b +-+-+-+=3故代数式与a 、b 的取值无关,即小明说得对.9.(2020·河北省初三零模)已知22A x mx =-+,221B nx x =+-,且化简2A B -的结果与x 无关.(1)求m 、n 的值;(2)求式子2222223(2)[2(2)5]m n mn m n mn m n mn ---+--的值.【答案】(1)1m =-,2n =;(2)-36.【解析】(1)∵22A x mx =-+,221B nx x =+-,∴2A B-=222(2)(21)x mx nx x -+-+-=2222421x mx nx x -+--+=2(2)(22)5n x m x -+--+∵2A B -的结果与x 无关,∴20n -=,220m --=解得,1m =-,2n =;(2)2222223(2)[2(2)5]m n mn m n mn m n mn ---+-- =2222223+6245m n mn m n mn m n mn ---++=29mn ∵1m =-,2n =∴原式=29(1)2⨯-⨯=-36.10.(2019·广西壮族自治区初一期中)有这样一道题:已知5x =,1y =-,求代数式()32332132233x y xy y x y xy ⎛⎫-+--- ⎪⎝⎭的值.小明认为:“已知5x =”这个条件是多余的,你认为小明的说法有道理吗?为什么?【答案】小明的说法有道理.【解析】解:小明的说法有道理.理由:原式=32332626x y xy y x y xy -+-+-=32y -∵代数式化简后与x 无关∴小明的说法有道理.11.(2020·河北省石家庄新世纪外国语学校初三二模)(1)计算217﹣323﹣513+(﹣317)(2)某同学做一道数学题:“两个多项式A 、B ,B =3x 2﹣2x ﹣6,试求A +B ”,这位同学把“A +B ”看成“A ﹣B ”,结果求出答案是﹣8x 2+7x +10,那么A +B 的正确答案是多少?【答案】(1)﹣10;(2)﹣2x 2+3x ﹣2.【解析】解:(1)217﹣323﹣513+(﹣317)=217﹣323﹣513﹣317=217﹣317﹣323﹣513=﹣1﹣9=﹣10.(2)∵A ﹣B =﹣8x 2+7x +10,B =3x 2﹣2x ﹣6,∴A =(﹣8x 2+7x +10)+(3x 2﹣2x ﹣6)=﹣5x 2+5x +4,∴A +B =(﹣5x 2+5x +4)+(3x 2﹣2x ﹣6)=﹣2x 2+3x ﹣2.12.(2018·天津初一期末)已知22A 3x 3y 5xy =+-,22B 2xy 3y 4x =-+.()1化简:2B A -;()2已知x 22a b --与y 1ab 3的同类项,求2B A -的值.【答案】(1)225x 9xy 9y +-(2)63或-13【解析】()1∵22A 3x 3y 5xy =+-,22B 2xy 3y 4x =-+,∴()()22222222222B A 22xy 3y 4x 3x 3y 5xy 4xy 6y 8x 3x 3y 5xy 5x 9xy 9y -=-+-+-=-+--+=+-;()2∵x 22a b --与y 1ab 3的同类项,∴x 21-=,y 2=,解得:x 3=或x 1=,y 2=,当x 3=,y 2=时,原式45543663=+-=;当x 1=,y 2=时,原式5183613=+-=-.考点2:与某项无关问题典例:(2020·河北省初三三模)已知22A x mx =-+,221B nx x =+-.(1)求2A B -,并将结果整理成关于x 的整式;(2)若2A B -的结果与x 无关,求m 、n 的值;(3)在(2)基础上,求()()22222232225m n mn m n mn m n mn ⎡⎤---+--⎣⎦的值.【答案】(1)2(2)(22)5n x m x -+--+;(2)1m =-,2n =;(3)-36.【解析】解:(1)∵22A x mx =-+,221B nx x =+-,∴()()2222221A B x mx nx x -=-+-+-2222421x mx nx x =-+--+2(2)(22)5n x m x =-+--+(2)∵2A B -的结果与x 无关,∴20n -=,220m --=解得,1m =-,2n =(3)原式2222222362459m n mn m n mn m n mn mn =-+--++=∵1m =-,2n =∴原式29(1)236=⨯-⨯=-.方法或规律点拨此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.巩固练习1.(2020·广东省绿翠现代实验学校初一期中)已知多项式2412A x my =+-与多项式221B nx y =-+.(1)当1m =,5n =时,计算A B +的值;(2)如果A 与2B 的差中不含x 和y ,求mn 的值.【答案】(1)9x 2-y-11;(2)-8【解析】解:(1)当1m =,5n =时,2412A x y =+-,2521B x y =-+,∴A+B=4x 2+y-12+5x 2-2y+1=9x 2-y-11;(2) A -2B =4x 2+my-12-2(nx 2-2y+1)=(4-2n) x 2+(m+4)y-14∵A 与2B 的差中不含x 和y∴4-2n=0,m+4=0,∴n=2,m=-4∴mn=-82.(2020·甘州中学初一月考)(1)化简求值:已知,求代数式的值.(2)若化简的结果与的取值无关,求的值.【答案】(1);(2).【解析】解:(1)由可得:,.原式,当,时,原式(2)原式,由结果与的取值无关,得到,解得:.3.(2020·河北省育华中学初三一模)已知2223,A x xy y B x xy=++=-()1若()2230x y ++-=,求2A B -的值()2若2-的值与y的值无关,求x的值A B【答案】(1)-9;(2)x=-1【解析】(1)A-2B=(2x2+xy+3y)-2(x2-xy)=2x2+xy+3y-2x2+2xy=3xy+3y.∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B的值与y的值无关,即(3x+3)y与y的值无关,∴3x+3=0.解得x=-1.4.(2019·广西壮族自治区初一期中)课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3)写完后,让王红同学顺便给出一组a,b的值,老师自己说答案,当王红说完:“a=65,b=-2 005”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?【答案】相信,理由见解析.【解析】相信,理由如下:(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3)=7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+3=(7a3+3a3-10a3)+(-6a3b+6a3b)+(3a2b-3a2b)+3=3,则不管a,b取何值,整式的值都为3.考点3:整式运算的应用典例:(2020·珠海市斗门区实验中学初一期中)今年秋季,长白山土特产喜获丰收,某土特产公司组织10辆汽车装运甲、乙、丙三种土特产去外地销售,按计划10辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.设装运甲种土特产的汽车有x辆,装运乙种土特产的汽车有y 辆,根据下表提供的信息,解答以下问题.(1)装运丙种土特产的车辆数为(用含x 、y 的式子表示);(2)用含x 、y 的式子表示这10辆汽车共装运土特产的吨数;(3)求销售完装运的这批土特产后所获得的总利润(用含x 、y 的式子表示).【答案】(1)装运丙种土特产的车辆数为10-x-y ;(2)这10辆汽车共装运土特产的吨数为60-2x-y ;(3)销售完装运的这批土特产后所获得的总利润为90000-4200x-4000y .【解析】(1)由题意得,装运丙种土特产的车辆数为:10−x −y (辆)答:装运丙种土特产的车辆数为(10−x −y );(2)根据题意得:4x+5y+6(10-x-y)=4x+5y+60-6x-6y=60-2x-y答:这10辆汽车共装运土特产的数量为(60-2x-y )吨;(3)根据题意得:()12004100051500610x y x y ⨯+⨯+⨯--=4800x+5000y+90000-9000x-9000y=90000-4200x-4000y .答:销售完装运的这批土特产后所获得的总利润为(90000-4200x-4000y )元.方法或规律点拨本题主要考查了列代数式,正确理解各种数量关系之间的运算关系是列代数式的关键所在.巩固练习1.(2019·广西壮族自治区初一期末)某商店在甲批发市场以每箱x 元的价格进了30箱海鸭蛋,又在乙批发市场以每箱y 元(x >y )的价格进了同样的50箱海鸭蛋,如果商家以每箱2x y + 元的价格卖出这些海鸭蛋,卖完后,这家商店( )A .盈利了B .亏损了C .不赢不亏D .盈亏不能确定【答案】A【解析】购买海鸭蛋的进价为:30x+50y卖完海鸭蛋的收入为:8040402x y x y +=+∵40x+40y -(30x+50y)=10(x -y)>0∴收入>进价故选:A .2.(2019·霍林郭勒市第五中学初一期中)如图所示,某长方形广场的四角都有一块半径相同的14圆形的草地,已知圆形的半径为r 米,长方形的长为a 米,宽为b 米. (1)请列式表示广场空地的面积;(2)若长方形的长为300米,宽为200米,圆形的半径为10米,计算广场空地的面积(计算结果保留π).【答案】(1)ab -πr 2;(2)60 000-100π.【解析】(1)广场空地的面积(单位:平方米)为:ab -πr 2;(2)当a=300,b=200,r=10时,ab -πr 2=300×200-π×102=60 000-100π.所以广场空地的面积(单位:平方米)为:60 000-100π.3.(2019·河南省初一期中)自我国实施“限塑令”起,开始有偿使用环保购物袋,为了满足市场需求,某厂家生产A 、B 两种款式的布质环保购物袋,每天生产4500个,两种购物袋的成本和售价如下表,若设每天生产A 种购物袋x 个.(1)用含x 的整式表示每天的生产成本,并进行化简;(2)用含x 的整式表示每天获得的利润,并进行化简(利润=售价-成本);(3)当x =1500时,求每天的生产成本与每天获得的利润.【答案】(1)每天的生产成本为(-x +13 500)元;(2)每天获得的利润为()0.2x 2 250-+元.(3)每天的生产成本为12 000元;每天获得的利润为1 950元.【解析】解:(1)2x +3(4500-x )=-x +13500,即每天的生产成本为(-x +13500)元.(2)(2.3-2)x +(3.5-3)(4500-x )=-0.2x +2250,即每天获得的利润为(-0.2x +2250)元.(3)当x =1 500时,每天的生产成本:-x +13500=-1500+13 500=12000元;每天获得的利润:-0.2x +2250=-0.2×1500+2 250=1950(元).4.(2019·内蒙古自治区初一期末)如图所示,一块正方形纸板剪去四个相同的三角形后留下了阴影部分的图形.已知正方形的边长为a ,三角形的高为h .(1)用式子表示阴影部分的面积;(2)当a =2,h =12时,求阴影部分的面积.【答案】(1)2a 2ah -(2)2【解析】(1)阴影部分的面积为:221a 4ah a 2ah 2-⨯=-;(2)当1a 2h 2,==时,原式2a 2ah =-=22-12222⨯⨯=.5.(2020·黑龙江省初一期末)A 、B 两仓库分别有水泥15吨和35吨,C 、D 两工地分别需要水泥20吨和30吨.已知从A 、B 仓库到C 、D 工地的运价如表:到C 工地到D 工地A 仓库每吨15元每吨12元B 仓库每吨10元每吨9元(1)若从A 仓库运到C 工地的水泥为x 吨,则用含x 的代数式表示从A 仓库运到D 工地的水泥为 吨,从B 仓库将水泥运到D 工地的运输费用为 元;(2)求把全部水泥从A 、B 两仓库运到C 、D 两工地的总运输费(用含x 的代数式表示并化简);(3)如果从A 仓库运到C 工地的水泥为10吨时,那么总运输费为多少元?【答案】(1)15-x ;9x+180;(2)(2x+515)元;(3)535元.【解析】(1)从A 仓库运到D 工地的水泥为:(15-x )吨,从B 仓库将水泥运到D 工地的运输费用为:[35-(15-x )]×9=(9x+180)元;(2)总运输费:15x+12×(15-x )+10×(15-x )+[35-(15-x )]×9=(2x+510)元;(3)当x=10时,2x+510=530.答:总运费为530元.6.(2019·山西省初一期中)综合与探究阅读理解:数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.例如,两个有理数在数轴上对应的点之间的距离可以用较大数与较小数的差来表示.例如:在数轴上,有理数3与1对应的两点之间的距离为312-=;在数轴上,有理数3与-2对应的两点之间的距离为()325--=;在数轴上,有理数-3与-2对应的两点之间的距离为()()231---=.解决问题:如图所示,已知点A 表示的数为-3,点B 表示的数为-1,点C 表示的数为2.(1)点A 和点C 之间的距离为______.(2)若数轴上动点P 表示的数为x ,当1x >-时,点P 和点B 之间的距离可表示为______;当1x <-时,点P 和点B 之间的距离可表示为______.(3)若数轴上动点P 表示的数为x ,点P 在点A 和点C 之间,点P 和点A 之间的距离表示为PA ,点P 和点C 之间的距离表示为PC ,求23PA PC +(用含x 的代数式表示并进行化简)(4)若数轴上动点P 表示的数为-2,将点P 向右移动19个单位长度,再向左移动23个单位长度终点为Q ,那么P ,Q 两点之间的距离是______.【答案】(1)5;(2)1x + ,1x --;(3)12-x ;(4)4【解析】解:(1)2-(-3)=5;(2)x-(-1)=1x + ;1x --;(3)∵PA=x-(-3)=x+3,PC=2-x ,∴()()232332PA PC x x +=++-2663x x=++-12x =-;(4)∵-2+19-23=-6,∴P ,Q 两点之间的距离是-2-(-6)=4.7.(2020·珠海市斗门区实验中学初一期中)如图,在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、b 满足|a+2|+(c ﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数 表示的点重合;(3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB= ,AC= ,BC= .(用含t 的代数式表示)(4)请问:3BC ﹣2AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.【答案】(1)-2, 1,c=7;(2)4;(3)3t+3, 5t+9, 2t+6;(4)不变,3BC ﹣2AB=12.【解析】(1)∵|a +2|+(c −7)2=0,∴a +2=0,c −7=0,解得a =−2,c =7,∵b 是最小的正整数,∴b =1;故答案为:−2;1;7.(2)(7+2)÷2=4.5,对称点为7−4.5=2.5,2.5+(2.5−1)=4;故答案为:4.(3)依题意可得AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3;5t+9;2t+6.(4)不变.3BC−2AB=3(2t+6)−2(3t+3)=12.8.(2020·四川省初一期中)小明家住房户型呈长方形,平面图如下(单位:米).现准备铺设整个长方形地面,其中三间卧室铺设木地板,其它区域铺设地砖.(房间内隔墙宽度忽略不计)(1)求a的值;(2)请用含x的代数式分别表示铺设地面需要木地板和地砖各多少平方米;(3)按市场价格,木地板单价为300元/平方米,地砖单价为100元/平方米.装修公司有A,B两种活动方案,如表:已知卧室2的面积为21平方米,则小方家应选择哪种活动,使铺设地面总费用(含材料费及安装费)更低?【答案】(1)3;(2)木地板:75﹣7x,地砖:7x+53;(3)B种活动方案【解析】解:(1)根据题意,可得a+5=4+4,得a=3;(2)铺设地面需要木地板:4×2x+a[10+6﹣(2x﹣1)﹣x﹣2x]+6×4=8x+3(17﹣5x)+24=75﹣7x,铺设地面需要地砖:16×8﹣(75﹣7x)=128﹣75+7x=7x+53;(3)∵卧室2的面积为21平方米,∴3[10+6﹣(2x﹣1)﹣x﹣2x]=21,∴3(17﹣5x)=21,∴x=2,∴铺设地面需要木地板:75﹣7x=75﹣7×2=61,铺设地面需要地砖:7x+53=7×2+53=67,A种活动方案所需的费用:61×300×0.8+67×100×0.85+2000=22335(元),B种活动方案所需的费用:61×300×0.9+67×100×0.85=22165(元),22335>22165,所以小方家应选择B种活动方案,使铺设地面总费用(含材料费及安装费)更低.考点4:数字规律探究典例:(2020·河北省初三一模)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣3,﹣2,﹣1,0,且任意相邻四个台阶上数的和都相等.(1)求第五个台阶上的数x是多少?(2)求前21个台阶上的数的和是多少?(3)发现:数的排列有一定的规律,第n个﹣2出现在第 个台阶上;(4)拓展:如果倩倩小同学一步只能上1个或者2个台阶,那么她上第一个台阶的方法有1种:1=1,上第二个台阶的方法有2种:1+1=2或2=2,上第三个台阶的方祛有3种:1+1+1=3、1+2=3或2+1=3,…,她上第五个台阶的方法可以有 种.【答案】(1)第五个台阶上的数x是﹣3(2)-33(3)(4n﹣2)(4)8【解析】(1)由题意得:﹣3﹣2﹣1+0=﹣2﹣1+0+x,x=﹣3,答:第五个台阶上的数x是﹣3;(2)由题意知:台阶上的数字是每4个一循环,﹣3﹣2﹣1+0=﹣6,∵21÷4=5…1,∴5×(﹣6)+(﹣3)=﹣33,答:前21个台阶上的数的和是﹣33;(3)第一个﹣2在第2个台阶上,第二个﹣2在第6个台阶上,第三个﹣2出现在第10个台阶上;…第n个﹣2出现在第(4n﹣2)个台阶上;故答案为(4n﹣2);(4)上第五个台阶的方法:1+1+1+1+1=5,1种,1+1+1+2=5,1+2+2=5,1+2+1+1=5,1+1+2+1=5,4种,2+2+1=5,2+1+2=5,2+1+1+1=5,3种,∴1+4+3=8种,答:她上第五个台阶的方法可以有8种.故答案为8.方法或规律点拨本题考查数字的变化类,解答本题的关键是明确题目中数字的变化特点,求出相应的结果.巩固练习1.(2020·绵竹市孝德中学初一期中)已知一个三位数:100a+10b+c,将它的百位数字与个位数字交换后得到一个新的三位数:100c+10b+a,试求这两个三位数的差,并求当a=5,c=7时,差的值是多少?【答案】差为99a-99c或99c-99a,差值分别为-198和198【解析】解:由题意可得:①100a+10b+c-(100c+10b+a)=99a-99c,将a=5,c=7代入,原式=99×(-2)=-198;②100c+10b+a-(100a+10b+c)=99c-99a,将a=5,c=7代入,原式=99×2=198;2.(2019·湖南省初一期中)定义:若2a b +=,则称a 与b 是关于1的平衡数,例如,462-+=,则4-与6是关于1的平衡数(1)3与 是关于1的平衡数,5x -与 (用含的式子表示)是关于1的平衡数(2)若2223()4a x x x =-++,223(4)2b x x x x ⎡⎤=--+-⎣⎦,判断a 与b 是否是关于1的平衡数,并说明理由.【答案】(1)-1,x-3;(2)a 与b 不是关于1的平衡数,理由见详解【解析】解:(1)∵3(1)2,5(3)2x x +-=-+-=∴3与-1是关于1的平衡数,5x -与x-3是关于1的平衡数;(2)a 与b 不是关于1的平衡数,理由如下:∵22223()434a x x x x x =-++=--+,2223(4)232b x x x x x x ⎡⎤=--+-=++⎣⎦∴2234326a b x x x x +=--++++=∴ a 与b 不是关于1的平衡数.3.(2020·河北省初三二模)把正整数1,2,3,4, 排成如下的一个数表.(1)2020在第_____行,第______列;(2)第n 行第3列的数是_______(用含“n ”的代数式表示)(3)嘉嘉和淇淇玩数学游戏,嘉嘉对淇淇说:“你从数表中挑一个数x ,按如图所示的程序计算,只要你告诉我所得的数在第几行,我就知道你挑的数在第几行.”你认为嘉嘉说得有道理吗?计算说明理由.【答案】(1)253,4;(2)85n -;(3)嘉嘉说得有道理,见解析【解析】(1)由图中可以得出规律,每一行共有8个数,每行最后的数是8的倍数,∵2020÷8=252……4,∴2020在第253行,第4列;(2)第n 行第3列的数是:8(n −1)+3=8n −5;(3)根据计算程序,可得:y =[]5(10)1058x x +-÷=+,所以当知道数y 在第几行时,则x 必在它的上一行,所以嘉嘉说得有道理.4.(2020·云南省初三学业考试)符号“f ”表示一种运算,它对一些数的运算如下:2(1)11f =+,2(2)12f =+,2(3)13f =+,2(4)14f =+, .(1)利用以上运算的规律写出()f n = ;(n 为正整数)(2)计算:(1)(2)(3)(100)f f f f 的值.【答案】(1)1+2n;(2)5151.【解析】解:(1)∵f (1)=1+21,f (2)=1+22,f (3)=1+23,f (4)=1+24…∴f (n )=1+2n,故答案为:1+2n ;(2)f (1)•f (2)•f (3)•…•f (100)=(1+21)(1+22)(1+23)(1+24)...(1+2100)=31×42×53×64× (102100)10110212⨯⨯=51515.(2020·河北省初三学业考试)观察下列等式,探究发现规律,并解决问题,①2113323-=⨯;②3323323-=⨯;③4333323-=⨯;(1)直接写出第④个等式: ;(2)猜想第n 个等式(用含字母n 的式子表示),并说明这个等式的正确性;(3)利用发现的规律,求123103333++++ 的值.(参考数据:113177147=)【答案】(1)35﹣34=2×34;(2)猜想:第n 个等式为:3n +1﹣3n =2×3n .理由见解析;(3)88572【解析】(1)①2113323-=⨯;②3323323-=⨯;③4333323-=⨯;∴第④个等式:35-34=2×34;故答案为:35-34=2×34;(2)猜想:第n 个等式为:3n +1﹣3n =2×3n .理由如下:∵3n +1﹣3n =3×3n ﹣3n =(3﹣1)×3n =2×3n ,∴3n +1﹣3n =2×3n ;(3)根据发现的规律,有:311﹣310=2×310,∴(32﹣31)+(33﹣32)+(34﹣33)+…+(311﹣310)=2(31+32+33+…+310),∴311﹣31=2(31+32+33+…+310),即31+32+33+ (310)12(311﹣3).∵311=177147,∴31+32+33+…+310=12(177147﹣3)=88572.6.(2020·河北省初三二模)魔术师说将你想到的数进行以下四步操作,我就可以猜到你心里想的数.第一步:心中想一个数,求其平方;第二步:想比这个数小2的数,求其平方;第三步:求其平方的差值;第四步:平方的差值除以4再加1.将结果告诉我,我就能猜中你心里想的数.(1)若你想的数是5,求出你告诉魔术师的结果是多少.(2)聪明的同学们,你觉得魔术师的步骤一定能猜中你心中的数吗?请用代数式计算证明你的结论.解答:魔术师 猜中你心中的数(填“能”或“否”);证明:设心中想的数为n (n 为任意实数)【答案】(1)5;(2)能,证明见解析.【解析】(1)()2255225916--=-=,16415÷+=,告诉魔术师的数是5.故答案为:5(2)能()222222(2)444444n n n n n n n n n --=--+=-+-=-,()4441n n -÷=-,()11n n -+=,∴可以猜中.故答案为:能,证明见解析7.(2020·河北省初三三模)如图,从左向右依次摆放序号分别为1,2,3,…,n 的小桶,其中任意相邻的四个小桶所放置的小球个数之和相等.尝试 求x +y 的值;应用 若n =22,则这些小桶内所放置的小球个数之和是多少?发现 用含k (k 为正整数)的代数式表示装有“4个球”的小桶序号.【答案】尝试:x +y =9;应用:99;发现:装有“4个球”的小桶序号为4k -1.【解析】尝试:根据题意可得6+3+4+5=4+5+x +y ,∴x +y =9;应用:∵6+3+4+5=3+4+5+x ,又∵x +y =9,∴x =6,y =3,∴小桶内所放置的小球数每四个一循环,∵22÷4=5⋯⋯2,∴(6+3+4+5)×5+9=99发现:装有“4个球”的小桶序号分别为3=4×1-1,7=4×2-1,11=4×3-1…,∴装有“4个球”的小桶序号为4k -1.8.(2020·云南省初三学业考试)观察下列等式的规律11111111111141112233445223344555+++=-+-+-+-=-=⨯⨯⨯⨯请用上述等式反映出的规律解决下列问题:(1)请直接写出111111223344520192020++++⋅⋅⋅+⨯⨯⨯⨯+的值为 .(2)化简:()11111122334451n n ++++⋅⋅⋅+⨯⨯⨯⨯⨯+【答案】(1)20192020;(2)1n n +【解析】1111111111223344520192020=-+-+-+-++- 211200=-20192020=故答案为:20192020.(2)()11111122334451n n ++++⋯+⨯⨯⨯⨯⨯+111111111122334451n n =-+-+-+-++-+ 111n =-+ 1n n =+9.(2020·石家庄市第二十八中学初三一模)小丽同学准备化简:(3x 2﹣6x ﹣8)﹣(x 2﹣2x □6),算式中“□”是“+,﹣,×,÷”中的某一种运算符号.(1)如果“□”是“×”,请你化简:(3x 2﹣6x ﹣8)﹣(x 2﹣2x ×6);(2)若x 2﹣2x ﹣3=0,求(3x 2﹣6x ﹣8)﹣(x 2﹣2x ﹣6)的值;(3)当x =1时,(3x 2﹣6x ﹣8)﹣(x 2﹣2x □6)的结果是﹣8,请你通过计算说明“□”所代表的运算符号.【答案】(1)2x2+6x﹣8;(2)4;(3)□处应为“﹣”.【解析】(1)(3x2﹣6x﹣8)﹣(x2﹣2x×6)=(3x2﹣6x﹣8)﹣(x2﹣12x)=3x2﹣6x﹣8﹣x2+12x=2x2+6x﹣8;(2)(3x2﹣6x﹣8)﹣(x2﹣2x﹣6)=3x2﹣6x﹣8﹣x2+2x+6=2x2﹣4x﹣2,∵x2﹣2x﹣3=0,∴x2﹣2x=3,∴2x2﹣4x﹣2=2(x2﹣2x)﹣2=6﹣2=4;(3)“□”所代表的运算符号是“﹣”,当x=1时,原式=(3﹣6﹣8)﹣(1﹣2□6),∴﹣11﹣(1+2□6)=﹣8,整理得:1+2□6=﹣3,∴2□6=﹣4∴即□处应为“﹣”.10.(2020·重庆中考真题)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数——“好数”.定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.【答案】(1)312是“好数”,675不是“好数”,理由见解析;(2)611,617,721,723,729,831,941.理由见解析.【解析】(1)∵3,1,2都不为0,且3+1=4,4能被2整除,∴312是“好数”.∵6,7,5都不为0,且6+7=13,13不能被5整除,∴675不是“好数”;(2)设十位数字为x,个位数字为y,则百位数字为(x+5).其中x,y都是正整数,且1≤x≤4,1≤y≤9.十位数字与个位数字的和为:2x+5.当x=1时,2x+5=7,此时y=1或7,“好数”有:611,617当x=2时,2x+5=9,此时y=1或3或9,“好数”有:721,723,729当x=3时,2x+5=11,此时y=1,“好数”有:831当x=4时,2x+5=13,此时y=1,“好数”有:941所以百位数字比十位数字大5的所有“好数”的个数是7.考点5:图形规律探究典例:(2020·山东省初三二模)(问题提出):有同样大小正方形256个,拼成如图1所示⨯的一个大的正方形.请问如果用一条直线穿过这个大正方形的话,最多可以穿过的1616多少个小正方形?(问题探究):我们先考虑以下简单的情况:一条直线穿越一个正方形的情况.(如图2)从图中我们可以看出,当一条直线穿过一个小正方形时,这条直线最多与正方形上、下、左、右四条边中的两个边相交,所以当一条直线穿过一个小正方形时,这条直线会与其中某两条边产生两个交点,并且以两个交点为顶点的线段会全部落在小正方形内.这就启发我们:为了求出直线l最多穿过多少个小正方形,我们可以转而去考虑当直线l穿越由小正方形拼成的大正方形时最多会产生多少个交点.然后由交点数去确定有多少根小线段,进而通过线段的根数确定下正方形的个数.⨯正方形的情况(如图3):再让我们来考虑33⨯的正方为了让直线穿越更多的小正方形,我们不妨假设直线l右上方至左下方穿过一个33⨯正方形的情况:从上下来看,这条直线由下至上形,我们从两个方向来分析直线l穿过33最多可穿过上下平行的两条线段;从左右来看,这条直线最多可穿过左右平行的四条线段;⨯的大正方形中的六条线段,从而直线l上会产生6个交点,这6这样直线l最多可穿过33个交点之间的5条线段,每条会落在一个不同的正方形内,因此直线l最多能经过5个小正方形.(问题解决):⨯的一个大的正方形.如果用一(1)有同样大小的小正方形16个,拼成如图4所示的44条直线穿过这个大正方形的话,最多可以穿过_________个小正方形.⨯的一个大的正方形.如果用一条直线穿过(2)有同样大小的小正方形256个,拼成1616这个大正方形的话,最多可以穿过___________个小正方形.⨯的大正方形的话,最多可以穿过___________个小正方形.(3)如果用一条直线穿过n n(问题拓展):⨯的大长方形的话(如图5),最多可以穿过个___________小(4)如果用一条直线穿过23正方形.⨯的大长方形的话(如图6),最多可以穿过___________个小(5)如果用一条直线穿过34正方形.⨯的大长方形的话,最多可以穿过________个小正方形.(6)如果用一条直线穿过m n(类比探究):由二维的平面我们可以联想到三维的立体空间,平面中的正方形中四条边可联想到正方体中的正方形的六个面,类比上面问题解决的方法解决如下问题:(7)如图7有同样大小的小正方体8个,拼成如图所示的222⨯⨯的一个大的正方体.如果用一条直线穿过这个大正方体的话,最多可以穿过___________个小正方体.(8)如果用一条直线穿过n n n ⨯⨯的大正方体的话,最多可以穿过_________个小正方体.【答案】(1)7;(2)31;(3)21n -;(4)4;(5)6 ;(6)1m n +-;(7)4;(8)32n -【解析】(1)再让我们来考虑4×4正方形的情况(如图4):为了让直线穿越更多的小正方形,我们不妨假设直线L 右上方至左下方穿过一个4×4的正方形,我们从两个方向来分析直线l 穿过4×4正方形的情况:从上下来看,这条直线由下至上最多可穿过上下平行的3条线段;从左右来看,这条直线最多可穿过左右平行的5条线段;这样直线L 最多可穿过4×4的大正方形中的8条线段,从而直线L 上会产生8个交点,这8个交点之间的7条线段,每条会落在一个不同的正方形内,因此直线L 最多能经过7个小正方形.故答案为7(2)我们发现直线穿越1×1正方形时最多经过1个正方形,直线穿越2×2正方形时最多经过3个正方形,直线穿越3×3正方形时最多经过5个正方形,直线穿越4×4正方形时最多经过7个正方形,…直线穿越n×n 正方形时最多经过2n-1个正方形.∴直线穿越10×10正方形时最多经过19个正方形.故答案为19.(3)由(2)可知,有2×16-1=31个正方形,故答案为31.(4)由(2)可知有2n-1个正方形.故答案为2n-1.(5)为了让直线穿越更多的小正方形,我们不妨假设直线L 右上方至左下方穿过一个2×3的正方形,我们从两个方向来分析直线l穿过2×3正方形的情况:从上下来看,这条直线由下至上最多可穿过上下平行的1条线段;从左右来看,这条直线最多可穿过左右平行的4条线段;这样直线L最多可穿过2×3的大正方形中的5条线段,从而直线L上会产生5个交点,这5个交点之间的4条线段,每条会落在一个不同的正方形内,因此直线L最多能经过4个小正方形,故答案为4.(6)为了让直线穿越更多的小正方形,我们不妨假设直线L右上方至左下方穿过一个3×4的正方形,我们从两个方向来分析直线l穿过3×4正方形的情况:从上下来看,这条直线由下至上最多可穿过上下平行的2条线段;从左右来看,这条直线最多可穿过左右平行的5条线段;这样直线L最多可穿过4×4的大正方形中的7条线段,从而直线L上会产生7个交点,这7个交点之间的6条线段,每条会落在一个不同的正方形内,因此直线L最多能经过6个小正方形.故答案为6.(7)为了让直线穿越更多的小正方形,我们不妨假设直线L右上方至左下方穿过一个m×n 的正方形,我们从两个方向来分析直线l穿过m×n正方形的情况:从上下来看,这条直线由下至上最多可穿过上下平行的(m-1)条线段;从左右来看,这条直线最多可穿过左右平行的(n+1)条线段;这样直线L最多可穿过4×4的大正方形中的(m+n)条线段,从而直线L上会产生(m+n)个交点,这m+n个交点之间的(m+n-1)条线段,每条会落在一个不同的正方形内,因此直线L最多能经过(m+n-1)个小正方形,故答案为(m+n-1).(8)用类似的方法可以得到:用一条直线穿过1×1×1正方体的话,最多可以穿过1个小正方体,用一条直线穿过,2×2×2正方体的话,最多可以穿过4个小正方体,用一条直线穿过,3×3×3正方体的话,最多可以穿过7个小正方体,用一条直线穿过4×4×4正方体的话,最多可以穿过10个小正方体,…用一条直线穿过,n×n×n正方体的话,最多可以穿过(3n-2)个小正方体.故答案为4.(9)由(8)可知有(3n-2)个正方形,故答案为(3n-2).方法或规律点拨本题考查线线相交得点、以及正方形、立方体的有关知识,是个探究题目,学会从简单到复杂的推理方法,找到规律即可解决问题,本题难度比较大,从穿过的线段入手,找到问题的突破口,这个方法值得在以后的学习中应用.巩固练习1.(2020·安徽省初三二模)(1)观察下列图形与等式的关系,并填空:第一个图形:;第二个图形:;第一个等式:9+4=13;第二个等式:13+8=21;第三个图形:;……;第三个等式: + = ;……;(2)根据以上图形与等式的关系,请你猜出第n个等式(用含有n的代数式表示),并证明.【答案】(1)17,12,29;(2)(4n+5)+4n=8n+5,证明见解析【解析】解:(1)观察图形的变化可知:第一个图形:9+4=13,即4×1+5+4=13=8×1+5,第二个图形:13+8=21,即4×2+5+4×2=21=8×2+5,第三个图形:17+12=29,即4×3+5+4×3=29=8×3+5,…发现规律:第n个等式为:(4n+5)+4n=8n+5;故答案为:17,12,29;(2)由(1)发现的规律:所以第n个等式为:(4n+5)+4n=8n+5;证明:左边=4n+5+4n=8n+5=右边.所以等式成立.2.(2020·河北省初三其他)如图,第①个多边形由正三角形“扩展”而来,边数记为。
七年级数学第二章测试题
班级 姓名 学号
一。
填空(除第一题以外,每空1分)
1、把下列各数填在相应的大括号中
8,43,,0,31-,6-,25.0-,2-
正整数集合{
} 整数集合{ }
负整数集合{ }
正分数集合{
} 2、如果向南走5000米记为是5000-米,那么向北走7000米记为是 ____________, 0米的意义是______________。
3、在数轴上与原点距离为4个单位的点是______________。
4、已知p 是数轴上的一点4-,把p 点向左移动3个单位后再向右移1个单位长度,那么p 点表示的数是______________。
5、3
11-的相反数是_______,倒数是_______,绝对值是______.
6、既不是正数也不是负数的数是_________ ,它的相反数是________.
7、最大的负整数是 _________ ,最小的正整数是_________ 。
8、在-274⎪⎭
⎫ ⎝⎛-中的底数是 ,指数是 . 9、()1-2003+()20041-= 。
10、有一次小明在做24点游戏时抽到的四张牌分别是3、4、1、7,他苦思不得其解,相信聪明的你一定能帮他解除困难,请写出一个成功的算式:______________=24.
11、已知()03122=-++y x ,则3
3y x +=__________.
二、选择题 (共20分)
1、在2
11-,2.1,2-,0 ,()2--中,负数的个数有( )
A.2个
B.3个
C.4个
D.5个
2、一个数加上12-等于5-,则这个数是( )
A .17 B.7 C.17- D.7-
3、2-的相反数是( )
A .2- B.2 21 D.2
1 4、比较4.2-, 5.0-, ()2-- ,3-的大小,下列正确的( )。
A .3- >4.2- > ()2--> 5.0- B.()2-- > 3->4.2-> 5.0-
C.()2-- > 5,0- > 4.2-> 3-
D. 3-> ()2-->4.2-> 5.0-
5、乘积为1-的两个数叫做互为负倒数,则2-的负倒数是( )
A.2-
B.2
1- C.21 D.2 6、一个有理数的相反数和它本身的绝对值的差是以下情形中的( )
A . 可能是正数 B. 必为负数 C. 必为非正数 D. 必为0
7、,162=a 则a 是( )
A.4或4-
B.4-
C.4
D.8或8-
8、ab<0,下列各式成立的是( )
=b <b<0 <a<b <0<b
9、一个数的绝对值是3,则这个数可以是( )
A.3
B.3-
C.3或者3-
D.
3
1 10、()34--等于( ) A .12- B. 1
2 C.64- D.64
三、观察下列算式:23451=+⨯ ,24462=+⨯,25473=+⨯,26474=+⨯,请你在观察规律之后并用你得到的规律填空:250___________=+⨯(本题5分)
四、计算(写过程,共40分)
1、()26++()14-+()16-+()8+
2、()3.5-+()2.3-()5.2--()8.4+-
3、()8-)02.0()25(-⨯-⨯
4、 ⎪⎭⎫ ⎝
⎛-+-127659521()36-⨯
5、 ()1-⎪⎭
⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛
-÷3114310
6、8+()23-()2-⨯
7、8
1)4(2033--÷-
8、100()()222---÷⎪⎭
⎫ ⎝⎛-÷32
五、m =2,n =3,求m+n (本题5分)
六、流花河的警戒水位是4.73米,下表记录的是今年某一周内的水位变化情况,取河流的警戒水位作为0点,并且上周末(星期六)的水位达到警戒水位,正号表示水位比前一天上升,负号表示水位比前一天下降。
(本题10分) ⑴本周哪一天河流的水位
最高?哪一天河流的水位
最低?它们位于警戒水位
之上还是之下?
⑵与上周末相比,本周末河流的水位是上升了还是下降了?
⑶以警戒水位作为零点,用折线统计图表示本周的水位情况。
水位变化(米)
日一二三四五六星期。