空间直角坐标系与点的坐标
- 格式:pptx
- 大小:772.61 KB
- 文档页数:14
空间直角坐标系、大地坐标系、平面坐标系、高斯平面直角坐标系本篇学习了空间直角坐标系、大地坐标系、平面坐标系、高斯平面直角坐标系。
这个个坐标系有时很容易弄混淆!(一)空间直角坐标系空间直角坐标系的坐标原点位于参考椭球的中心,Z轴指向参考椭球的北极,X轴指向起始子午面与赤道的交点,Y轴位于赤道面上切按右手系于X轴呈90度夹角,某点中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。
空间直角坐标系可用如下图所示:(二)大地坐标系大地坐标系是采用大地纬度、经度和大地高程来描述空间位置的。
纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高程是空间的点沿着参考椭球的法线方向到参考椭球面的距离。
地面点的高程和国家高程基准(1)绝对高程。
地面点沿垂线方向至大地水准面的距离称为绝对高程或称海拔。
过去我国采用青岛验潮站(tide gauge station)1950~1956年观测成果求得的黄海平均海水面作为高程的零点,称为“1956年黄海高程系”(Huanghai height system 1956水准原点高程为72.289m)。
后经复查,发现该高程系的验潮资料时间过短,准确性较差,改用青岛验潮站1950~1979年的观测资料重新推算,并命名为“1985年国家高程基准”(Chinese height datum 1985)。
国家水准原点(leveling origin高程为72.260m)设于青岛市观象山附近,作为我国高程测量的依据。
它的高程值是以“1985年国家高程基准”所确定的平均海水面为零点测算而得。
在使用原“1956年黄海高程系”的高程成果时,应注意将其换算为新的高程基准系统。
(2)相对高程。
地面点沿铅垂线方向至任意假定的水准面的距离称为该点的相对高程,亦称假定高程。
在图l—5中,地面点A和B的相对高程分别为H'A 和H'B 。
本篇学习了空间直角坐标系、大地坐标系、平面坐标系、高斯平面直角坐标系。
这个个坐标系有时很容易弄混淆!(一)空间直角坐标系空间直角坐标系的坐标原点位于参考椭球的中心,Z轴指向参考椭球的北极,X轴指向起始子午面与赤道的交点,Y轴位于赤道面上切按右手系于X轴呈90度夹角,某点中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。
空间直角坐标系可用如下图所示:(二)大地坐标系大地坐标系是采用大地纬度、经度和大地高程来描述空间位置的。
纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高程是空间的点沿着参考椭球的法线方向到参考椭球面的距离。
地面点的高程和国家高程基准(1)绝对高程。
地面点沿垂线方向至大地水准面的距离称为绝对高程或称海拔。
过去我国采用青岛验潮站(tide gauge station)1950~1956年观测成果求得的黄海平均海水面作为高程的零点,称为“1956年黄海高程系”(Huanghai height system 1956水准原点高程为72.289m)。
后经复查,发现该高程系的验潮资料时间过短,准确性较差,改用青岛验潮站1950~1979年的观测资料重新推算,并命名为“1985年国家高程基准”(Chinese height datum 1985)。
国家水准原点(leveling origin高程为72.260m)设于青岛市观象山附近,作为我国高程测量的依据。
它的高程值是以“1985年国家高程基准”所确定的平均海水面为零点测算而得。
在使用原“1956年黄海高程系”的高程成果时,应注意将其换算为新的高程基准系统。
(2)相对高程。
地面点沿铅垂线方向至任意假定的水准面的距离称为该点的相对高程,亦称假定高程。
在图l—5中,地面点A和B的相对高程分别为H'A 和H'B。
(3)高差。
地面上任意两点的高程(绝对高程或相对高程)之差称为高差。
空间直角坐标系中点的坐标1.空间中点的坐标:P (x ,y ,z ),确定方法:由P 作PP '⊥坐标平面xOy ,则P '点是平面xOy 上的点,其坐标为(x ,y ,O ),这样就确定了P 的横坐标x 和纵坐标y.若PP '与z 轴正半轴在平面xOy 同侧,则z=|PP '|;若PP '与z 轴正半轴在平面xOy 异侧,则z=-|PP '|,这样就确定了P点的竖坐标z.2.坐标平面上点的坐标:①xOy 平面上点的坐标:(x ,y ,0);xOz 平面上点的坐标:(x ,O ,z );yOz 平面上点的坐标:(0,y ,z );②x 轴上点的坐标:(x ,0,0);y 轴上点的坐标:(0,y ,0);z 轴上点的坐标:(0,0,z )3.空间直角坐标系中长方体各顶点的坐标:设长方体ABCD -A 'B 'C 'D '的长.宽.高分别为,将A 点放在坐标原点,AB 放在x 轴正半轴上,AD 放在y 轴正半轴上,如图:则A (0,0,0),B (a ,0,0),C (a ,b ,0),D (0,b ,0),A '(0,0,c ),B '(a ,0,c ),C '(a ,b ,c ),D '(0,b ,c ).例1 已知A (x ,2,3).B (5,4,7),且|AB |=6,求x 的值.解:Q |AB |=6,∴ (x - 5)× (x - 5) + (2 - 4) ×(2 - 4)2+ (3 - 7)×(3 - 7) = 36 ,即 (x - 5)2 = 16 ,解得x =1 或x =9.例3求点P (1,2,3)关于坐标平面xOy 的对称点的坐标.解:设点P 关于坐标平面xOy 的对称点为P ¢ ,连PP ¢ 交坐标平面xOy 于Q , 则PP ¢ ^ 坐标平面xOy ,且|PQ |=| P ¢ Q|,∴ P ¢ 在 x 轴.y 轴上的射影分别与 P 在 x 轴.y 轴上的射影重合, P ¢ 在 z 轴上的射影与 P 在 z 轴上的射影关于原点对称,∴ P ¢ 与P 的横坐标.纵坐标分别相同,竖坐标互为相反数,,,a b c∴点P(1,2,3)关于坐标平面xOy 的对称点的坐标为(1,2,3).。
一、空间直角坐标系定义以空间中两两__________且相交于一点O 的三条直线分别为x 轴、y 轴、z 轴,这时就说建立了空间直角坐标系Oxyz ,其中点O 叫做坐标__________,x 轴、y 轴、z 轴叫做__________.通过每两个坐标轴的平面叫做__________,分别称为xOy 平面、yOz 平面、__________平面.画法 在平面上画空间直角坐标系Oxyz 时,一般使∠xOy =__________,∠yOz =90°.图示说明本书建立的坐标系都是右手直角坐标系,即在空间直角坐标系中,让右手拇指指向__________轴的正方向,食指指向__________轴的正方向,如果中指指向__________轴的正方向,则称这个坐标系为右手直角坐标系.二、空间直角坐标系中点的坐标1.空间中的任意点与有序实数组(),,x y z 之间的关系如图所示,设点M 为空间直角坐标系中的一个定点,过点M 分别作垂直于x 轴、y 轴和z 轴的__________,依次交x 轴、y 轴和z 轴于点P 、Q 和R .设点P 、Q 和R 在x 轴,y 轴和z 轴上的坐标分别是x 、y 和z ,那么点M 就和有序实数组(x ,y ,z )是__________的关系,有序实数组__________叫做点M 在此空间直角坐标系中的坐标,记作__________,其中x 叫做点M 的__________,y 叫做点M 的__________,z 叫做点M 的__________.2.空间直角坐标系中特殊位置点的坐标点的位置 点的坐标形式 原点 (0,0,0) x 轴上 (a ,0,0) y 轴上 (0,b ,0) z 轴上 (0,0,c ) xOy 平面上 (a ,b ,0) yOz 平面上 (0,b ,c ) xOz 平面上(a ,0,c )3.空间直角坐标系中的对称点设点P (a ,b ,c )为空间直角坐标系中的点,则对称轴(或中心或平面) 点P 的对称点坐标 原点(),,a b c --- x 轴 (),a b c --,y 轴(-a ,b ,-c )z 轴),(,a b c -- xOy 平面(,,)a b c -yOz 平面(),,a b c - xOz 平面(,)a b c -,三、空间两点间的距离公式如图,设点11112222(,,),(,,)P x y z P x y z 是空间中任意两点,且点11112222(,,),(,,)P x y z P x y z 在xOy 平面上的射影分别为M ,N ,那么M ,N 的坐标分别为1122(,,0),(,,0)M x y N x y .在xOy 平面上,221212||()()MN x x y y =-+-.在平面21MNP P 内,过点1P 作2P N 的垂线,垂足为H ,则11122||||,||||,||||PH MN MP z MP z ===,所以221||||HP z z =-.在12Rt △PHP 中,2211212||||()()PH MN x x y y ==-+-, 根据勾股定理,得221212||||||PP PH HP =+=____________________________. 因此,空间中点P 1(x 1,y 1,z 1)、P 2(x 2,y 2,z 2)之间的距离是12||PP =____________________________. 特别地,点P (x ,y ,z )到坐标原点O (0,0,0)的距离为|OP |=222x y z ++.空间两点间的距离公式可以类比平面上两点间的距离公式,只是增加了对应的竖坐标的运算. 空间中点坐标公式:设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则AB 中点P ⎝⎛⎭⎫x 1+x 22,y 1+y 22,z 1+z 22.K 知识参考答案:三、222121212()()()x x y y z z-+-+-222121212()()()x x y y z z-+-+-K—重点1.会建立空间直角坐标系(右手直角坐标系),会表示空间中的任意点;2.能在空间直角坐标系中求出点的坐标;3.记住空间两点间的距离公式,并能应用两点间的距离公式解决一些简单的问题.K—难点对空间直角坐标系的理解,空间两点间距离公式的推导.K—易错易混淆平面与空间直角坐标系.1.确定空间任一点的坐标确定空间直角坐标系中任一点P的坐标的步骤是:①过P作PC⊥z轴于点C;②过P作PM⊥平面xOy于点M,过M作MA⊥x轴于点A,过M作MB⊥y轴于点B;③设P(x,y,z),则|x|=|OA|,|y|=|OB|,|z|=|OC|.当点A、B、C分别在x、y、z轴的正半轴上时,则x、y、z的符号为正;当点A、B、C分别在x、y、z轴的负半轴上时,则x、y、z的符号为负;当点A、B、C与原点重合时,则x、y、z的值均为0.空间中点的坐标受空间直角坐标系的制约,同一个点,在不同的空间直角坐标系中,其坐标是不同的.【例1】如图,在长方体ABCD -A1B1C1D1中,E,F分别是棱BC,CC1上的点,|CF|=|AB|=2|CE|,|AB|∶|AD|∶|AA1|=1∶2∶4.试建立适当的坐标系,写出E,F点的坐标.【解析】以A为坐标原点,射线AB,AD,AA1的方向分别为正方向建立空间直角坐标系,如图所示.【名师点睛】空间中点P坐标的确定方法(1)由P点分别作垂直于x轴、y轴、z轴的平面,依次交x轴、y轴、z轴于点P x、P y,P z,这三个点在x轴、y轴、z轴上的坐标分别为x,y,z,那么点P的坐标就是(x,y,z).(2)若题所给图形中存在垂直于坐标轴的平面,或点P在坐标轴或坐标平面上,则要充分利用这一性质解题.【例2】如图所示,在长方体ABCD-A1B1C1D1中,|AD|=3,|DC|=4,|DD1|=2,E,F分别是BB1,D1B1的中点,求点A,B,C,D,A1,B1,C1,D1,E,F的坐标.【例3】如图,在正方体1111ABCD A B C D -中,,E F 分别是111,BB D B 的中点,棱长为1. 试建立适当的空间直角坐标系,写出点,E F 的坐标.【解析】建立如图所示坐标系.方法一:E 点在xDy 面上的射影为,1,()1,0B B ,竖坐标为12. 所以1(1,1,)2E .F 在xDy 面上的射影为BD 的中点G ,竖坐标为1.所以11(,,1)22F .方法二:11,()1,1B ,10,()0,1D ,()1,1,0B ,E 为1B B 的中点,F 为11B D 的中点. 故E 点的坐标为111110(,,)222+++即1(1,1,)2,F 点的坐标为101011(,,)222+++,即11(,,1)22.2.求空间对称点的坐标求对称点的坐标一般依据“关于谁对称,谁保持不变,其余坐标相反”来解决.如关于横轴(x 轴)的对称点,横坐标不变,纵坐标、竖坐标变为原来的相反数;关于xOy 坐标平面的对称点,横坐标、纵坐标不变,竖坐标变为原来的相反数. 【例4】设点是直角坐标系中一点,则点关于轴对称的点的坐标为A .B .C .D .【答案】A 【解析】点关于x 轴对称的点的坐标为.【例5】空间直角坐标系中,点关于点的对称点的坐标为A .B .C .D .【答案】C【名师点睛】(1)求空间对称点的规律方法空间的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化规律,才能准确求解.对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反”这个结论. (2)空间直角坐标系中,任一点P (x ,y ,z )的几种特殊对称点的坐标如下: ①关于原点对称的点的坐标是P 1(-x ,-y ,-z ); ②关于x 轴(横轴)对称的点的坐标是P 2(x ,-y ,-z ); ③关于y 轴(纵轴)对称的点的坐标是P 3(-x ,y ,-z ); ④关于z 轴(竖轴)对称的点的坐标是P 4(-x ,-y ,z ); ⑤关于xOy 坐标平面对称的点的坐标是P 5(x ,y ,-z ); ⑥关于yOz 坐标平面对称的点的坐标是P 6(-x ,y ,z ); ⑦关于xOz 坐标平面对称的点的坐标是P 7(x ,-y ,z ).(3)点关于点的对称要用中点坐标公式解决,即已知空间中两点111222(,,),(,,)A x y z B x y z ,则AB 的中点P 的坐标为121212(,,)222x x y y z z +++. 3.空间两点间的距离公式(1)已知空间两点间的距离求点的坐标,是距离公式的逆应用,可直接设出该点坐标,利用待定系数法求解点的坐标.(2)若求满足某一条件的点,要先设出点的坐标,再建立方程或方程组求解.(3)利用空间两点间的距离公式判断三角形的形状时,需分别求出三边长,得到边长相等或者满足勾股定理;判断三点共线时,需分别求出任意两点连线的长度,判断其中两线段长度之和等于另一条线段长度.【例6】已知点()3,2,1M ,()1,0,5N ,求: (1)线段MN 的长度;(2)到,M N 两点的距离相等的点(),,P x y z 的坐标满足的条件.【例7】如图所示,建立空间直角坐标系Dxyz ,已知正方体ABCD-A 1B 1C 1D 1的棱长为1,点P 是正方体的体对角线D 1B 的中点,点Q 在棱CC 1上.当2|C 1Q|=|QC|时,求|PQ|.【例8】如图,在四棱锥P-ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,|AP|=|AB|=2,|BC|=2,E ,F 分别是AD ,PC 的中点.求证:PC ⊥BF ,PC ⊥EF .【解析】如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.∵|AP|=|AB|=2,|BC|=2,四边形ABCD 是矩形,∴A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),∴|PB|==2,∴|PB|=|BC|,又F 为PC 的中点,∴PC ⊥BF .∵(0,2,0)E ,∴222||(00)(20)(02)6PE =-+-+-=,222||(02)(222)(00)6CE =-+-+-=,∴||||PE CE =,又F 为PC 的中点,∴PC ⊥EF .【例9】如图,已知正方体ABCD -A ′B ′C ′D ′的棱长为a ,M 为BD ′的中点,点N 在A ′C ′上,且|A ′N |=3|NC ′|,试求|MN |的长.因为|A ′N |=3|NC ′|,所以N 为A ′C ′的四等分点,从而N 为O ′C ′的中点,故N ⎝⎛⎭⎫a 4,34a ,a . 根据空间两点间的距离公式,可得|MN |=⎝⎛⎭⎫a 2-a 42+⎝⎛⎭⎫a 2-3a 42+⎝⎛⎭⎫a 2-a 2=64a .【名师点睛】求空间两点间的距离时,一般使用空间两点间的距离公式,应用公式的关键在于建立适当的坐标系,确定两点的坐标.确定点的坐标的方法视具体题目而定,一般说来,要转化到平面中求解,有时也利用几何图形的特征,结合平面直角坐标系的知识确定. 4.混淆平面与空间直角坐标系【例10】已知空间中两点(3,1,1)(2,2,3)A B ---、,在z 轴上有一点C ,它到A B 、两点的距离相等,求点C 的坐标.【错解】由已知得,AB 的中点坐标为51(,,2)22-,且AB 所在直线的斜率为3,故AB 的垂直平分线的斜率为13-,则垂直平分线的方程为15112()()3232z x y -=-+--,当0x y ==时,43z =,故点C 的坐标为4(0,0,)3.【错因分析】上面解法照搬平面解析几何中的解题思路而出现错误.由于点C 到A B 、两点的距离相等,故可求AB 的垂直平分线.以目前所学知识只能用两点间的距离公式求解. 【正解】设点C 的坐标为(0,0,)z , 则22222231(1)2(2)(3)z z ++-=+-+-,即2210(1)3()8z z +-=+-, 解得32z =,所以点C 的坐标为3(0,0,)2. 【易错点睛】平面直角坐标系中的性质在空间直角坐标系中并不能全部适用,如平面直角坐标系中的中点公式,可类比到三维空间中,而直线方程及一些判定定理、性质在三维空间中不一定适用.1.在空间直角坐标系中,点P (1,2,3)关于x 轴对称的点的坐标为 A .(-1,2,3) B .(1,-2,-3) C .(-1,-2,3)D .(-1,2,-3)2.在空间直角坐标系中,点P (3,4,5)关于yOz 平面对称的点的坐标为 A .(-3,4,5) B .(-3,-4,5) C .(3,-4,-5)D .(-3,4,-5)3.如图,在正方体OABC -O 1A 1B 1C 1中,棱长为2,E 是B 1B 上的点,且|EB |=2|EB 1|,则点E 的坐标为A .(2,2,1)B .(2,2,23)C .(2,2,13)D .(2,2,43)4.在长方体ABCD -A 1B 1C 1D 1中,若D (0,0,0)、A (4,0,0)、B (4,2,0)、A 1(4,0,3),则对角线AC 1的长为A.9 B.29C.5 D.2 65.已知点A(1,a,-5),B(2a,-7,-2)(a∈R)则|AB|的最小值是A.3 3 B.3 6C.2 3 D.2 66.点(2,0,3)在空间直角坐标系中的A.y轴上B.xOy面上C.xOz面上D.第一象限内7.在空间直角坐标系中,已知点P(1,2,3),过点P作平面yOz的垂线PQ,则垂足Q的坐标为A.(0,2,0)B.(0,2,3)C.(1,0,3)D.(1,0,0)8.如图所示,在长方体ABCO-A1B1C1O1中,OA=1,OC=2,OO1=3,A1C1与B1O1交于P,分别写出A,B,C,O,A1,B1,C1,O1,P的坐标.9.(1)已知A(1,2,-1),B(2,0,2),①在x轴上求一点P,使|PA|=|PB|;②在xOz平面内的点M到A点与到B点等距离,求M点轨迹.(2)在xOy平面内的直线x+y=1上确定一点M,使它到点N(6,5,1)的距离最小.10.在空间直角坐标系中,一定点P到三个坐标轴的距离都是1,则该点到原点的距离是A.62B. 3C.32D.6311.已知A点坐标为(1,1,1),B(3,3,3),点P在x轴上,且|PA|=|PB|,则P点坐标为A.(6,0,0)B.(6,0,1)C.(0,0,6)D.(0,6,0)12.已知M(5,3,-2),N(1,-1,0),则点M关于点N的对称点P的坐标为________.13.在空间直角坐标系中,正方体ABCD-A1B1C1D1的顶点A的坐标为(3,-1,2),其中心M的坐标为(0,1,2),则该正方体的棱长等于________.14.如图所示,正方形ABCD,ABEF的边长都是1,并且平面ABCD⊥平面ABEF,点M在AC上移动,点N在BF上移动.若|CM|=|BN|=a(0<a<2).(1)求MN的长度;(2)当a为何值时,MN的长度最短?15.如图,在棱长为1的正方体ABCD-A1B1C1D1中,M在线段BC1上,且|BM|=2|MC1|,N是线段D1M的中点,求点M,N的坐标.16.如图所示,V-ABCD是正棱锥,O为底面中心,E,F分别为BC,CD的中点.已知|AB|=2,|VO|=3,建立如图所示空间直角坐标系,试分别写出各个顶点的坐标.17.如图,在棱长为1的正方体ABCD-A1B1C1D1中,以正方体的三条棱所在直线为轴建立空间直角坐标系Oxyz.(1)若点P在线段BD1上,且满足3|BP|=|BD1|,试写出点P的坐标,并写出P关于y轴的对称点P′的坐标;(2)在线段C1D上找一点M,使点M到点P的距离最小,求出点M的坐标.18.如图,三棱柱ABC-A1B1C1中,所有棱长都为2,侧棱AA1⊥底面ABC,建立适当坐标系写出各顶点的坐标.19.(2017•上海)如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标是__________.1 2 3 4 5 6 7 10 11 BADBBCBAA1.【答案】B【解析】关于x 轴对称,横坐标不变.故选B . 2.【答案】A【解析】关于yOz 平面对称,y ,z 不变.故选A . 3.【答案】D4.【答案】B【解析】由已知求得C 1(0,2,3),∴|AC 1|=29.故选B . 5.【答案】B【解析】|AB |2=(2a -1)2+(-7-a )2+(-2+5)2=5a 2+10a +59=5(a +1)2+54.∴a =-1时,|AB |2的最小值为54.∴|AB |min =54=36.故选B . 6.【答案】C【解析】因为该点的y 坐标为0,根据坐标平面上点的特点可知该点在xOz 面上.故选C . 7.【答案】B【解析】平面yOz 内点的横坐标为0.故选B . 8.【答案】详见解析.9.【答案】(1)①P (1,0,0);②M 点的轨迹是xOz 平面内的一条直线,其方程为x +3z -1=0; (2)M (1,0,0).【解析】(1)①设P (a ,0,0),则由已知得222(1)(2)1a -+-+2(2)4a -+,即a 2-2a +6=a 2-4a +8,解得a =1, 所以P 点坐标为(1,0,0). ②设M (x ,0,z ),222(1)(2)(1)x z -+-++22(2)(2)x z -+- 整理得2x +6z -2=0,即x +3z -1=0. 故M 点的轨迹是xOz 平面内的一条直线. (2)由已知,可设M (x ,1-x ,0),则|MN |=222(6)(15)(01)x x -+--+-22(1)51x -+ 所以当x =1时,|MN |min =51,此时点M (1,0,0). 10.【答案】A【解析】设P (x ,y ,z ),由题意可知222222111x y y z x z ⎧+=⎪+=⎨⎪+=⎩,∴x 2+y 2+z 2=32.∴222x y z ++=62.故选A . 11.【答案】A【解析】设P (x ,0,0),|PA |2(1)11x -++,|PB |2(3)99x -++,由|PA |=|PB |,得x =6.故选A .12.【答案】(-3,-5,2)13.【答案】2393【解析】设正方体的棱长为a ,由|AM |=9+4+0=13可知,正方体的体对角线长为3a =213,故a =2133=2393.14.【答案】(1221a a -+2)当a =22时,MN 的长度最短.【解析】因为平面ABCD ⊥平面ABEF ,且交线为AB ,BE ⊥AB , 所以BE ⊥平面ABCD ,所以BA ,BC ,BE 两两垂直.取B 为坐标原点,过BA ,BE ,BC 的直线分别为x 轴,y 轴和z 轴,建立空间直角坐标系. 因为|BC |=1,|CM |=a ,点M 在坐标平面xBz 内且在正方形ABCD 的对角线上, 所以点M (22a ,0,1-22a ). 因为点N 在坐标平面xBy 内且在正方形ABEF 的对角线上,|BN |=a , 所以点N (22a ,22a ,0). (1)由空间两点间的距离公式, 得|MN |2222222()(0)(10)2222a a a a -+-+-- 221a a -+MN 221a a -+ (2)由(1),得|MN |=221a a -+221()22a -+ 当a =22(满足0<a <2221()22a -+取得最小值, 即MN 的长度最短,最短为22. 15.【答案】M ⎝⎛⎭⎫13,1,23;N ⎝⎛⎭⎫16,12,56.16.【答案】V (0,0,3),A (-1,-1,0),B (1,-1,0),C (1,1,0),D (-1,1,0).【解析】∵底面是边长为2的正方形,∴|CE |=|CF |=1. ∵O 点是坐标原点,∴C (1,1,0),同样的方法可以确定B (1,-1,0),A (-1,-1,0),D (-1,1,0). ∵V 在z 轴上,∴V (0,0,3).17.【答案】(1)P ′⎝⎛⎭⎫-23,23,-13;(2)当m =12时,|MP |取得最小值22,此时点M 为⎝⎛⎭⎫0,12,12. 【解析】(1)由题意知P 的坐标为⎝⎛⎭⎫23,23,13, P 关于y 轴的对称点P ′的坐标为⎝⎛⎭⎫-23,23,-13. (2)设线段C 1D 上一点M 的坐标为(0,m ,m ), 则有|MP |=⎝⎛⎭⎫-232+⎝⎛⎭⎫m -232+⎝⎛⎭⎫m -132=2m 2-2m +1=2⎝⎛⎭⎫m -122+12. 当m =12时,|MP |取得最小值22,所以点M 为⎝⎛⎭⎫0,12,12. 18.【答案】详见解析.19.【答案】(﹣4,3,2)【解析】如图,以长方体ABCD ﹣A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,∵1DB 的坐标为(4,3,2),∴A (4,0,0),C 1(0,3,2),∴1AC (﹣4,3,2).故答案为:(﹣4,3,2).。