页岩气体积压裂缝网模型分析及应用
- 格式:docx
- 大小:27.47 KB
- 文档页数:2
新型页岩气井压裂技术及其应用研究摘要:本文在总结分析页岩气储层的岩性、物性、天然裂缝与力学性质特征的基础上,依据复杂裂缝形成机理,提出了压裂形成复杂缝网、增大改造体积的基本地层条件的观点,归纳了直井和水平井体积压裂改造工艺技术方法等。
关键词:页岩气体积压裂缝网剪切裂缝水压裂监测建议页岩气因其储层渗透率超低、气体赋存状态多样等特点,决定了采用常规的压裂形成单一裂缝的增产改造技术已不能适应页岩气藏的改造,必须探索研究新型的压裂改造技术,方能使其获得经济有效地开发。
一、页岩气基本特征页岩气开采深度普遍小于3000m ,其储层典型特征为:①石英含量大于28%,一般为40%~50%,遭受破坏时会产生复杂的缝网;②页岩气储层致密,孔隙度为4.22%~6.51%,基质渗透率在1.0mD 以下;③页岩微裂缝发育,页岩气在裂缝网络系统不发育情况下,很难成为有效储层;④页岩气有机质丰度高,厚度大,有机碳含量一般大于2%,成熟度为1.4%~3.0%,干酪根以Ⅰ~Ⅱ型为主,有效厚度一般在15~91m ;⑤页岩脆性系数高,容易形成剪切裂缝,如Barnett 页岩杨氏模量为34000~44 000mPa ,泊松比为0.2~0.3 ;⑥页岩气主要有吸附态、溶解态和游离态 3 种赋存状态,其赋存状态要求有大的改造体积,这样才会获得高产。
二、页岩气井体积压裂技术体积压裂是指在水力压裂过程中,使天然裂缝不断扩张和脆性岩石产生剪切滑移,形成天然裂缝与人工裂缝相互交错的裂缝网络,从而增加改造体积,提高初始产量和最终采收率。
页岩气储层渗透率超低,厚度大,天然裂缝发育,气体主要以吸附态吸附在有机质表面,常规改造形成单一裂缝很难获得好的增产效果。
数值模拟研究表明,页岩气储层改造的体积(SRV ,106 ft3 ;1 ft3 =0.028 317m3 )越大,压后增产效果越好。
但要实现体积改造,除地层要具备体积压裂的基本条件外,压裂改造工艺方法也十分关键。
胜利油田页岩油气藏体积压裂工艺的应用及探索 —以樊页平1井的开发为例发布时间:2021-09-13T01:49:46.667Z 来源:《工程管理前沿》2021年第13期作者:刘军杰1,刘长1,王勇1,万明慧2,马琳1,田杰1 [导读] 我国页岩油气资源丰富,勘探开发潜力大,近年来胜利油田响应国家号召,将非常规页岩油气资源的勘探与开发提上议程。
刘军杰1,刘长1,王勇1,万明慧2,马琳1,田杰11.胜利油田分公司石油工程监督中心,山东东营;2.钻井工艺研究院,山东东营摘要:我国页岩油气资源丰富,勘探开发潜力大,近年来胜利油田响应国家号召,将非常规页岩油气资源的勘探与开发提上议程。
通过借鉴美国页岩油革命和四川页岩气开发的成功经验,优选胜利油区甜点稳定连续,岩性物性、含油性强的页岩油区块开展水平井分段压裂先导试验,现场采用可溶桥塞射孔联作工艺、限流射孔理论、低成本现场混配压裂液体系和组合粒径支撑剂技术进行压裂改造。
同时针对该区块施工压力高、加砂困难的特点,不断探索改进压裂施工工艺,总结砂堵处理经验,针对性开展适合本区快的压裂改造方案。
经过体积压裂改造,樊页平1井8mm油嘴放喷制度下日产油202m3/d,日产气1.6×104m3/d,实现胜利页岩油Ⅰ、Ⅱ、Ⅲ类储层的有效突破,对胜利油田的储量接替和建设百年胜利而言具有重要意义[1-3]。
关键字:胜利油田页岩油体积压裂水平井甜点1资源与地质特征1 地质特征樊页平1井构造上位于济阳坳陷东营凹陷博兴洼陷樊119鼻状构造带北部,本区沙四上纯上亚段页岩油储层比较发育,导眼井与邻井小层对比显示,该区甜点连续稳定,中高程度演化,属于碳酸盐岩夹层型页岩油藏。
2 油气藏条件通过对测井曲线进行分析发现,该井存在灰岩含量高,孔渗条件差,泥质含量偏高的特点,脆性指数在0.35-0.45之间。
通过对不同岩相的烃源岩、含油性、储集性和脆性特征做进一步分析,将樊页平1井划分成72个油气层,其中Ⅰ类层195m/8层,Ⅱ类层722m/27层,Ⅲ类层1183m/37层。
作者简介:张士诚,1963年生,教授,博士生导师,本刊第七届编委会委员;长期从事采油工程理论与技术、油气渗流理论与应用的教学与研究工作。
地址:(102249)北京市昌平区府学路18号。
电话:(010)89733047。
E‐mail:zhangsc@cup.edu.cn页岩气压裂数值模型分析张士诚1 牟松茹1 崔勇21.中国石油大学(北京)石油工程教育部重点实验室 2.中国石油海外勘探开发公司 张士诚等.页岩气压裂数值模型分析.天然气工业,2011,31(12):81‐84. 摘 要 水力压裂和水平井开采是页岩气开发的主要技术,在我国尚处在工业试验阶段,存在很多技术瓶颈。
在总结分析了页岩气压裂的特点基础上,探讨了网状裂缝形成的主控因素及裂缝扩展模型、产能预测模型的类型以及优缺点。
结果认为,特殊的赋存生产机理、复杂的裂缝形态和多尺度的渗流模式是页岩气压裂的主要特点,其目的是形成网状裂缝,扩大储层改造体积;网状裂缝的形成主要受天然裂缝与人工裂缝的夹角、水平主应力差和岩石的脆性等因素的控制。
页岩气压裂产能预测模型面临的主要问题是裂缝形态的模拟和气体流态的描述,主要有非常规裂缝模型、离散裂缝模型和双重介质模型等,这些模型和方法在一定程度上表征了页岩气压裂裂缝形态和渗流特点,但没有考虑不规则的裂缝形态等。
关键词 页岩气 开发 压裂(岩石) 裂缝扩展模型 产能预测模型 渗流 特点 DOI:10.3787/j.issn.1000‐0976.2011.12.0141 页岩气藏的特点1.1 特殊的赋存生产机理 页岩既是烃源岩又是储集层,就近赋存是页岩气成藏的特点。
页岩气的赋存方式多样,游离方式、吸附状态和溶解状态并存。
总体上主要以游离气和吸附气为主,吸附状态天然气的含量变化介于20%~85%。
目前认为页岩气的产出分为3个阶段:①在压降的作用下,基质系统中的页岩气在基质表面进行解吸附;②在浓度差的作用下,页岩气由基质系统向裂缝系统进行扩散;③在流动势的作用下,页岩气通过裂缝系统流向生产井筒。
根据相关统计,发现我国低渗低压油气藏占量非常多,实现对其的开采和利用,能够有效缓解我国目前石油资源的紧张局面,该类石油开发存在一定难度,可以在开发当中积极应用体积压裂技术,全面提高石油开发效率。
一、体积压裂技术概述常规压裂增产理念主要是在压裂时抑制次生裂缝的扩展,主要形成一条主裂缝,产能源自裂缝的高渗流能力;体积压裂与常规压裂改造理念相反,压裂时通过各种工艺形成更多的裂缝,沟通更大的渗流区域,充分发挥主裂缝和天然裂缝增产优势。
当水力压裂时人工裂缝中产生的裂缝延伸净压力大于储层本身存在的最大最小应力差值,以及储层天然裂缝或者胶结面张开需要的临界压力时,人工裂缝就有极大机会在储层中出现多个分支缝,人工主裂缝和分支缝相互穿过,扭曲,交叉,形成初步的缝网结构。
这种结构类似与多裂缝形态,但比多裂缝稍显复杂,缝网仍然以主裂缝为主体,分支缝分布在主裂缝周围。
当主裂缝延伸一定长度以后,其缝内净压力小于应力差时,其分支裂缝会闭合,或者张开一些与主裂缝成一定角度的分支缝,裂缝形态会回归到主裂缝形态。
形成的这种主裂缝与分支缝不断交错分布的裂缝形态就叫做缝网,实现这种裂缝形态的压裂技术被称作体积压裂技术。
二、体积压裂技术在石油开发中的应用1.裂缝封堵压裂技术裂缝封堵技术包括缝内封堵以及缝口封堵。
缝内封堵与“端部脱砂”压裂技术核心机理类似,均是通过一定的裂缝封堵来增加裂缝中的净压力。
缝内封堵相对更加注重微观,天然裂缝发育储层,压裂时一般会开启多条裂缝并同时延伸,裂缝之间相互作用,裂缝狭窄,不利于加砂压裂提高砂比,对支撑剂颗粒大小要求较高,同时还增加了液体的滤失作用。
其一般采用粉砂或者缝内暂堵剂对主裂缝进行封堵,缝内净压力逐渐升高,达到一定程度便可改变原有裂缝走向,产生分支裂缝。
采用缝内暂堵进行缝网压裂时,缝网系统由人工主裂缝与天然裂缝或弱面形成的次生网络组成。
缝口封堵,常常也叫缝口暂堵压裂,其技术伴随着多簇射孔压裂而发展,通过北美页岩气生产测井分析,大约50%的射孔簇无效,29%的射孔簇低效,而21%的射孔簇贡献了70%的产量。
体积压裂技术的研究与应用摘要:对于低渗油藏,由于此类型的储油层密度高,渗透率较低,所以就不能使用常规的压裂形成单一裂缝的增产改造措施,因为此措施不能达到商业的开采价值,因而为了提升其商业开采价值就要探索新的压裂改造技术。
在国内提出了体积压裂改造超低渗油藏的设想,其根据是参考国外的页岩气体积压裂技术。
国内通过体积压裂的方法在靖安油田初次实验及应用。
经实践后得出,虽然低渗油藏储层致密、渗透率低,但是在经体积压裂后,其形成了复杂缝网和增大改造体积,这样不仅在初期油量产出大,而且给与后期稳产极大支持。
关键词:低渗致密增产改造体积压裂缝网一、体积压裂作用机理“体积压裂”顾名思义,就是指将可以进行渗流的有效储集体通过压裂的方法“打碎”,这样就形成了一个网络裂缝,通过这样的压裂方式能使储层基质与裂缝壁面的接触面积达到最大化,使得油气可以从任何方向渗流到裂缝的距离最短化,将储层整体渗透率提高到一定的程度,从而使储层可以实现长、宽、高三维立体方向的改造。
在工程的施工过程中,通过(1)低猫液体(2)大液量(3)高排量这三项,加以转向技术及材料的应用的辅助,利用直井分层压裂技术和水平井分段改造技术等手段,可以将裂缝网络系统形成规模最大化,储层动用率就会相应的提高,从而提高非常规油气藏采收率。
二、体积压裂的技术特征2.1 体积压裂改造的条件(1)地层有天然的裂缝且发育良好;(2)岩石中硅质成分含量高,容易在高压下产生裂缝。
岩石在压裂过程中容易产生剪切力破坏,不是形成单一的裂缝,而是有利于形成复杂的网状裂缝,从而提高裂缝密度增加缝隙体积;(3)较小的敏感力度,适用于大型的滑溜水压裂。
较弱的水敏地层,有利于提高压裂液的用液规模,同时使用滑溜水压裂,滑溜水黏度低,可以进入天然裂缝中,迫使天然裂缝延展距离增加缝隙体积,扩大了改造体积。
2.2 体积压裂改造技术国内常用的体积压裂技术是滑溜水大型压裂技术。
体积压裂工艺有两个特征。
第一“两大”:大排量、大液量。
体积压裂的原理和应用一、引言体积压裂(Volume Fracturing)是一种常用于岩石裂缝间隙的强制增大和扩展的工程技术。
它通过将高压液体注入岩层,迫使裂缝张开和扩展,从而提高油气储集层的渗透性,促进油气的流动和采收。
体积压裂已经成为油田开发的重要手段之一,本文将介绍体积压裂的原理和应用。
二、体积压裂的原理体积压裂是基于岩石力学原理和流体动力学原理的工程技术。
它的工作原理可以概括为以下几个步骤:1. 创建裂缝体积压裂首先需要通过注入高压液体来创建裂缝。
在注入过程中,液体通过高压泵将岩层内的裂缝张开和扩展。
这种高压注入的作用类似于在地下岩石中施加巨大的压力,从而使岩石发生破裂和裂缝。
2. 砂类介质注入在裂缝形成后,需要将砂类介质注入其中。
通过注入砂类介质,可以防止裂缝在压力释放后闭合。
砂类介质具有较高的颗粒度和流动性,可以在裂缝中填充,增加渗透性,促进油气的流动。
3. 压力释放在创建裂缝和注入砂类介质后,需要逐渐释放压力。
当压力释放时,裂缝中的砂类介质会保持裂缝张开状态,从而形成一条可供油气流动的通道。
三、体积压裂的应用体积压裂广泛应用于油气田开发中,其主要应用包括:1. 增加油气产量体积压裂可以通过扩大油气储集层中的裂缝和通道,增加储集层与井筒之间的渗透性,提高油气的产量。
通过体积压裂,可以使原本无法开采的低渗透性储层具备经济开发的潜力。
2. 增加油气储量体积压裂可以改善储集层的渗透性,提高油气的开采效率。
在一些含气或含油岩层中,由于岩石的裂缝狭小,无法有效采收储量。
通过体积压裂,可以扩大裂缝,提高岩石的渗透性,从而增加油气储量。
3. 增加注水效果体积压裂不仅可以应用于增加油气产量,还可以应用于改善注水效果。
在一些含水层的油田中,为了提高采油效果,需要通过注水来增加储层的压力。
通过体积压裂,可以增加注水井与储集层之间的渗透性,提高注水效果。
4. 油气储层评价体积压裂可以用于油气储层的评价。
通过对岩石进行体积压裂实验,可以评估岩石的裂缝发育程度、渗透性和强度等参数,为油田的勘探和开发提供重要的依据。
页岩气体积压裂缝网模型分析及应用
摘要:页岩储层孔喉细小、渗透率低,水力压裂后形成主裂缝及诱导裂缝网络
加剧了页岩气流动的复杂性。
为了准确表征页岩气拟稳态渗流特征,提出了离散
裂缝耦合多重连续介质系统数学表征方法,并针对储层裂缝分布形态,利用商业
数值模拟器建立了考虑吸附/解吸的页岩气藏离散裂缝耦合多重连续介质数值模拟模型。
模型中采用局部网格加密的方法描述离散裂缝网络,基于建立的多重连续
介质系统数学方法表征压裂后形成的密集分布微小裂缝体系。
利用建立的模型,
系统分析了储层横向/纵向动用程度以及裂缝导流能力、裂缝半长、裂缝排布方式等裂缝参数对页岩气泄气面积和气井产能的影响。
关键词:页岩气;缝网压裂;连续介质模型;动用程度;数值模拟
1前言
页岩气储层渗透率极低,在成岩作用、多阶段构造演化、气体赋存状态及介
质尺度等方面都与常规油气藏存在较大差异,其既是烃源岩又是储集层,储层中
发育大量的微纳米孔隙和干酪根有机质,是典型的原地成藏。
近年来,随着长井
段水平井技术和分段压裂技术的发展,非常规油气资源的开发成为可能。
页岩气
储层压裂过程中容易产生裂缝网络系统,形成的多尺度天然裂缝-人工裂缝相互交
织会在储层中形成宏观优势流动区域,影响渗流场压力和流体组分的分布。
2多重连续介质基质-裂缝网格划分
目前,常采用Warron-Root双重介质模型描述基质-裂缝交互渗流机制,当本
文模型与双重介质模型网格剖分相同时二者描述的流体运移规律相同。
采用Matlab软件对笔者建立的离散裂缝耦合多重连续介质模型及Warron-Root双重介
质模型进行编程求解。
图1所示为当本文模型的网格剖分与Warron-Root双重介
质模型相同时生产井井底压力的变化规律。
图1本文模型和Warron-Root模型井底压力对比
图2不同形状因子对井底压力的影响
由图2可知,形状因子值越大,基质-裂缝窜流量就越大,表明从基质流出到
裂缝的渗流阻力越小。
在多重连续介质系统中,采用多层嵌套方法表征基质内流
体的流动规律。
进行计算分析时,将基质分成了6层。
取Km/Kf=0.00001,0.0001,0.001,0.01,0.1,研究不同岩石基质与裂缝渗透率比值下井底压力变化规律及多
重连续介质不同层的压力分布规律。
:基质与裂缝的渗透率比值较大时,井底压
力下降快,分析认为,基质渗透率与裂缝渗透率相近时流体交换流动阻力小;相反,如果基质与裂缝的渗透率比值较小,如Km/Kf=0.00001,则井底压力下降不
明显,说明流体从渗透率极低的基质中流出来较困难。
基质与裂缝的渗透率比值
较大时,流体在基质内部的流动阻力较小,流动速度较快,各层压裂达到拟稳态
的时间较短;反之,则流体的流动阻力较大,流动速度较慢,达到拟稳态流动的
时间较长。
3页岩气储层动用规律
在深入分析页岩气藏物性参数及流动特征的基础上,基于前文提出的离散裂
缝耦合多重连续介质模型建立了考虑页岩气吸附/解吸的多重孔隙介质压裂水平井复杂缝网数值模拟模型。
模拟研究单元取水平井的一侧,网格数为60×40×2,研
究工区尺寸1200m×800m×20m,采用多重连续介质模型对每个网格中流体的流动
规律进行表征,并以离散裂缝局部加密表征具有缝网系统复杂特征的人工主裂缝
及诱导大裂缝。
人工主裂缝垂直于水平井段,开启并沟通周围的天然裂缝形成诱导大裂缝,主裂缝和缝网均为天然气流通通道。
同时,将诱导次裂缝与主裂缝相互交织形成的裂缝网络所包含的区域称之为储层改造体积(stimulatedreservoirvolume,SRV);通过调整主、次缝的条数和缝间距来改变缝网的动用程度,采用扩展朗缪尔等温吸附方程表征页岩气在基质中的动态吸附和解吸过程。
模型参数:渗透率0.0001mD,孔隙度为2%,页岩气藏深度1400.00m,页岩气组分有CO2和CH4,地层温度为60℃,模拟气藏长度1200.00m,宽度800.00m,气藏厚度20.00m,扩散系数1.08×105m2/d,基质-裂缝耦合系数0.08,岩石密度2000kg/m3,临界体积0.098m3/kg·mol,气藏的初始压力10MPa,模拟时间15年。
4裂缝纵向动用程度对页岩气产量的影响
为了评价页岩气藏裂缝网络参数对产能的影响,提出压裂水平井裂缝纵向动用程度的概念,即缝网压裂所产生的沿垂直于水平井段方向上的有效泄流(气)体积占页岩气藏储层的比值。
可知,水平井裂缝纵向动用程度与水力压裂主裂缝的长度正相关,与裂缝网络中的次缝间距负相关。
运用数值模拟方法,研究了水平井裂缝纵向动用程度对页岩气产量及压力分布的影响。
保证水平井长度相同,主裂缝和裂缝网络的导流能力均为0.1D·cm,主缝半长均为100m,间距为80m,研究次缝间距分别为10,20和30m时的页岩气产量变化规律。
缝间距越小纵向动用程度越大。
储层改造区域内次裂缝沟通了更多的基质储层,提高了储层纵向动用程度、增大了接触面积,流体流动效率也随之提高,泄气面积大幅度增大。
5结束语
由于页岩气在基质/干酪根内部流动阻力较大,流体流动速度极慢,达到拟稳态流动的时间较长,因此在页岩气建模过程中应选择多重连续介质模型,准确描述页岩气的流动状态。
基于多重连续介质模型耦合页岩气渗流机理,考虑人工主裂缝与复杂裂缝网络特征,建立了数值模拟模型。
研究表明,页岩气开发中,当储层改造体积相同时,SRV范围内能够被沟通的裂缝是贡献产量的主力,因而最大限度地开启或沟通天然裂缝,增加裂缝网络与井筒及主裂缝之间的沟通是提高页岩气产量必备条件。
参考文献:
[1]陆程,刘雄,程敏华,李兵.页岩气体积压裂水平井产能影响因素研究[J].特种油气藏,2014,21(04):108-112+156.。