集成电路封装与测试(一)
- 格式:ppt
- 大小:5.40 MB
- 文档页数:58
集成电路封装与测试技术在当今科技飞速发展的时代,集成电路作为现代电子技术的核心基石,其重要性不言而喻。
而集成电路封装与测试技术则是确保集成电路性能稳定、可靠运行的关键环节。
集成电路封装,简单来说,就是将通过光刻、蚀刻等复杂工艺制造出来的集成电路芯片,用一种特定的外壳进行保护,并提供与外部电路连接的引脚或触点。
这就好像给一颗珍贵的“芯”穿上了一件合适的“防护服”,使其能够在复杂的电子系统中安全、稳定地工作。
封装的首要作用是保护芯片免受外界环境的影响,比如灰尘、湿气、静电等。
想象一下,一个微小而精密的芯片,如果直接暴露在外界,很容易就会被损坏。
封装材料就像是一道坚固的屏障,为芯片遮风挡雨。
同时,封装还能为芯片提供良好的散热途径。
集成电路在工作时会产生热量,如果热量不能及时散发出去,就会影响芯片的性能甚至导致故障。
好的封装设计可以有效地将芯片产生的热量传导出去,保证芯片在正常的温度范围内工作。
此外,封装还为芯片提供了与外部电路连接的接口。
通过引脚或触点的设计,使得芯片能够与其他电子元件进行通信和数据交换,从而实现各种复杂的功能。
在封装技术的发展历程中,经历了多个阶段的变革。
从最初的双列直插式封装(DIP),到后来的表面贴装技术(SMT),如小外形封装(SOP)、薄型小外形封装(TSOP)等,再到如今的球栅阵列封装(BGA)、芯片级封装(CSP)以及系统级封装(SiP)等先进技术,封装的体积越来越小,性能越来越高,引脚数量也越来越多。
例如,BGA 封装通过将引脚变成球形阵列分布在芯片底部,大大增加了引脚数量,提高了芯片与外部电路的连接密度和数据传输速度。
而 CSP 封装则在尺寸上更加接近芯片本身的大小,具有更小的封装体积和更好的电气性能。
SiP 封装则将多个芯片和其他元件集成在一个封装体内,实现了更高程度的系统集成。
集成电路测试技术则是确保封装后的集成电路能够正常工作、性能符合设计要求的重要手段。
测试就像是给集成电路进行一次全面的“体检”,以检测其是否存在缺陷或故障。
集成电路封装与测试复习题(含答案)第1章集成电路封装概论2学时第2章芯片互联技术3学时第3章插装元器件的封装技术1学时第4章表面组装元器件的封装技术2学时第5章BGA和CSP的封装技术4学时第6章POP堆叠组装技术2学时第7章集成电路封装中的材料4学时第8章测试概况及课设简介2学时一、芯片互联技术1、引线键合技术的分类及结构特点?答:1、热压焊:热压焊是利用加热和加压力,使焊区金属发生塑性形变,同时破坏压焊界面上的氧化层,使压焊的金属丝与焊区金属接触面的原子间达到原子的引力范围,从而使原子间产生吸引力,达到“键合”的目的。
2、超声焊:超声焊又称超声键合,它是利用超声波(60-120kHz)发生器产生的能量,通过磁致伸缩换能器,在超高频磁场感应下,迅速伸缩而产生弹性振动经变幅杆传给劈刀,使劈刀相应振动;同时,在劈刀上施加一定的压力。
于是,劈刀就在这两种力的共同作用下,带动Al丝在被焊区的金属化层(如Al膜)表面迅速摩擦,使Al丝和Al膜表面产生塑性形变。
这种形变也破坏了Al层界面的氧化层,使两个纯净的金属面紧密接触,达到原子间的“键合”,从而形成牢固的焊接。
3、金丝球焊:球焊在引线键合中是最具有代表性的焊接技术。
这是由于它操作方便、灵活,而且焊点牢固,压点面积大,又无方向性。
现代的金丝球焊机往往还带有超声功能,从而又具有超声焊的优点,有的也叫做热(压)(超)声焊。
可实现微机控制下的高速自动化焊接。
因此,这种球焊广泛地运用于各类IC和中、小功率晶体管的焊接。
2、载带自动焊的分类及结构特点?答:TAB按其结构和形状可分为Cu箔单层带:Cu的厚度为35-70um,Cu-PI双层带Cu-粘接剂-PI三层带Cu-PI-Cu双金属3、载带自动焊的关键技术有哪些?答:TAB的关键技术主要包括三个部分:一是芯片凸点的制作技术;二是TAB载带的制作技术;三是载带引线与芯片凸点的内引线焊接和载带外引线的焊接术。
制作芯片凸点除作为TAB内引线焊接外,还可以单独进行倒装焊(FCB)4.倒装焊芯片凸点的分类、结构特点及制作方法?答:蒸镀焊料凸点:蒸镀焊料凸点有两种方法,一种是C4 技术,整体形成焊料凸点;电镀焊料凸点:电镀焊料是一个成熟的工艺。
一、填空题1、将芯片及其他要素在框架或基板上布置,粘贴固定以及连接,引出接线端子并且通过可塑性绝缘介质灌封固定的过程为狭义封装;在次根基之上,将封装体与装配成完整的系统或者设备,这个过程称之为广义封装。
2、芯片封装所实现的功能有传递电能;传递电路信号;提供散热途径;构造保护与支持。
3、芯片封装工艺的流程为硅片减薄与切割、芯片贴装、芯片互连、成型技术、去飞边毛刺、切筋成形、上焊锡、打码。
4、芯片贴装的主要方法有共晶粘贴法、焊接粘贴法、导电胶粘贴发、玻璃胶粘贴法。
5、金属凸点制作工艺中,多金属分层为黏着层、扩散阻挡层、表层金保护层。
6、成型技术有多种,包括了转移成型技术、喷射成型技术、预成型技术、其中最主要的是转移成型技术。
7、在焊接材料中,形成焊点完成电路电气连接的物质叫做煤斜;;用于去除焊盘外表氧化物,提高可焊性的物质叫做助焊剂;在SMT中常用的可印刷焊接材料叫做锡直。
8、气密性封装主要包括了金属气密性封装、陶瓷气密性封装、玻璃气密性封装。
9、薄膜工艺主要有遮射工艺、蒸发工艺、电镀工艺、光刻工艺。
10、集成电路封装的层次分为四级分别为模块元件(MOdUIe)、⅛路卡工艺(Card)、主电路板(Board)、完整电子产品。
11、在芯片的减薄过程中,主要方法有磨削、研磨、干式抛光、化学机械平坦工艺、电化学腐蚀、湿法腐蚀、等离子增强化学腐蚀等。
12、芯片的互连技术可以分为打线键合技术、载带自动键合技术、倒装芯片键合技术。
13、DBG切割方法进展芯片处理时,首先进展在硅片正面切割一定深度切口再进展反面磨削。
14、膜技术包括了薄膜技术和厚膜技术,制作较厚薄膜时常采用丝网印刷和浆料枯燥烧结的方法O15、芯片的外表组装过程中,焊料的涂覆方法有点涂、丝网印刷、钢模板印刷三种。
16、涂封技术一般包括了顺形涂封和封胶涂封。
二、名词解释1、芯片的引线键合技术(3种)是将细金属线或金属带按顺序打在芯片与引脚架或封装基板的焊垫上而形成电路互连,包括超声波键合、热压键合、热超声波键合。
集成电路芯片封装:是指利用膜技术及微细加工技术,将芯片及其他要素在框架或基板上布置,粘贴,固定及连接,引出接线端子并通过可塑性绝缘介质灌封固定构成整体立体结构的工艺封装工程:将封装体与基板连接固定装配成完整的系统或电子设备,并确保整个的综合性能的工程(合起来就是广义的封装概念)芯片封装实现的功能:①传递电能,主要是指电源电压的分配和导通②传递电路信号,主要是将电信号的延迟尽可能的减小,在布线时应尽可能使信号线与芯片的互联路径及通过封装的I/O接口引出的路径最短③提供散热途径,主要是指各种芯片封装都要考虑元器件部件长期工作时,如何将聚集的热量散出的问题④结构保护与支持,主要是指芯片封装可为芯片和其他连接部件提供牢固可靠的机械支撑封装工程的技术层次①第一层次,该层次又称为芯片层次的封装,是指把集成电路芯片与封装基板或引脚架之间的粘贴固定电路连线与封装保护的工艺②第二层次,将数个第一层次完成的封装与其他电子元器件组成一个电路卡的工艺③第三层次,将数个第二层次完成的封装,组装成的电路卡组合在一个主电路板上,使之成为一个部件或子系统的工艺④第四层次,将数个子系统组装成一个完整电子产品的工艺过程芯片封装的分类:按照封装中组合集成电路芯片的数目,可以分为单芯片封装与多芯片封装按照密封的材料区分,可分为高分子材料和陶瓷为主的种类按照器件与电路板互连方式,可分为引脚插入型和表面贴装型按照引脚分布形态,可分为单边引脚,双边引脚,四边引脚与底部引脚零级层次,在芯片上的集成电路元件间的连线工艺SCP,单芯片封装MCP,多芯片封装DIP,双列式封装BGA,球栅阵列式封装SIP,单列式封装ZIP,交叉引脚式封装QFP,四边扁平封装MCP,底部引脚有金属罐式PGA,点阵列式封装芯片封装技术的基本工艺流程:硅片减薄,硅片切割,芯片贴装,芯片互连,成型技术,去飞边,毛刺,切筋成型,上焊锡,打码芯片减薄:目前硅片的背面减薄技术主要有磨削,研磨,干式抛光,化学机械平坦工艺,电化学腐蚀,湿法腐蚀,等离子增强化学腐蚀,常压等离子腐蚀等芯片切割:刀片切割,激光切割(激光半切割,激光全切割)激光开槽加工是一种常见的激光半切割方式芯片贴装也称为芯片粘贴,是将IC芯片固定于封装基板或引脚架芯片的承载座上的工艺过程。
集成电路封装与测试一:封装1.集成电路封装的作用大体来说,集成电路封装有如下四个作用:(l)对集成电路起机械支撑和机械保护作用。
集成电路芯片只有依托不同类型的封装才能应用到各个领域的不同场所,以满足整机装配的需要(2)对集成电路起着传输信号和分配电源的作用。
各种输人输出信号和电源地只有通过封装上的引线才能将芯片和外部电子系统相沟通,集成电路的功能才能得到实现和发挥(3)对集成电路起着热耗散的作用。
集成电路加电工作时,会因功耗而发热,特别是功率集成电路,工作时芯片耗散热量大。
这些热量若不散发掉,就会使芯片温升过高,从而影响电路的性能或造成电路失效,因此,必须通过封装来散发芯片热量,以保证集成电路的性能和可靠性(4)对集成电路起着环境保护的作用。
集成电路芯片若无封装保护,将受污染等环境损伤,性能无法实现。
由于集成电路的应用愈来愈广泛,多数集成电路必须能耐各种恶劣环境的影响,因此,封装对集成电路各种性能的正确实现起着重要的保证作用电路的发展受广泛应用前景的驱动、而集成电路的封装又随着集成电路的发展而发展。
没有集成电路封装的发展,集成电路的发展就很难实现。
由此可见,集成电路封装对集成电路有着极其重要的作用2.集成电路封装的内容归纳起来至少有以下几个方面:(1)根据集成电路的应用要求,通过定的结构设计、工艺设计、电设计、热设计和可靠性设计制造出合格的外壳或引线框架等主要零部件,并不断提高设计、工艺技术,以适应集成电路发展的需要;(2)按照整机要求和组装需要,改进封装结构、确定外形尺寸,使之达到通用化、标准化,并向多层次、窄节距、多引线、小外形和高密度方向发展;(3)保证自硅晶圆的减薄、划片和分片开始,直到芯片粘接、引线键合和封盖等-系列封装所需工艺的正确实施,达到一定的规模化和自动化,并不断研制开发新工艺、新设备和新技术,以提高封装工艺水平和质量,同时努力降低封装成本:(4)随着集成电路封装日益发展的需要,在原有的材料基础上,需进一步提供低介电系数、高导热、高机械强度等性能优越的新型有机、无机和金属材料;(5)完善和改进集成电路封装的检验手段,统一检验方法,并加强工艺监测和质量控制,提供准确的检验测试数据,为提高集成电路封装的性能和可靠性提供有力的保证集成电路封装对器件性能的影响越来越大,某些集成电路的性能受封装技术的限制与受集成电路芯片性能的限制几乎相同,甚至更大。
集成电路封装与测试技术在当今科技飞速发展的时代,集成电路已经成为了各种电子设备的核心组件。
从我们日常使用的智能手机、电脑,到汽车、飞机中的控制系统,无一不依赖于集成电路的强大功能。
而集成电路封装与测试技术,则是确保集成电路性能、可靠性和成本效益的关键环节。
集成电路封装,简单来说,就是将制造好的集成电路芯片进行保护和连接,使其能够在外部环境中正常工作,并与其他电子元件进行通信。
这就好比给一颗珍贵的“芯”穿上一件坚固而合身的“外衣”。
封装的首要任务是提供物理保护,防止芯片受到外界的机械损伤、化学腐蚀和电磁干扰。
同时,封装还需要解决芯片的散热问题,确保芯片在工作时产生的热量能够有效地散发出去,以保证其性能和寿命。
封装的类型多种多样,常见的有双列直插式封装(DIP)、球栅阵列封装(BGA)、芯片尺寸封装(CSP)等。
每种封装类型都有其特点和适用场景。
例如,DIP 封装在早期的集成电路中应用广泛,其引脚从芯片两侧引出,安装方便,但占用空间较大;BGA 封装则通过在芯片底部形成球形引脚阵列,大大提高了引脚密度,适用于高性能、高集成度的芯片;CSP 封装则在尺寸上做到了极致,几乎与芯片本身大小相同,具有更小的体积和更好的电气性能。
在封装过程中,材料的选择也至关重要。
封装材料不仅要具备良好的绝缘性能、机械强度和热稳定性,还要与芯片和基板有良好的兼容性。
常见的封装材料包括塑料、陶瓷和金属等。
塑料封装成本较低,广泛应用于消费类电子产品;陶瓷封装具有更好的耐高温和耐湿性,常用于军事、航空航天等领域;金属封装则在散热和电磁屏蔽方面表现出色。
而集成电路测试,则是对封装好的集成电路进行质量检测和性能评估。
这就像是给集成电路进行一场严格的“考试”,只有通过了测试的产品才能进入市场。
测试的目的是确保集成电路在功能上符合设计要求,在性能上达到规定的指标,并且在可靠性方面能够满足长期使用的需求。
测试的内容包括功能测试、参数测试和可靠性测试等。