柱锥台球的表面积和体积公式(有答案)电子教案
- 格式:doc
- 大小:260.00 KB
- 文档页数:11
圆柱、圆锥、圆台、球的表面积和体积学习目标1.了解圆柱、圆锥、圆台、球的表面积和体积的计算公式.2.理解并掌握侧面展开图与几何体的表面积之间的关系,并能利用计算公式求几何体的表面积与体积. 一、知识梳理知识点一 圆柱、圆锥、圆台的表面积图形表面积公式旋转体圆柱底面积:S 底=侧面积:S 侧= 表面积:S = 圆锥底面积:S 底=侧面积:S 侧= 表面积:S =圆台上底面面积:S 上底=下底面面积:S 下底= 侧面积:S 侧= 表面积:S =知识点二 圆柱、圆锥、圆台的体积几何体 体积 说明圆柱V 圆柱=Sh =πr 2h圆柱底面圆的半径为r ,面积为S ,高为h圆锥V 圆锥=13Sh =13πr 2h圆锥底面圆的半径为r ,面积为S ,高为h圆台V 圆台=13(S +SS ′+S ′)h=13π(r 2+rr ′+r ′2)h 圆台上底面圆的半径为r ′,面积为S ′,下底面圆的半径为r ,面积为S ,高为h知识点三 球的表面积和体积公式1.球的表面积公式S =4πR 2(R 为球的半径).2.球的体积公式V =43πR 3.二、例题精讲圆柱、圆锥、圆台的表面积例1 (1)若某圆锥的高等于其底面直径,则它的底面积与侧面积之比为( ) A.1∶2 B.1∶ 3 C.1∶ 5 D.3∶2(2)已知某圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则该圆台较小底面的半径为( )变式 圆柱的一个底面积是S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是( ) A.4πS B.2πS C.πS D.233πS二、圆柱、圆锥、圆台的体积例2 (1)(多选)圆柱的侧面展开图是长12 cm ,宽8 cm 的矩形,则这个圆柱的体积可能是( ) A.288π cm 3 B.192π cm 3 C.288π cm 3D.192π cm 3(2)圆锥的轴截面是等腰直角三角形,侧面积是162π,则圆锥的体积是( ) A.64π3 B.128π3 C.64π D.1282π变式 已知圆台的上、下底面半径和高的比为1∶4∶4,母线长为10,则圆台的体积为_____.三、球的表面积和体积例3 (1)已知球的表面积为64π,求它的体积;(2)已知球的体积为5003π,求它的表面积.三、课堂反馈1.直径为6的球的表面积和体积分别是( )A.36π,144πB.36π,36πC.144π,36πD.144π,144π2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的表面积与侧面积的比值是( ) A.1+2π2π B.1+2π4π C.1+2ππ D.1+4π2π3.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( ) A.120° B.150° C.180° D.240°4.一个圆柱和一个圆锥的轴截面分别是边长为a 的正方形和正三角形,则它们的表面积之比为________.5.圆台的体积为7π,上、下底面的半径分别为1和2,则圆台的高为________. 四、课后作业1.若球的体积与其表面积数值相等,则球的半径等于( ) A.3 B.2 C.1 D.122.两个球的体积之比为8∶27,那么这两个球的表面积之比为( ) A.2∶3 B.4∶9 C.2∶ 3 D.8∶273.将边长为4 cm 和8 cm 的矩形纸片卷成一个圆柱的侧面,则圆柱的轴截面的面积为( ) A.32π cm 2 B.32π cm 2 C.32 cm 2 D.16πcm 2 4.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.22π3B.42π3C.22πD.42π5.如图,圆柱形容器内盛有高度为6 cm 的水,若放入3个相同的铁球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,则球的半径为( )A.4 cmB.3 cmC.2 cmD.1 cm6.正方体的内切球与其外接球的体积之比为()A.1∶ 3B.1∶3C.1∶3 3D.1∶97.一平面截一球得到直径为6 m的圆面,球心到这个平面的距离为4 m,则球的体积为__ m3.8.若圆锥的侧面展开图为一个半径为2的半圆,则圆锥的体积是________.9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.10.如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径相等,这时圆柱、圆锥、球的体积之比为________.11.如上右图在底面半径为2,母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的表面积.12.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r=1,l =3,试求该组合体的表面积和体积.*13.已知四面体的各面都是棱长为a的正三角形,求它外接球的体积.圆柱、圆锥、圆台、球的表面积和体积学习目标 1.了解圆柱、圆锥、圆台、球的表面积和体积的计算公式.2.理解并掌握侧面展开图与几何体的表面积之间的关系,并能利用计算公式求几何体的表面积与体积. 知识点一 圆柱、圆锥、圆台的表面积知识点二 圆柱、圆锥、圆台的体积知识点三 球的表面积和体积公式 1.球的表面积公式S =4πR 2(R 为球的半径). 2.球的体积公式V =43πR 3.一、圆柱、圆锥、圆台的表面积例1 (1)若某圆锥的高等于其底面直径,则它的底面积与侧面积之比为( ) A.1∶2 B.1∶ 3 C.1∶ 5 D.3∶2 答案 C解析 设圆锥底面半径为r ,则高h =2r ,∴其母线长l =5r ,∴S 侧=πrl =5πr 2,S 底=πr 2,S 底∶S 侧=1∶ 5.(2)已知某圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则该圆台较小底面的半径为( ) A.7 B.6 C.5 D.3 答案 A解析 设圆台较小底面的半径为r ,则另一底面的半径为3r . 由S 侧=3π(r +3r )=84π,解得r =7.反思感悟 圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展开为平面图形计算,而表面积是侧面积与底面圆的面积之和.跟踪训练1 圆柱的一个底面积是S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是( )A.4πSB.2πSC.πSD.233πS答案 A解析 设底面半径为r ,则πr 2=S , ∴r =S π, ∴底面周长为2πr =2πS π, 又侧面展开图为一个正方形, ∴侧面积是⎝⎛⎭⎫2πS π2=4πS .二、圆柱、圆锥、圆台的体积例2 (1)(多选)圆柱的侧面展开图是长12 cm ,宽8 cm 的矩形,则这个圆柱的体积可能是( ) A.288π cm 3 B.192π cm 3 C.288π cm 3 D.192π cm 3答案 AB解析 当圆柱的高为8 cm 时,V =π×⎝⎛⎭⎫122π2×8=288π(cm 3),当圆柱的高为12 cm 时,V =π×⎝⎛⎭⎫82π2×12=192π(cm 3). (2)圆锥的轴截面是等腰直角三角形,侧面积是162π,则圆锥的体积是( ) A.64π3 B.128π3 C.64π D.1282π 答案 A解析 作圆锥的轴截面,如图所示:由题意知,在△P AB 中,∠APB =90°,P A =PB . 设圆锥的高为h ,底面半径为r ,则h =r ,PB =2r .由S 侧=π·r ·PB =162π,得2πr 2=162π,所以r =4.则h =4. 故圆锥的体积V 圆锥=13πr 2h =643π.反思感悟 求几何体的体积时,要注意利用好几何体的轴截面,准确求出几何体的高和底面积.跟踪训练2 已知圆台的上、下底面半径和高的比为1∶4∶4,母线长为10,则圆台的体积为________. 答案 224π解析 设上底面半径为r ,则下底面半径为4r ,高为4r ,如图.∵母线长为10,∴102=(4r )2+(4r -r )2,解得r =2. ∴下底面半径R =8,高h =8, ∴V 圆台=13π(r 2+rR +R 2)h =224π.三、球的表面积和体积例3 (1)已知球的表面积为64π,求它的体积; (2)已知球的体积为5003π,求它的表面积.解 (1)设球的半径为R ,则4πR 2=64π,解得R =4, 所以球的体积V =43πR 3=43π·43=2563π.(2)设球的半径为R ,则43πR 3=5003π,解得R =5,所以球的表面积S =4πR 2=4π×52=100π.反思感悟 计算球的表面积和体积的关键是确定球的半径. 跟踪训练3 一个球的表面积是16π,则它的体积是( ) A.64π B.64π3 C.32π D.32π3答案 D解析 设球的半径为R ,则由题意可知4πR 2=16π,故R =2.所以球的半径为2,体积V =43πR 3=323π.1.直径为6的球的表面积和体积分别是( ) A.36π,144π B.36π,36π C.144π,36π D.144π,144π答案 B2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的表面积与侧面积的比值是( ) A.1+2π2πB.1+2π4πC.1+2ππD.1+4π2π答案 A解析 设圆柱的底面圆半径为r ,高为h ,由题意得h =2πr ,∴圆柱的表面积S 表=2πr 2+2πr ×h =2πr 2+2πr ×2πr =2πr 2·(1+2π),圆柱的侧面积S 侧=2πr ×h =2πr ×2πr =4π2r 2,故S 表S 侧=2πr 2(1+2π)4π2r 2=1+2π2π.3.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( ) A.120° B.150° C.180° D.240° 答案 C解析 设圆锥的底面半径为r ,母线长为l , S 底+S 侧=3S 底,2S 底=S 侧, 即2πr 2=πrl ,得2r =l .设侧面展开图的圆心角为θ,则θπl 180°=2πr ,∴θ=180°.4.一个圆柱和一个圆锥的轴截面分别是边长为a 的正方形和正三角形,则它们的表面积之比为________. 答案 2∶1解析 S 圆柱=2·π⎝⎛⎭⎫a 22+2π·a 2·a =32πa 2. S 圆锥=π⎝⎛⎭⎫a 22+π·a 2·a =34πa 2. ∴S 圆柱∶S 圆锥=2∶1.5.圆台的体积为7π,上、下底面的半径分别为1和2,则圆台的高为________. 答案 3解析 设圆台的高为h ,由题意知,V =13(π+2π+4π)h =7π,所以h =3.1.知识清单:(1)圆柱、圆锥、圆台的表面积. (2)圆柱、圆锥、圆台的体积. (3)球的表面积和体积. 2.方法归纳:公式法.3.常见误区:平面图形与立体图形切换不清楚.1.若球的体积与其表面积数值相等,则球的半径等于( ) A.3 B.2 C.1 D.12答案 A解析 设球的半径为R ,则4πR 2=43πR 3,所以R =3.2.两个球的体积之比为8∶27,那么这两个球的表面积之比为( ) A.2∶3 B.4∶9 C.2∶ 3 D.8∶27答案 B解析 由两球的体积之比为8∶27, 可得半径之比为2∶3, 故表面积之比是4∶9.3.将边长为4 cm 和8 cm 的矩形纸片卷成一个圆柱的侧面,则圆柱的轴截面的面积为( ) A.32πcm 2 B.32π cm 2C.32 cm 2D.16πcm 2 答案 A解析 当以4 cm 为母线长时,设圆柱底面半径为r , 则2πr =8,∴2r =8π,∴S 轴截面=4×8π=32π(cm 2).当以8 cm 为母线长时,设圆柱底面半径为R , 则2πR =4,2R =4π,∴S 轴截面=8×4π=32π(cm 2).综上,圆锥的轴截面的面积为32πcm 2.4.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.22π3 B.42π3 C.22π D.42π答案 B解析 绕等腰直角三角形的斜边所在的直线旋转一周形成的曲面围成的几何体为两个底面重合,等体积的圆锥,如图所示.每一个圆锥的底面半径和高都为2,故所求几何体的体积V =2×13×2π×2=42π3.5.如图,圆柱形容器内盛有高度为6 cm 的水,若放入3个相同的铁球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,则球的半径为( )A.4 cmB.3 cmC.2 cmD.1 cm答案 B解析 由题意可得,设球的半径为r ,依题意得三个球的体积和水的体积之和等于圆柱体的体积,∴3×43πr 3=πr 2(6r -6),解得r =3,故选B. 6.正方体的内切球与其外接球的体积之比为( )A.1∶ 3B.1∶3C.1∶3 3D.1∶9答案 C解析 设正方体的棱长为a ,则其内切球的半径为a 2, ∴V 内=43π⎝⎛⎭⎫a 23=πa 36, 正方体的外接球的半径为32a , ∴V 外=43π⎝⎛⎭⎫32a 3=33πa 36, ∴V 内∶V 外=1∶3 3.7.一个平面截一球得到直径为6 cm 的圆面,球心到这个平面的距离为4 cm ,则球的体积为________cm 3.答案 500π3解析 如图所示,由已知得O 1A =3 cm ,OO 1=4 cm ,从而R =OA =5 cm.所以V 球=4π3 ×53=500π3(cm 3). 8.若圆锥的侧面展开图为一个半径为2的半圆,则圆锥的体积是________.答案 33π 解析 圆锥的母线长l =2,设圆锥的底面半径为r ,则2πr =12×2π×2,∴r =1, ∴圆锥的高h =l 2-r 2=3,则圆锥的体积V =13πr 2h =33π. 9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________. 答案 7解析 设新的底面半径为r ,则有13×πr 2×4+πr 2×8=13×π×52×4+π×22×8,解得r =7. 10.如图在底面半径为2,母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的表面积.解 设圆锥的底面半径为R ,圆柱的底面半径为r ,表面积为S .则R =OC =2,AC =4,AO =42-22=2 3.如图所示,易知△AEB ∽△AOC ,∴AE AO =EB OC,即323=r 2,∴r =1, S 底=2πr 2=2π,S 侧=2πr ·h =23π.∴S =S 底+S 侧=2π+23π=(2+23)π.11.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l =3,试求该组合体的表面积和体积.解 该组合体的表面积S =4πr 2+2πrl =4π×12+2π×1×3=10π.该组合体的体积V =43πr 3+πr 2l =43π×13+π×12×3=13π3. 12.如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径相等,这时圆柱、圆锥、球的体积之比为________.答案 3∶1∶2解析 设球的半径为R ,则V 圆柱=πR 2·2R =2πR 3,V 圆锥=13πR 2·2R =23πR 3, V 球=43πR 3, 故V 圆柱∶V 圆锥∶V 球=2πR 3∶23πR 3∶43πR 3 =3∶1∶2.*13.已知四面体的各面都是棱长为a 的正三角形,求它外接球的体积. 解 如图,设SO 1是四面体S -ABC 的高,则外接球的球心O 在SO 1上.设外接球半径为R .∵四面体的棱长为a ,O 1为正△ABC 的中心,∴AO 1=23×32a =33a , SO 1=SA 2-AO 21=a 2-13a 2=63a , 在Rt △OO 1A 中,R 2=AO 21+OO 21=AO 21+(SO 1-R )2, 即R 2=⎝⎛⎭⎫33a 2+⎝⎛⎭⎫63a -R 2,解得R =64a , ∴所求外接球的体积V 球=43πR 3=68πa 3.。
8.3简单几何体的表面积与体积8.3.2 圆柱、圆锥、圆台、球的表面积与体积教学目标1. 了解圆柱、圆锥、圆台、球的表面积的求法2. 了解圆柱、圆锥、圆台、球的表面积计算公式,解决有关的实际问题 教学重点:圆柱、圆锥、圆台、球的表面积公式和体积公式 教学难点:球的体积公式的推导 教学过程:一、 导入新课,板书课题上节课我们学习了棱柱、棱锥、棱台的表面积和体积的求法,那么这节课我们学习圆柱、圆锥、圆台、球的表面积和体积的求法。
【圆柱、圆锥、圆台、球的表面积与体积】 二、 出示目标,明确任务1. 了解圆柱、圆锥、圆台的表面积的求法2. 了解圆柱、圆锥、圆台的体积的求法3. 了解球的表面积和体积的求法 三、 学生自学,独立思考(打开课本阅读116页-119页内容,限时5分钟) 1.找出你阅读内容中的知识点 2.找出你阅读内容中的重点3.找出你阅读内容中的困惑点、疑难问题 四、自学指导,紧扣教材自学指导一(阅读课本116页 至117页 归纳,限时5 分钟) 1.完成下列表格圆柱底面积: 侧面积:表面积: 圆锥底面积: 侧面积:表面积:圆台底面积: 侧面积:表面积:自学指导二(阅读课本117页 至119页 例4,限时5分钟) 1.球的表面积公式S =_______(R 为球的半径). 2.球的体积公式V =__________. 3. 阅读例3,完成以下几个问题(1)浮标可看成由________和_________组合而成; (2)1个浮标的表面积为:___________. 1000个浮标的表面积为:_________.则1000个浮标涂防水漆需要多少涂料:_______. 4. 阅读例4,完成以下几个问题已知,圆柱的底面直径和高都等于球的直径2R , (1) 球的体积为:________; (2) 圆柱的体积为:________;(3) 球与圆柱的体积之比为:________;五、 自学展示,精讲点拨1.学生口头回答自学指导问题,教师点拨并板书(答案见PPT )2.书面检测:课本119页练习1题 精讲点拨 自学指导1 1. 略2. 观察所给出的体积公式,得出棱柱、棱锥、棱台,它们之间的关系。
柱体、锥体、台体的表面积与体积[学习目标] 1.通过对柱、锥、台体的研究,掌握柱、锥、台体的表面积的求法.2.了解柱、锥、台体的表面积和体积计算公式;能运用柱、锥、台的表面积和体积公式进行计算和解决有关实际问题.知识点一 多面体的表面积多面体的表面积就是各个面的面积的和,也就是展开图的面积. 知识点二 旋转体的表面积思考 求圆柱、圆锥、圆台的表面积时,要求的关键量是什么?答 求圆柱、圆锥的表面积时,关键是求其母线长与底面的半径;求圆台的表面积时,关键是求其母线长与上、下底面的半径. 知识点三 体积公式1.柱体:柱体的底面面积为S ,高为h ,则V =Sh .2.锥体:锥体的底面面积为S ,高为h ,则V =13Sh .3.台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V 3思考 简单组合体分割成几个几何体,其表面积如何变化?其体积呢? 答 表面积变大了,体积不变.题型一 空间几何体的表面积例1 圆台的母线长为8 cm ,母线与底面成60°角,轴截面两条对角线互相垂直,求圆台的表面积.解 如图所示的是圆台的轴截面ABB 1A 1,其中∠A 1AB =60°,过A 1作A 1H ⊥AB 于H ,则O 1O =A 1H =A 1A ·sin 60°=43(cm), AH =A 1A ·cos 60°=4(cm), 即r 2-r 1=AH =4.① 设A 1B 与AB 1的交点为M , 则A 1M =B 1M . 又∵A 1B ⊥AB 1,∴∠A 1MO 1=∠B 1MO 1=45°. ∴O 1M =O 1A 1=r 1. 同理OM =OA =r 2.∴O 1O =O 1M +OM =r 1+r 2=43,② 由①②可得r 1=2(3-1),r 2=2(3+1).∴S 表=πr 21+πr 22+π(r 1+r 2)l =32(1+3)π(cm 2).跟踪训练1 已知棱长为a ,各面均为等边三角形的四面体SABC (即正四面体SABC ),求其表面积.解 由于四面体SABC 的四个面是全等的等边三角形, 所以四面体的表面积等于其中任何一个面面积的4倍. 先求△SBC 的面积,过点S 作SD ⊥BC ,交BC 于点D ,如图所示.因为BC =a ,SD =SB 2-BD 2=a 2-⎝⎛⎭⎫a 22=32a ,所以S △SBC =12BC ·SD =12a ×32a =34a 2.因此,四面体SABC 的表面积为S =4×34a 2=3a 2.题型二 空间几何体的体积例2 在Rt △ABC 中,AB =3,BC =4,∠ABC =90°,把△ABC 绕其斜边AC 所在的直线旋转一周后,所形成的几何体的体积是多少?解 如图所示,两个圆锥的底面半径为斜边上的高BD , 且BD =AB ·BC AC =125,两个圆锥的高分别为AD 和DC , 所以V =V 1+V 2=13πBD 2·AD +13πBD 2·CD=13πBD 2·(AD +CD )=13πBD 2·AC =13π×⎝⎛⎭⎫1252×5=485π. 故所形成的几何体的体积是485π. 跟踪训练2 如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,求A 到平面A 1BD 的距离d .解 在三棱锥A 1-ABD 中,AA 1⊥平面ABD ,AB =AD =AA 1=a , A 1B =BD =A 1D =2a , ∵11--=,A ABD A A BD V V∴13×12a 2·a =13×12×2a ×32·2a ·d . ∴d =33a .∴A 到平面A 1BD 的距离为33a . 题型三 与三视图有关的表面积、体积问题例3 (1)某几何体的三视图如图所示(单位:cm),则该几何体的表面积等于( ) A.8π cm 2 B.7π cm 2 C.(5+3)π cm 2D.6π cm 2(2)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.答案 (1)B (2)6+π解析 (1)此几何体是由一个底面半径为1,高为2的圆柱与一个底面半径为1,母线长为2的圆锥组合而成的,故S 表=S 圆柱侧+S 圆锥侧+S 底=2π×1×2+π×1×2+π×12=7π. (2)由三视图可知该几何体是组合体.下面是长方体,长、宽、高分别为3,2,1;上面是一个圆锥,底面圆半径为1,高为3,所以该几何体的体积为3×2×1+13π×12×3=(6+π) m 3.跟踪训练3 某几何体的三视图如图所示,则该几何体的体积是________.答案 16π-16解析 由三视图可知该几何体是一个圆柱内部挖去一个正四棱柱,圆柱底面圆半径为2,高为4,故体积为16π;正四棱柱底面边长为2,高为4,故体积为16,故题中几何体的体积为16π-16.分割转化求体积例4 如图所示,已知ABCD -A 1B 1C 1D 1是棱长为a 的正方体,E ,F 分别为AA 1,CC 1的中点,求四棱锥A 1-EBFD 1的体积.分析 本题若直接求解较为困难,这里利用“割”的思想,将四棱锥的体积转化为两个等底的三棱锥的体积之和,从而简化求解步骤. 解 因为EB =BF =FD 1=D 1E = a 2+⎝⎛⎭⎫a 22=52a ,D 1F ∥EB ,所以四边形EBFD 1是菱形. 连接EF ,则△EFB ≌△EFD 1.易知三棱锥A 1-EFB 与三棱锥A 1-EFD 1的高相等, 故111122---==.A EBFD A EFB F EBA V V V 又因为1∆EBA S =12EA 1·AB =14a 2,则1-F EBA V =112a 3,所以111122---==A EBFD A EFB F EBA V V V =16a 3.圆柱体积的求解例5 把长、宽分别为4,2的矩形卷成一个圆柱的侧面,求这个圆柱的体积. 分析 利用底面的周长,求得底面半径,利用圆柱的体积公式求解. 解 设圆柱的底面半径为r ,母线长为l ,高为h .如图①所示,当2πr =4,l =2时,r =2π,h =l =2,所以V 圆柱=πr 2h =8π;如图②所示,当2πr =2,l =4时,r =1π,h =l =4;所以,此时V 圆柱=πr 2h =4π.1.一个圆柱的侧面展开图是一个正方形,则这个圆柱的表面积与侧面积的比是( ) A.1+2π2π B.1+2π4π C.1+2ππ D.1+4π2π2.如图,一个底面半径为2的圆柱被一平面所截,截得的几何体的最短和最长母线长分别为2和3,则该几何体的体积为( )A.5πB.6πC.20πD.10π3.一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的表面积为( )A.12πB.18πC.24πD.36π4.一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.5.如图,在上、下底面对应边的比为1∶2的三棱台中,过上底面一边作一个平行于棱CC 1的平面A 1B 1EF ,这个平面分三棱台成两部分,这两部分的体积之比为________.一、选择题1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( ) A.4π B.3π C.2π D.π2.已知高为3的直棱柱ABC -A 1B 1C 1的底面是边长为1的正三角形,则三棱锥B 1-ABC 的体积为( ) A.14 B.12C.36D.343.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的表面积是( ) A.3π B.33π C.2π D.9π4.在一个长方体中,过一个顶点的三条棱长的比是1∶2∶3,它的体对角线长是214,则这个长方体的体积是( ) A.6 B.12 C.24 D.485.一个多面体的三视图如图所示,则该多面体的表面积为( )A.21+ 3B.18+3C.21D.186.体积为52的圆台,一个底面积是另一个底面积的9倍,那么截得这个圆台的圆锥的体积是( )A.54B.54πC.58D.58π7.某三棱锥的三视图如图所示,则该三棱锥的体积是( )A.16B.13C.23D.1二、填空题8.一个圆柱和一个圆锥的轴截面分别是边长为a 的正方形和正三角形,则它们的表面积之比为________.9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.10.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.11.设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2.若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是________. 三、解答题12.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形. (1)求该几何体的体积V ;(2)求该几何体的侧面积S .13.已知底面半径为 3 cm ,母线长为 6 cm 的圆柱,挖去一个以圆柱上底面圆心为顶点,下底面为底面的圆锥,求所得几何体的表面积及体积.当堂检测答案1.答案 A解析 设底面圆半径为r ,母线长为h ,∴h =2πr ,则S 表S 侧=2πr 2+2πrh 2πrh =r +h h =r +2πr 2πr =1+2π2π.2.答案 D解析 用一个完全相同的几何体把题中几何体补成一个圆柱,如图,则圆柱的体积为π×22×5=20π,故所求几何体的体积为10π. 3.答案 C解析 由三视图知该几何体为圆锥,底面半径r =3,母线l =5,∴S 表=πrl +πr 2=24π.故选C. 4.答案 12解析 设正六棱锥的高为h ,侧面的斜高为h ′.由题意,得13×6×12×2×2×32×h =23,∴h =1.∴斜高h ′=12+⎝⎛⎭⎫2×322=2,∴S 侧=6×12×2×2=12.5.答案 3∶4(或4∶3)解析 设三棱台的上底面面积为S 0,则下底面面积为4S 0,111-A B C ABC V 三棱柱=S 0h .111-ABC A B C V 三棱台=73S 0h .设剩余的几何体的体积为V , 则V =73S 0h -S 0h =43S 0h ,体积之比为3∶4或4∶3.课时精练答案一、选择题 1.答案 C解析 底面圆半径为1,高为1,侧面积S =2πrh =2π×1×1=2π.故选C. 2.答案 D 解析 S 底=12×1×1-⎝⎛⎭⎫122=34,所以1B ABC V -三棱锥=13S 底·h =13×34×3=34.3.答案 A解析 设圆锥底面的半径为R ,则由12×2R ×3R =3,得R =1.所以S圆锥表=πRl +πR 2=π×1×2+π=3π. 4.答案 D解析 设长方体的三条棱长分别为a,2a,3a ,那么a 2+(2a )2+(3a )2=214.解得a =2,长方体的体积为V =2×4×6=48. 5.答案 A解析 由三视图可知,该多面体为一个边长为2的正方体在左下角与右上角各切去一个三棱锥,因此该多面体的表面积为6×⎝⎛⎫4-12+12×2×62×2=21+ 3. 6.答案 A解析 设上底面半径为r ,则由题意求得下底面半径为3r ,设圆台高为h 1,则52=13πh 1(r 2+9r 2+3r ·r ),∴πr 2h 1=12.令原圆锥的高为h ,由相似知识得r 3r =h -h 1h ,∴h =32h 1,∴V 原圆锥=13π(3r )2×h =3πr 2×32h 1=92×12=54.7.答案 B解析 如图,三棱锥的底面是一个直角边长为1的等腰直角三角形,有一条侧棱和底面垂直,且其长度为2,故三棱锥的高为2,故其体积V =13×12×1×1×2=13,故选B. 二、填空题 8.答案 2∶1解析 S 圆柱=2·π⎝⎛⎭⎫a 22+2π·a 2·a =32πa 2, S 圆锥=π⎝⎛⎭⎫a 22+π·a 2·a =34πa 2, ∴S 圆柱∶S 圆锥=2∶1. 9.答案7解析 设新的底面半径为r ,则有13×πr 2×4+πr 2×8=13×π×52×4+π×22×8,解得r =7.10.答案 83π11 解析 由三视图可知原几何体是由两个圆锥和一个圆柱组成的,它们有共同的底面,且底面半径为1,圆柱的高为2,每个圆锥的高均为1,所以体积为2×13π×12×1+π×12×2=8π3(m 3). 11.答案 32解析 设两个圆柱的底面半径和高分别为r 1,r 2和h 1,h 2.由S 1S 2=94,得πr 21πr 22=94,∴r 1r 2=32. 由圆柱的侧面积相等,得2πr 1h 1=2πr 2h 2,即r 1h 1=r 2h 2.∴V 1V 2=πr 21h 1πr 22h 2=r 1r 2=32. 三、解答题12.解 由已知可得该几何体是一个底面为矩形、高为4、顶点在底面的投影是矩形中心的四棱锥V -ABCD .(1)V =13×(8×6)×4=64. (2)该四棱锥的两个侧面VAD ,VBC 是全等的等腰三角形,且BC 边上的高为h 1= 42+⎝⎛⎭⎫822=42,另两个侧面VAB ,VCD 也是全等的等腰三角形,AB 边上的高为h 2= 42+⎝⎛⎭⎫622=5.因此S 侧=2⎝⎛⎭⎫12×6×42+12×8×5=40+24 2. 13.解 作轴截面如图,设挖去的圆锥的母线长为l ,底面半径为r ,则l =(6)2+(3)2=9=3(cm).故几何体的表面积为S =πrl +πr 2+2πr ·AD=π×3×3+π×(3)2+2π×3× 6=33π+3π+62π =(33+3+62)π(cm 2).几何体的体积为V =V 圆柱-V 圆锥=π·r 2·AD -13πr 2AD =π×3×6-13×π×3× 6 =26π(cm 3).。
《8.3.2 圆柱、圆锥、圆台、球的表面积和体积》教学设计【教材分析】本节课选自《普通高中课程标准数学教科书-必修第二册》(人教A版)第八章《立体几何初步》,本节课是第2课时,本节课主要学习圆柱、圆锥、圆台、球的表面积和体积公式。
本节课从圆柱、圆锥、圆台的展开图推出它们的表面积,然后比较它们的表面积公式,让学生更容易记忆公式。
类比棱台的体积公式,进而得到圆台的体积公式,再进一步比较圆柱、圆锥、圆台、棱柱、棱锥、棱台的体积公式,找到它们公式之间的关系。
类比初中圆的面积公式的推导,从而推导球的体积公式。
【教学目标与核心素养】【教学重点】:圆柱、圆锥、圆台、球的表面积与体积;【教学难点】:与圆柱、圆锥、圆台、球有关的组合体的表面积与体积会解决球的切、接问题。
【教学过程】思考1:圆柱的展开图是什么?怎么求它的表面积? 【答案】圆柱的侧面展开图为矩形思考2:圆锥的展开图是什么?怎么求它的表面积? 【答案】圆锥的侧面展开图是扇形思考3:参照圆柱和圆锥的侧面展开图,试想象圆台的侧面展开图是什么 ,它的表面积是什么? 【答案】圆台的侧面展开图是扇环思考4:圆柱、圆锥、圆台三者的表面积公式之间有什么关系?你能用圆柱、圆锥、圆台的结构特征来解释这种关系吗?)(2222l r r rl r S +=+=πππ圆柱表面积)(2l r r rl r S +=+=πππ圆锥表面积)(22rl l r r r S +'++'=π圆台表面积【答案】思考5:根据圆台的特征,如何求圆台的体积?由于圆台是由圆锥截成的,因此可以利用两个锥体的体积差.得到圆台的体积公式(过程略).其中S ,分别为上、下底面面积,h 为圆台(棱台)的高.思考6:圆柱、圆锥、圆台的体积公式之间有什么关系?结合棱柱、棱锥、棱台的体积公式,你能将它们统一成柱体、锥体、台体的体积公式吗?柱体、椎体、台体的体积公式之间又有什么关系?1.球的表面积公式:(R 为球的半径)例1.如图,某种浮标由两个半球和一个圆柱黏合而成,半球的直径是0.3m ,圆柱高0.6m ,如果在浮标表面涂一层防水漆,每平方米需要0.5kg 涂料,那么给1000个这样的浮标涂防水漆需要多少涂料?hS S S S V )(31+'+'=S '24S R π=球解:一个浮标的表面积为所以给1000个这样的浮标涂防水漆约需涂料思考7:在小学,我们学习了圆的面积公式,你记得是如何求得的吗?类比这种方法,你能由球的表面积公式推导出球的体积吗? 【分析】第一步,分割球面被分割成n 个网格,连接球心O 和每个 小网格的顶点。
等面积法:等底等高的三角形面积相等a取一摞作业本放在桌面上(如图所示) ,并改变它们的放置方法,观察改变前后的体积是否发生变化?从以上事实中你得到什么启发?一. 祖暅原理祖暅原理:幂势既同,则积不容异.也就是说,夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.祖暅原理是推导柱、锥、台和球体积公式的基础和纽带,原理中含有三个条件,条件一是两个几何体夹在两个平行平面之间;条件二是用平行于两个平行平面的任何一平面可截得两个平面;条件三是两个截面的面积总相等,这三个条件缺一不可,否则结论不成立.祖冲之(公元429年─公元500年)是我国杰出的数学家,科学家。
南北朝时期人,汉族人,字文远。
生于宋文帝元嘉六年,卒于齐昏侯永元二年。
其主要贡献在数学、天文历法和机械三方面。
祖暅,祖冲之之子,圆满解决了球面积的计算问题,得到正确的体积公式。
祖暅总结了刘徽的有关工作,提出“幂势既同则积不容异”,即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是著名的“祖暅原理”(或刘祖原理)。
祖暅应用这个原理,解决了刘徽尚未解决的球体积公式。
该原理在西方直到十七世纪才由意大利数学家卡瓦列利发现,比祖暅晚一千一百多年。
祖暅的儿子祖皓,续传家学,后来也成了数学家。
等底面积、等高的两个柱体是否体积相等?等高、等截面面积(不受截面形状影响)二. 棱柱和圆柱的体积柱体(棱柱和圆柱)的体积等于它的底面积S和高h的积. 即V柱=S·h.体底面半径是R将一个三棱柱按如图所示分解成三个三棱锥,那么这三个三棱锥的体积有什么关系?它们与三棱柱的体积有什么关系?,高为h的圆柱体的体积的计算公式是V圆柱=πR2h.三. 棱锥和圆锥的体积1. 如果一个锥体(棱锥、圆锥)的底面积是S,高是h,那么它的体积是V锥体= Sh.2. 如果圆锥的底面半径是R,高是h,则它的体积是V圆锥= πR2h.四. 棱台和圆台的体积1. V台体= ;其中S、S’分别为台体上、下底面面积,h为台体的高.2.V圆台=π(r2+Rr+R2)h,其中r、R分别为圆台的上、下底面的半径,高为h.Image台体五. 球的体积V球= ,其中R为球的半径.取出半球和新的几何体做它们的截面结论:截面面积相等则两个几何体的体积相等探究问题:已知球的半径为R,用R表示球的体积.球的表面积:如果网格分的越细,则: “小锥体”就越接近小棱锥。
《8.3.2圆柱、圆锥、圆台、球的表面积和体积》教案【教材分析】本节是在学生已从圆柱、圆锥、圆台、球的结构特征和直观图两个方面认识了旋转体的基础上,进一步从度量的角度认识圆柱、圆锥、圆台、球,主要包括表面积和体积.【教学目标与核心素养】课程目标1.通过对圆柱、圆锥、圆台、球的研究,掌握圆柱、圆锥、圆台、球的表面积和体积计算公式.2.能运用圆柱、圆锥、圆台、球的表面积和体积公式进行计算和解决有关实际问题.数学学科素养1.数学抽象:圆柱、圆锥、圆台、球的表面积与体积公式;2.数学运算:求旋转体及组合体的表面积或体积;3.数学建模:数形结合,运用圆柱、圆锥、圆台、球的表面积和体积公式进行计算和解决有关实际问题.【教学重点和难点】重点:掌握圆柱、圆锥、圆台、球的表面积和体积计算公式和应用;难点:圆台的体积公式的理解.【教学过程】一、情景导入前面已经学习了三种多面体的表面积与体积公式,那么如何求圆柱、圆锥、圆台、球的表面积与体积公式?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本116-119页,思考并完成以下问题1.圆柱、圆锥、圆台、的侧面积、底面积、表面积公式各是什么?2.圆柱、圆锥、圆台的体积公式各是什么?3.球的表面积与体积公式各式什么?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究(一)圆柱、圆锥、圆台的表面积(二)棱柱、棱锥、棱台的表面积1.棱柱:柱体的底面面积为S,高为h,则V=Sh.2.棱锥:锥体的底面面积为S,高为h,则V=13 Sh.3.棱台:台体的上、下底面面积分别为S′、S,高为h,则V=13(S′+S′S+S)h.(三) 球的体积公式与表面积公式1.球的体积公式V=43πR3 (其中R为球的半径).2.球的表面积公式S=4πR2.四、典例分析、举一反三题型一圆柱、圆锥、圆台的表面积例1 若一个圆锥的轴截面是边长为4 cm的等边三角形,则这个圆锥的侧面积为________cm2,表面积为________cm2.【答案】8π12π.【解析】如图所示,∵轴截面是边长为4 cm的等边三角形,∴OB=2 cm,PB=4 cm,∴圆锥的侧面积S侧=π×2×4=8π (cm2),表面积S表=8π+π×22=12π (cm2).解题技巧(求旋转体表面积注意事项)旋转体中,求面积应注意侧面展开图,上下面圆的周长是展开图的弧长.圆台通常还要还原为圆锥.跟踪训练一1.圆台的上、下底面半径和高的比为1∶4∶4,若母线长为10,则圆台的表面积为( )A.81π B.100πC.168π D.169π【答案】C【解析】选C 先画轴截面,再利用上、下底面半径和高的比求解.圆台的轴截面如图所示,设上底面半径为r,下底面半径为R,则它的母线长为l==5r=10,所以r=2,R=8.故S侧=π(R+r)l=π(8+2)×10=100π,S表=S侧+πr2+πR2=100π+4π+64π=168π.题型二圆柱、圆锥、圆台的体积例2 如图,某种浮标由两个半球和一个圆柱黏合而成,半球的直径是0.3m,圆柱高0.6m 如果在浮标表面涂一层防水漆,每平方米需要0.5kg 涂料,那么给1000个这样的浮标涂防水漆需要多少涂料?(π取3.14)【答案】423.9kg【解析】一个浮标的表面积是,所以给1000个这样的浮标涂防水漆约需涂料. 解题技巧(求几何体积的常用方法) (1)公式法:直接代入公式求解.(2)等积法:例如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的几何体即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,棱台补成棱锥等.(4)分割法:将几何体分割成易求解的几部分,分别求体积. 跟踪训练二1.如图,一个底面半径为2的圆柱被一平面所截,截得的几何体的最短和最长母线长分别为2和3,求该几何体的体积.【答案】10π.【解析】用一个完全相同的几何体把题中几何体补成一个圆柱,如图,则圆柱的体积为π×22×5=20π,故所求几何体的体积为10π.()2220.150.640.150.8478m ππ⨯⨯+⨯=0.84780.51000423.9(kg)⨯⨯=2. 梯形ABCD中,AD∥BC,∠ABC=90°,AD=a,BC=2a,∠DCB=60°,在平面ABCD内过点C作l⊥BC,以l为轴将梯形ABCD旋转一周,求旋转体的表面积和体积.【答案】见解析【解析】由题意知以l为轴将梯形ABCD旋转一周后形成的几何体为圆柱中挖去一个倒置的且与圆柱等高的圆锥,如图所示.在梯形ABCD中,∠ABC=90°,AD∥BC,AD=a,BC=2a,∠DCB=60°,∴CD=BC-ADcos60°=2a,AB=CD sin60°=3a,∴DD′=AA′-2AD=2BC-2AD=2a,∴DO=12DD′=a.由上述计算知,圆柱的母线长为3a,底面半径为2a;圆锥的母线长为2a,底面半径为a.∴圆柱的侧面积S1=2π·2a·3a=43πa2,圆锥的侧面积S2=π·a·2a =2πa2,圆柱的底面积S3=π(2a)2=4πa2,圆锥的底面积S4=πa2,∴组合体上底面面积S5=S3-S4=3πa2,∴旋转体的表面积S=S1+S2+S3+S5=(43+9)πa2.又由题意知形成的几何体的体积为圆柱的体积减去圆锥的体积,且V柱=π·(2a)2·3a=43πa3,V锥=13·π·a2·3a=33πa3.∴旋转体的体积V=V柱-V锥=43πa3-33πa3=1133πa3.题型三 球的表面积与体积例3 如图,圆柱的底面直径和高都等于球的直径,求球与圆柱的体积之比.【答案】【解析】 设球的半径为R ,则圆柱的底面半径为R ,高为2R .球的体积,圆柱的体积,.例4 平面α截球O 的球面所得圆的半径为1.球心O 到平面α的距离为2,则此球的体积为( )A.6π B.43π C .46π D.63π 【答案】B【解析】如图,设截面圆的圆心为O ′,M 为截面圆上任一点,则OO ′=2,O ′M =1.∴OM =(2)2+1= 3. 即球的半径为 3.∴V =43π(3)3=43π.解题技巧(与球有关问题的注意事项)1.正方体的内切球233143V R π=23222V R R R ππ=⋅=123342::233V V R R ππ∴==球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径为r1=a2,过在一个平面上的四个切点作截面如图(1).2.球与正方体的各条棱相切球与正方体的各条棱相切于各棱的中点,过球心作正方体的对角面有r2=√2a2,如图(2).3.长方体的外接球长方体的八个顶点都在球面上,称球为长方体的外接球,根据球的定义可知,长方体的体对角线是球的直径,若长方体过同一顶点的三条棱长为a,b,c,则过球心作长方体的对角面有球的半径为r3=√a2+b2+c22,如图(3).4.正方体的外接球正方体棱长a与外接球半径R的关系为2R=3a. 5.正四面体的外接球正四面体的棱长a与外接球半径R的关系为:2R=62a.6、有关球的截面问题常画出过球心的截面圆,将问题转化为平面中圆的有关问题解决.跟踪训练三1、将棱长为2的正方体木块削成一个体积最大的球,则该球的体积为( )A.4π3B.2π3C.3π2D.π6【解析】由题意知,此球是正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为2,故半径为1,其体积是V 球=43×π×13=4π3. 2.设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2C.113πa 2 D .5πa 2 【答案】B.【解析】选B 由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为a .如图,P 为三棱柱上底面的中心,O 为球心,易知AP =23×32a =33a ,OP=12a ,所以球的半径R =OA 满足R 2=⎝ ⎛⎭⎪⎫33a 2+⎝ ⎛⎭⎪⎫12a 2=712a 2,故S 球=4πR 2=73πa 2. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计七、作业课本119页练习,119页习题8.3的剩余题.本节课的重点是掌握圆柱、圆锥、圆台、球的表面积和体积计算公式和应用,通过本节课的例题及练习,学生基本掌握.须注意的是:①求面积时看清求的是侧面积,还是底面积,还是表面积;②对本节课的难点的理解类比棱台与棱锥、棱锥的联系;③解决实际问题时先抽象出几何图形,再利用相关公式解决.《8.3.2圆柱、圆锥、圆台、球的表面积和体积》导学案【学习目标】知识目标1.通过对圆柱、圆锥、圆台、球的研究,掌握圆柱、圆锥、圆台、球的表面积和体积计算公式.2.能运用圆柱、圆锥、圆台、球的表面积和体积公式进行计算和解决有关实际问题.核心素养1.数学抽象:圆柱、圆锥、圆台、球的表面积与体积公式;2.数学运算:求旋转体及组合体的表面积或体积;3.数学建模:数形结合,运用圆柱、圆锥、圆台、球的表面积和体积公式进行计算和解决有关实际问题.【学习重点】:掌握圆柱、圆锥、圆台、球的表面积和体积计算公式和应用;【学习难点】:圆台的体积公式的理解.【学习过程】一、预习导入阅读课本116-119页,填写。
第73课 柱、锥、台、球的表面积和体积.1. 掌握柱、锥、台、球的结构特征以及表面积和体积的计算公式.2. 能求简单几何体的表面积和体积.1. 阅读:必修2第53~65页.2. 解悟:①研读直棱柱、正棱锥、正棱台的定义;②教材第53页中的直棱柱、正棱锥和第54页中圆柱、圆锥、圆台都是用侧面展开图的方法推导侧面积公式的,你在解题中能运用这些方法吗?③教材第59页例1中的几何体的体积是通过正六棱柱与圆柱体的体积之差计算的,这就是常用的“割补法”.3. 践习:在教材空白处,完成第60页练习;第63~64页习题.基础诊断1. 若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为3. 解析:因为圆锥的底面积为π,所以圆锥底面的半径为1,所以其底面的周长为2π.因为圆锥的侧面积为2π,所以12×2πl =2π,解得l =2,所以圆锥的母线长为2,所以圆锥的高为22-12=3,故该圆锥的体积为13×π×3=3π3.2. 如图,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是6.解析:由题意知该多面体为正四棱锥,如图所示,底面边长为1,侧棱长为1,斜高SE =32,连结顶点和底面的中心即为高,所以SO =⎝⎛⎭⎫322-⎝⎛⎭⎫122=22,所以体积为13×1×1×22=26,故该多面体的体积为26.3. 已知正四棱柱的底面边长为2,高为3,则该正四棱柱的外接球的表面积为 17π . 解析:由题意知该正四棱柱的外接球的直径就是正四棱柱的对角线的长,所以球的直径为22+22+32=17,所以球的表面积为4π×⎝⎛⎭⎫1722=17π. 4. 已知某四面体的六条棱中,有五条棱长都等于a ,则该四面体体积的最大值为 a 38W.解析:如图所示,在四面体ABCD 中,若AB =BC =CD =AC =BD =a ,AD =x ,取AD 的中点P ,BC 的中点E ,连结BP ,EP ,CP.易证AD ⊥平面BPC ,所以V ABCD =13S △BPC ×AD =13×12×a ×a 2-x 24-a 24×x =112a ×(3a 2-x 2)x 2=112a ×-⎝⎛⎭⎫x 2-3a 222+9a 44≤a 38,当且仅当x 2=3a 22,即x =62a 时取等号,所以该四面体体积的最大值为a 38.范例导航考向❶ 用侧面展开图的方法,将空间问题化归为平面问题例1 如图,已知正三棱柱ABCA 1B 1C 1的底面边长为1,高为8,一质点自A 点出发,沿着三棱柱的侧面绕行两周到达点A 1的最短路线的长为 10 .解析:方法一:将两个正三棱柱都沿AA 1剪开后展开,如图1,则最短路线长为l =(2×3)2+82=10.方法二:将正三棱柱侧面展开如图2所示,设该质点绕三棱柱侧面一周时交AA 1于点M ,则第一周的最短路线为AM ,第二周的最短路线为MA 1,所求最短路线的长即求AM +A 1M 的最小值,如图2,取点A 关于A″的对称点A′,连结A′A 1,交A″A″1于点M 0,连结A′M ,由三角形的三边不等关系知A 1M +A′M ≥A 1A′=(2×3)2+82=10.图1 图2已知圆台上底面的半径为1,下底面的半径为4,母线AB =12,从AB 的中点M 拉一条绳子绕圆台侧面转到点A.(1) 求绳子的最短长度;(2) 求当绳子最短时,上底圆周上的点到绳子的最短距离.解析:(1) 将圆台补形成圆锥,并将圆锥侧面展开成如图所示的扇形. 取A 1B 1的中点M 1,AM 1就是绳子的最短长度. 设∠ASA 1=α,则BB 1︵=απ·SB180°=2π,①AA 1︵=απ·(SB +12)180°=8π.②②-①得α=90°. 将α=90°代入①,解得SB =4.在△ASM 1中,SA =16,SM 1=4+6=10, ∠ASA 1=90°,所以AM 21=102+162=356,所以AM 1=289, 即绳子的最短长度为289.(2) 过点S 作SQ ⊥AM 1,交BB 1︵于点P ,交AM 1于点Q ,则PQ 的长度即为所求. 在Rt △ASM 1中,SQ =SA·SM 1AM 1=16×10289=808989.PQ =SQ -SP =808989-4,所以当绳子最短时,上底圆周上的点到绳子的最短距离为808989-4.考向❷ 折叠问题中线面关系、数量关系的变与不变,等体积法求锥体体积例2 如图1所示,在直角梯形ABEF 中(图中数字表示线段的长度),将直角梯形DCEF 沿CD 折起,使平面DCEF ⊥平面ABCD ,连结部分线段后围成一个空间几何体,如图2所示.(1) 求证:BE ∥平面ADF ; (2) 求三棱锥FBCE 的体积.图1图2解析:(1) 方法一:取DF的中点G,连结AG,EG.易证四边形ABEG为平行四边形,所以BE∥AG.因为BE⊄平面ADF,AG⊂平面ADF,所以BE∥平面ADF.方法二:由题意得BC∥AD,CE∥DF,折叠之后平行关系不变.因为BC∥AD,BC⊄平面ADF,AD⊂平面ADF,所以BC∥平面ADF.同理CE∥平面ADF.因为BC∩CE=C,BC,CE⊂平面BCE,所以平面BCE∥平面ADF.因为BE⊂平面BCE,BE⊄平面ADF,所以BE∥平面ADF.(2) 方法一:因为平面DCEF⊥平面ABCD,平面DCEF∩平面ABCD=CD,BC⊂平面ABCD,BC⊥CD,所以BC⊥平面DCEF.因为DC=CE=1,所以S△CEF=12CE×DC=12,所以V FBCE=V BCEF=13×BC×S△CEF=16.方法二:由题意得CD⊥BC,CD⊥CE,BC∩CE=C,BC,CE⊂平面BCE,所以CD⊥平面BCE.因为DF∥CE,所以点F到平面BCE的距离等于点D到平面BCE的距离,距离为1,因为BC=CE=1,S△BCE=12BC×CE=12,所以V FBCE=13×CD×S△BCE=16.方法三:如图,过点E作EH⊥FC,垂足为H,由图可知BC⊥CD.因为平面DCEF⊥平面ABCD,平面DCEF∩平面ABCD=CD,BC⊥DC,BC⊂平面ABCD,所以BC⊥平面DCEF.因为EH⊂平面DCEF,所以BC⊥EH.因为FC ∩BC =C ,FC ,BC ⊂平面FBC , 所以EH ⊥平面BCF.因为BC ⊥FC ,FC =DC 2+DF 2=5, 所以S △BCF =12BC ×CF =52.在△CEF 中,由等面积法可得EH =15, 所以V FBCE =V EBCF =13×EH ×S BCF =16.如图,已知在多面体ABCDEFG 中,AB ,AC ,AD 两两互相垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,AB =AD =DG =2,AC =EF =1,则这个多面体的体积为 4 .解析:方法一:如图1,将所求多面体补成一个正方体,而所求多面体的体积是正方体体积的一半,所以V ABCDEFG =12V 正方体=12×2×2×2=4.方法二:如图2,连结BD ,BG ,则V ABCDEFG =V BADGC +V BEFGD =13S 梯形ADGC ·AB +13S 梯形EFGD ·BE =13×(1+2)×2×12×2+13×(1+2)×2×12×2=2+2=4. 图1图2自测反馈1. 在长方体ABCDA 1B 1C 1D 1中,AB =AD =3cm ,AA 1=2cm ,则四棱锥ABB 1D 1D 的体积为 6 cm 3.解析:如图,连结AC 交BD 于点O ,则AC ⊥BD.因为D 1D ⊥AC ,BD ∩D 1D =D ,所以AC ⊥平面BDD 1B 1,所以AO 是四棱锥ABB 1D 1D 的高.因为AO =12AC =322,S 矩形B 1BDD 1=2×32=62,所以V ABB 1D 1D =13×322×62=6.2. 如图,在三棱柱A 1B 1C 1ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥FADE 的体积为V 1,三棱柱A 1B 1C 1ABC 的体积为V 2,则V 1∶V 2= 1∶24 .解析:设三棱柱A 1B 1C 1ABC 的高为h ,底面三角形ABC 的面积为S.因为D ,E ,F 分别是AB ,AC ,A 1A 的中点,所以△AED ∽△ACB ,AF =12AA 1,所以S △AED =14S △ABC ,则V 1=13×14S ×12h =124Sh ,V 2=Sh ,所以V 1V 2=124.3. 已知圆台的母线长为4cm ,母线与轴的夹角为30°,上底面半径是下底面半径的12,则这个圆台的侧面积是 24π cm 2.解析:如图是将圆台还原为圆锥后的轴截面.由题意知AC =4cm ,∠ASO =30°,O 1C =12OA. 设O 1C =r ,则OA =2r.因为O 1C SC =OASA=sin 30°,所以SC =2r ,SA =4r ,所以AC =SA -SC =2r =4,解得r =2,所以圆台的侧面积为π(r +2r)×4=π(2+4)×4=24π.4. 已知正三棱锥的底面边长为2,侧棱长为433,则它的体积为 3 .解析:因为正三棱锥的底面边长为2,所以底面正三角形的高为2×32=3,所以底面中心到三角形顶点的距离为233.因为正三棱锥的侧棱长为433,所以正三棱锥的高为⎝⎛⎭⎫4332-⎝⎛⎭⎫2332=2,所以该三棱锥的体积为13×12×2×3×2=233.5. 如图,半径为R 的半圆内的阴影部分以直径AB 所在直线为轴,旋转一周得到一几何体,其中∠BAC =30°,求该几何体的体积.解析:过点C 作CD ⊥AB ,垂足为D ,在半圆中可得∠BCA =90°,∠BAC =30°,AB =2R ,所以AC =3R ,BC =R ,CD =32R , 所以AD =(3R )2-⎝⎛⎭⎫32R 2=32R , 所以BD =2R -32R =R2,所以V 球=4π3R 3,V 圆锥AD =13π⎝⎛⎭⎫32R 2×32R =3π8R 3,V 圆锥BD =13π⎝⎛⎭⎫32R 2×R 2=π8R 3,所以V 几何体=4π3R 3-3π8R 3-π8R 3=5π6R 3.1. 用侧面展开图的方法解决相关问题,是空间问题平面化思想的应用.关键是要搞清楚展开图的形状,及其数量关系.如,例1及其跟踪练习.例1跟踪练习中的“补台成锥”,自测反馈第5题的组合几何体,“割补法”是解决此类问题的常用方法.2. 处理折叠问题,如例2中,折痕CD 左右两部分仍是平面图形,其中的数量关系、位置关系没有变化,而两部分元素之间的平行、垂直等位置关系和相互间的数量关系.3. 你还有哪些体悟,请写下来:。
柱、锥、台、球的表面积和体积一、教学目标能运用公式求柱、锥、台、球的表面积和体积.二、知识梳理【回顾】∙阅读课本必修2第47页至59页,理解以下内容.正棱柱、正棱锥、正棱台的侧面积公式及其关系;圆柱、圆锥、圆台的体积公式及其关系;柱体、锥体、台体的体积公式及其关系;球的表面积、体积公式.三、诊断练习1、教学处理:课前由学生自主完成4道小题,并要求将解题过程扼要地写在学习笔记栏。
课前抽查批阅部分同学的解答,了解学生的思路及主要错误。
找出学生错误的原因,设计“问题串”,将知识问题化,通过问题驱动,使教学言而有物,帮助学生内化知识,初步形成能力。
点评时要简洁,要点击要害。
2、诊断练习点评题1.若圆锥的侧面积为π2,底面积为π,则该圆锥的体积为__________.【分析与点评】本题是容易题,主要是考查圆锥侧面积公式和体积公式的正确使用.题2.如图,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是__________.【分析与点评】该多面体是正四棱锥,侧棱长为1,底面正方形外接圆的半径等于22,由侧棱、底面正方形外接圆半径及高之间关系求解.题3.正方体ABCD —A 1B 1C 1D 1的棱长为3,则四面体AB 1CD 1的外接球的体积为__________.【分析与点评】正方体外接球半径是正方体棱长的3倍得到球的半径求解. 四面体的外接球就是该正方体的外接球变式1:棱长分别是2,3,4的长方体外接球的体积是________.变式2:棱长都是2的正四面体的外接球的表面积为________.题4. 已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为_______【分析与点评】:在直角三角形ASC 中,AC =1,∠SAC =90°,SC =2,∴SA =4-1=3;同理SB = 3.过A 点作SC 的垂线交SC 于D 点,连接DB ,因△SAC ≌△SBC ,故BD ⊥SC ,故SC ⊥平面ABD ,且平面ABD为等腰三角形,因∠ASC =30°,故AD =12SA =32,则△ABD 的面积为12×1× AD 2-⎝ ⎛⎭⎪⎫122 =24,则三棱锥的体积为13×24×2=26. 3、要点归纳(1)注意各个公式的推导过程,不要死记硬背公式本身,要熟悉柱体中的矩形、锥体中的直角三角形、台体中的直角梯形等特征图形在公式推导中的作用.(2)如果不是正棱柱、正棱锥、正棱台,在求其侧面积或全面积时,应对每一个侧面分别求解后再相加.(3)注意求体积的一此特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用方法.四、范例导析例1 如图,已知正三棱柱ABC —A 1B 1C 1的底面边长为1,高为8,一质点自A 点出发,沿着三棱柱的侧面绕行两周到达A 点的最短路线的长为____________. 【教学处理】先将“沿着三棱柱的侧面绕行两周到达A 点”改为“沿着三棱柱的侧面绕行一周到达A 点”组织学生讨论解法,在有解决方案后,改回原题.如能 C A B配合实物模型和细线演示一,效果更好.【引导分析与精讲建议】1、学生大多接触过“蚂蚁爬火柴盒”问题,先提醒学生对照条件,判断能否用同样的方法解决?2、“沿着三棱柱的侧面绕行两周到达A 点”与“沿着三棱柱的侧面绕行一周到达A 点”的差别是什么?如何调整方案?3、可继续把条件“沿着三棱柱的侧面绕行两周到达A 点”变换成:“沿着三棱柱的侧面绕行十周到达A 点”和“沿着三棱柱的侧面绕行一周多(不足两周)到达C 点”让学生讨论如何调整方案.例2. 如图,四棱锥P -ABCD 中,底面ABCD 为菱形,且∠ABC =60°,PA ⊥AB ,E ,F ,G 分别是线段PA ,PD ,CD 的中点.(1)求证:CD ⊥平面AEG ;(2)若PA =2,PB =PD =5,求三棱锥F -ABE 的体积.例2答案:(1)证明 连接AC ,因为四边形ABCD 为菱形,且∠ABC =60°,所以AC =AD ,又G 为CD 的中点,所以AG ⊥CD ,由PA ⊥AB ,AB ∥CD ,得PA ⊥CD ,又PA ∩AG =A ,故CD ⊥平面AEG .(2)解 因为PA =2,PB =PD =5,所以AB =1,AE =1,易知△PAB ≌△PAD ,所以PA ⊥AD ,由E ,F 分别是线段PA ,PD 的中点得EF ∥AD ,EF ⊥PA ,所以B 到平面AEF 的距离为32, 所以V F -ABE =V B -AEF =13×S △AEF ×32=13×12×1×12×32=324. 变式题:已知正三棱台的上、下底面边长分别是2cm 和4cm ,侧棱长,试求该几何体的体积.【教学处理】读题、识图(不给出辅助线的图),引导学生回顾棱台概念,搞清各个面的形状大小,理解体积公式。
第一章空间立体几何初步1.3 空间几何体的表面积与体积1.3.1柱、锥、台的表面积与体积一、学习目标1.知识与技能(1)理解正棱柱、正棱锥、正棱台的侧面积及表面积的定义.(2)了解圆柱、圆锥、圆台的表面积与体积的计算公式.能够运用柱、锥、台的表面积与体积公式求简单几何体的表面积与体积.(重点)(3)了解球的表面积与体积公式.(4)会解决球的组合体及三视图中球的有关问题.(难点)2.过程与方法(1)让学生经历几何体的侧面展开过程,感知几何体的形状.(2)让学生通过对照比较,发现柱体、锥体、台体三者间体积的关系.(3)通过作轴截面,寻找旋转体类组合体中量与量之间的关系.3.情感、态度与价值观使学生通过表面积与体积公式的探究过程,体会数学的转化和类比的思想,从而增强学习的积极性.二、重点、难点重点:棱柱、棱锥、棱台和球的表面积计算.难点:棱台的表面积公式的推导.重难点突破:先从学生熟悉的正方体和长方体的展开图为切入点,分析几何体的展开图与其表面积的关系,然后通过“探究”和“思考”引导学生归纳棱柱、棱锥和棱台的表面积公式,并让学生熟悉并掌握球的表面积公式.三、教学方法类比、练习、自学四、专家建议通过对柱、锥、台的表面积与体积的学习探究,明确柱体、锥体、台体三者间体积的关系,明确表面积与体积公式的探究过程,体会数学的转化和类比的思想。
五、教学过程●新知探究知识点1 棱柱、棱锥、棱台的表面积【问题导思】1.正方体与长方体的展开图如下图(1)(2)所示,则相应几何体的表面积与其展开图的面积有何关系?【提示】相等.2.棱柱、棱锥、棱台的表面积与其展开图的面积是否也都相等?【提示】是.棱柱、棱锥、棱台的表面积就是各个面的面积的和,也就是展开图的面积.知识点2 圆柱、圆锥、圆台的表面积【问题导思】圆柱、圆锥、圆台的侧面展开图分别如图中(1)、(2)、(3)所示.1.上述几何体侧面展开图的面积与该几何体的表面积相等吗?【提示】不相等.2.如何计算上述几何体的表面积?【提示】几何体的表面积等于侧面积与底面积之和.圆柱、圆锥、圆台的表面积圆柱(底面半径为r,母线长为l) 圆锥(底面半径为r,母线长为l)圆台(上、下底面半径为r′,r,母线长为l)底面积S底=πr2S底=πr2S底=π(r′2+r2) 侧面积S侧=2πrl S侧=πrl S侧=π(r′l+rl)表面积S表=2πr(r+l) S表=πr(r+l)S表=π(r′2+r2+r′l+rl)【问题导思】1.正方体、长方体、圆柱的体积公式如何表示?【提示】V=Sh,其中S为底面面积,h为高.2.上述体积公式对所有柱体都适用吗?【提示】都适用.1.祖暅原理(1)“幂势既同,则积不容异”,即“夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等”.(2)作用:等底面积、等高的两个柱体或锥体的体积相等.(3)说明:祖暅原理充分体现了空间与平面问题的相互转化思想,是推导柱、锥、台体积公式的理论依据.2.柱、锥、台、球的体积其中S′、S分别表示上、下底面的面积,h表示高,r′和r分别表示上、下底面圆的半径,R表示球的半径.名称体积(V)柱体棱柱Sh圆柱πr2h锥体棱锥13Sh圆锥13πr2h台体棱台13h(S+SS′+S′)圆台13πh(r 2+rr′+r′2)●典例分析类型1 求棱柱、棱锥、棱台的表面积例1.已知正四棱锥底面边长为4,高与斜高夹角为30°.求它的侧面积和表面积.【分析】根据多面体的侧面积公式,可以先求出相应多面体的底面边长和各侧面的斜高,进而由公式求解.【解析】 如图所示,设正四棱锥的高为PO ,斜高为PE ,底面边心距为OE ,它们组成一个直角三角形POE.∵OE =42=2,∠OPE =30°,∴PE =OE sin 30°=212=4.∴S 正四棱锥侧=12ch ′=12×(4×4)×4=32,S 表面积=42+32=48.即该正四棱锥的侧面积是32,表面积是48.方法总结:1.要求锥体的侧面积及表面积,要利用已知条件寻求公式中所需的条件,一般用锥体的高、斜高、底面边心距等量组成的直角三角形求解相应的量.2.空间几何体的表面积运算,一般是转化为平面几何图形的运算,往往通过解三角形来完成. 变式训练:(2013·XX 高考)某几何体的三视图如图所示,则该几何体的表面积为()A .180B .200C .220D .240【解析】 由三视图知识知该几何体是底面为等腰梯形的直四棱柱.等腰梯形的上底长为2,下底长为8,高为4,腰长为5,直四棱柱的高为10,所以S 底=12×(8+2)×4×2=40,S 侧=10×8+10×2+2×10×5=200,S 表=40+200=240,故选D.【答案】 D类型2 求圆柱、圆锥、圆台的表面积图1-1-64例2.如图1-1-64所示,已知直角梯形ABCD ,BC ∥AD ,∠ABC =90°,AB =5 cm ,BC =16 cm ,AD =4 cm.求以AB 所在直线为轴旋转一周所得几何体的表面积.【分析】分析几何体的形状――→选择表面积公式求表面积【解析】以AB 所在直线为轴旋转一周所得几何体是圆台,其上底半径是4 cm ,下底半径是16 cm ,母线DC =52+(16-4)2=13 (cm).∴该几何体的表面积为π(4+16)×13+π×42+π×162=532π(cm 2).方法总结:1.圆柱、圆锥、圆台的相关几何量都集中体现在轴截面上,因此准确把握轴截面中的相关量是求解旋转体表面积的关键.2.棱锥及棱台的表面积计算常借助斜高、侧棱及其在底面的射影与高、底面边长等构成的直角三角形(或梯形)求解.变式训练:在题设条件不变的情况下,求以BC 所在直线为轴旋转一周所得几何体的表面积.【解】 以BC 所在直线为轴旋转一周所得几何体是圆柱和圆锥的组合体,如图所示: 其中圆锥的高为16-4=12(cm),圆柱的母线长为AD =4 cm ,故该几何体的表面积为: 2π×5×4+π×52+π×5×13=130π(cm 2).类型三求柱体的体积例3.(2014·XX 高考)某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A .72 cm 3B .90 cm 3C .108 cm 3D .138 cm 3【分析】三视图――→还原几何体――→是否分割计算体积 【解析】该几何体为一个组合体,左侧为三棱柱,右侧为长方体,如图所示.V =V 三棱柱+V 长方体=12×4×3×3+4×3×6=18+72=90(cm 3).【答案】 B方法总结:1.解答此类问题的关键是先由三视图还原作出直观图,然后根据三视图中的数据在直观图中求出计算体积所需要的数据.2.若由三视图还原的几何体的直观图由几部分组成,求几何体的体积时,依据需要先将几何体分割分别求解,最后求和.变式训练:一个几何体的三视图如图所示,该几何体的体积是()A .16+42B .12+4 2C .8D .4【解析】 由三视图可知,该几何体是一个平放的直三棱柱,棱柱的底面为等腰直角三角形,棱柱的高为2,所以该几何体的体积为12×2×2×2=4,选D.【答案】 D类型4 求锥体的体积例4.如图三棱台ABC -A 1B 1C 1中,AB ∶A 1B 1=1∶2,求三棱锥A 1-ABC ,三棱锥B -A 1B 1C ,三棱锥C -A 1B 1C 1的体积之比.【分析】AB ∶A 1B 1=1∶2―→S △ABC ∶S △A 1B 1C 1―→计算VA 1-ABC ―→计算VC -A 1B 1C 1―→计算VB -A 1B 1C【解析】 设棱台的高为h ,S △ABC =S ,则S △A 1B 1C 1=4S.∴VA 1-ABC =13S △ABC ·h =13Sh ,VC -A 1B 1C 1=13S △A 1B 1C 1·h =43Sh.又V 台=13h(S +4S +2S)=73Sh ,∴VB -A 1B 1C =V 台-VA 1-ABC -VC -A 1B 1C 1 =73Sh -Sh 3-4Sh 3=23Sh , ∴体积比为1∶2∶4.方法总结:三棱柱、三棱台可以分割成三个三棱锥,分割后可求锥体的体积和柱体或台体的体积关系,割补法在立体几何中是一种重要的方法.变式训练:在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是()A.23B.76C.45D.56【解析】 如图,去掉的一个棱锥的体积是13×⎝⎛⎭⎫12×12×12×12=148,剩余几何体的体积是1-8×148=56.【答案】 D类型5 求台体的体积例5.已知正四棱台两底面边长分别为20 cm 和10 cm ,侧面积是780 cm 2.求正四棱台的体积. 【分析】可以尝试借助四棱台内的直角梯形.求出棱台底面积和高,从而求出体积. 【解析】如图所示,正四棱台ABCD -A 1B 1C 1D 1中,A 1B 1=10 cm ,AB =20 cm.取A 1B 1的中点E 1,AB 的中点E ,则E 1E 是侧面ABB 1A 1的高.设O 1、O 分别是上、下底面的中心,则四边形EOO 1E 1是直角梯形.由S 侧=4×12(10+20)·E 1E =780,得EE 1=13,在直角梯形EOO 1E 1中,O 1E 1=12A 1B 1=5,OE =12AB =10,∴O 1O =E 1E 2-(OE -O 1E 1)2=12, V 正四棱台=13×12×(102+202+10×20) =2 800 (cm 3).故正四棱台的体积为2 800 cm 3.方法总结:求台体的体积关键是求出上、下底面的面积和台体的高.要注意充分运用棱台内的直角梯形或圆台的轴截面寻求相关量之间的关系.变式训练:本例若改为“正四棱台的上、下两底的底面边长分别为2 cm和4 cm,侧棱长为2 cm,求该棱台的体积.”【解】如图,正四棱台ABCD-A1B1C1D1中,上、下底面边长分别为2 cm和4 cm,则O1B1= 2 cm,OB=2 2 cm,过点B1作B1M⊥OB于点M,那么B1M为正四棱台的高,在Rt△BMB1中,BB1=2 cm,MB=(22-2)= 2 (cm).根据勾股定理MB1=BB21-MB2=22-(2)2=2(cm).S上=22=4 (cm2),S下=42=16(cm2),∴V正四棱台=13×2×(4+4×16+16)=13×2×28=283 2 (cm3).六、课堂总结一、柱、锥、台的表面积1.如果长方体的长、宽、高分别为a,b,c,那么它的表面积S表=2(ab+bc+ac);如果正方体的棱长为a,那么它的表面积为S表=6a2.2.求棱锥的表面积,可以先求侧面积,再求底面积.求侧面积,要清楚各侧面三角形的形状,并找出求其面积的条件.求底面积,要清楚底面多边形的形状及求其面积的条件.3.求棱台的侧面积时要注意利用公式及正棱台中的直角梯形,它是架起求侧面积关系式中的未知量与满足题目条件中几何图形元素间关系的桥梁.二、柱、锥、台的体积1.计算柱体、锥体和台体的体积时,关键是根据条件找出相应的底面面积和高,要充分运用多面体的有关截面及旋转体的轴截面,将空间问题转化为平面问题.旋转体的轴截面是用过旋转轴的平面去截旋转体而得到的截面.例如,圆柱的轴截面是矩形,圆锥的轴截面是三角形,圆台的轴截面是梯形.2.在求不规则的几何体的体积时,可利用分割几何体或补全几何体的方法转化为柱、锥、台的体积计算问题.七、板书设计柱、锥、台的表面积与体积学习目标(1)理解正棱柱、正棱锥、正棱台的侧面积及表面积的定义.(2)了解圆柱、圆锥、圆台的表面积与体积的计算公式.能够运用柱、锥、台的表面积与体积公式求简单几何体的表面积与体积.(重点)(3)了解球的表面积与体积公式.知识点解析1.棱柱、棱锥、棱台的表面积2.圆柱、圆锥、圆台的表面积3. 柱体、锥体、台体的体积注意事项:1.典例分析例1例2例3例4学生练习小结:作业当堂检测反馈八、当堂检测1.底面为正方形的直棱柱,它的底面对角线长为2,体对角线长为6,则这个棱柱的侧面积是() A .2 B .4 C .6 D .8【解析】 由已知得底面边长为1,侧棱长为6-2=2.∴S 侧=1×2×4=8. 【答案】 D2.长方体同一顶点上的三条棱长分别为1,2,3,则长方体的体积与表面积分别为() A .6,22B .3,22C .6,11D .3,11【解析】 V =1×2×3=6,S =2(1×2)+2(1×3)+2(2×3)=22. 【答案】 A3.圆台的上、下底面半径分别是3和4,母线长为6,则其表面积等于() A .72 B .42π C .67π D .72π【解析】 S 圆台表=S 圆台侧+S 上底+S 下底=π(3+4)·6+π·32+π·42=67π. 【答案】 C4.侧面是直角三角形的正三棱锥,底面边长为a ,该三棱锥的表面积为() A.3+34a 2 B.34a 2C.3+32a 2D.6+34a 2【解析】 底面边长为a ,则斜高为a2,故S 侧=3×12a ×12a =34a 2.而S 底=34a 2,故S 表=3+34a 2.【答案】 A5.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,则三棱锥D 1-ACD 的体积是()A.16B.13C.12D .1 【解析】 三棱锥D 1-ADC 的体积V =13S △ADC ×D 1D =13×12×AD ×DC ×D 1D =13×12=16. 【答案】 A6.根据图中标出的尺寸,求各几何体的体积.【解】 (1)该几何体是圆锥,高h =10,底面半径r =3,所以底面积S =πr 2=9π,则V =13Sh =13×9π×10=30π.(2)该几何体是正四棱台,两底面中心连线就是高h =6,上底面面积S 上=64,下底面面积S 下=144,则V =13(S 上+S 下+S 上·S 下)h =13×(64+144+64×144)×6=608. 九、课后延伸1.如图所示,已知等腰梯形ABCD 的上底AD =2 cm ,下底BC =10 cm ,底角∠ABC =60°,现绕腰AB 旋转一周,求所得的旋转体的体积.【分析】分析旋转体的特征→分割→对每部分几何体求体积→求组合体的体积【解析】过D 作DE ⊥AB 于E ,过C 作CF ⊥AB 于F ,Rt △BCF 绕AB 旋转一周形成以CF 为底面半径,BC 为母线长的圆锥;直角梯形CFED 绕AB 旋转一周形成圆台;直角三角形ADE 绕AB 旋转一周形成圆锥,那么梯形ABCD 绕AB 旋转一周所得的几何体是以CF 为底面半径的圆锥和圆台,挖去以A 为顶点、以DE 为底面半径的圆锥的组合体.∵AD =2,BC =10,∠ABC =60°, ∴在Rt △BCF 中,BF =5,FC =5 3. ∵AD ∥BC ,∴∠DAE =∠ABC =60°, ∴在Rt △ADE 中,DE =3,AE =1. 又在等腰梯形ABCD 中可求AB =8, ∴AF =AB -BF =8-5=3,EF =AE +AF =4,∴旋转后所得几何体的体积为V =13π·BF ·FC 2+13π·EF ·(DE 2+FC 2+DE·FC)-13π·AE ·DE 2 =13π·5·(53)2+13π·4·[(3)2+(53)2+3·53]-13π·1·(3)2=248π(cm 3) 故所得的旋转体的体积为248π cm 3.方法总结:求组合体的体积时,常根据相应情况把它分解成柱、锥、台体等后分别求体积,然后求代数和. 变式训练:y =|x|和y =3围成的封闭平面图形绕y 轴旋转一周所得到的旋转体的体积与绕x 轴旋转一周所得到的旋转体的体积之比是()A .4∶1B .1∶4C .(1+2)∶(4+22)D .以上都不对【解析】 如图.封闭平面图形为△AOB ,绕y 轴旋转一周所得几何体的体积V 1=13π×32×3=9π,△AOB 绕x 轴旋转一周所得几何体的体积为V 2=π×32×6-2×13π×32×3=36π,∴V 1∶V 2=9π∶36π=1∶4.【答案】 B2.如果一个几何体的三视图如图所示(单位:cm),则此几何体的表面积是()A .(80+162)cm 2B .96 cm 2C .(96+162)cm 2D .112 cm 2【分析】通过三视图的知识及几何体表面积公式求解.【解析】 由题意知该几何体是一个正方体与一个正四棱锥的组合体.正方体五个面的面积和为80 cm 2;正四棱锥的侧面积为16 2 cm 2.【答案】 A方法总结:解决与三视图有关的几何体的问题,首先要想象或画出直观图,然后再去求解. 变式训练:某四棱锥的三视图如图所示,该四棱锥的表面积是()A .32B .16+16 2人教A 版数学教案必修2 第一章1.3 第一课时 第11页共11页C .48D .16+32 2 【解析】 由三视图还原几何体的直观图如图所示.S 表=⎝⎛⎭⎫12×4×22×4+4×4=16+16 2. 【答案】 B。
1.1.2 棱柱、棱锥、棱台和球的表面积和体积学习目标:1.了解并掌握球的体积和表面积公式.2.会用球的体积与表面积公式解决实际问题.(重点)3.会解决球的组合体及三视图中球的有关问题.(难点、易混点)[自 主 预 习·探 新 知]1.球的体积设球的半径为R ,则球的体积V =34πR 3.2.球的表面积设球的半径为R ,则球的表面积S =4πR 2,即球的表面积等于它的大圆面积的4倍.[基础自测]1.思考辨析(1)球的体积之比等于半径比的平方.( )(2)长方体既有外接球又有内切球.( )(3)球面展开一定是平面的圆面.( )(4)球的三视图都是圆.( )[提示] (1)× 体积比应为半径比的立方.(2)× 长方体不一定有内切球.(3)× 球面展不成平面.(4)√2.若球的过球心的圆面的周长是C ,则这个球的表面积是( )A .4πC2B .2πC2C .πC2D .2πC 2C [由2πR =C ,得R =2πC ,所以S 球面=4πR 2=πC2.]3.若将气球的半径扩大到原来的2倍,则它的体积扩大到原来的( )A .2倍B .4倍C .8倍D .16倍C [设气球原来的半径为r ,体积为V ,则V =34πr 3.当气球的半径扩大到原来的2倍后,其体积变为34π(2r )3=8×34πr 3.]4.一个球的外切正方体的表面积为6 cm 2,则此球的体积为( )A .34π cm 3B .86π cm 3C .61π cm 3D .66π cm 3 C [设球的直径为2R cm ,则正方体的棱长为2R cm ,所以6×4R 2=6,解得R =21,所以球的体积为34π×81=61π(cm 3).][合 作 探 究·攻 重 难]球的表面积与体积(2)已知球的体积为3500π,求它的表面积.[解] (1)设球的半径为r ,则由已知得4πr 2=64π,r =4.所以球的体积:V =34×π×r 3=3256π.(2)设球的半径为R ,由已知得34πR 3=3500π,所以R =5, 所以球的表面积为:S =4πR 2=4π×52=100π.[规律方法] 求球的表面积与体积的一个关键和两个结论(1)关键:把握住球的表面积公式S 球=4πR 2,球的体积公式V 球=34πR 3是计算球的表面积和体积的关键,半径与球心是确定球的条件.把握住公式,球的体积与表面积计算的相关题目也就迎刃而解了.(2)两个结论:①两个球的表面积之比等于这两个球的半径比的平方;②两个球的体积之比等于这两个球的半径比的立方.[跟踪训练]1.过球一条半径的中点,作一垂直于这个半径的截面,截面面积为48π cm 2,则球的表面积为________cm 2.256π [易知截面为一圆面,如图所示,圆O 是球的过已知半径的大圆,AB 是截面圆的直径,作OC 垂直AB 于点C ,连接OA .由截面面积为48π cm 2,可得AC =4 cm.设OA =R ,则OC =21R ,所以R 2-R 1=(4)2,解得R =8 cm.故球的表面积S =4πR 2=256π(cm 2). ]2.一平面截一球得到直径是6 cm 的圆面,球心到这个圆面的距离是4 cm ,则该球的体积是 ( )A .3100π cm 3B .3208π cm 3C .3500π cm 3D .313π cm 3C [根据球的截面的性质,得球的半径R ==5(cm),所以V 球=34πR 3=3500π(cm 3).]并且放入一个半径为r 的铁球,这时水面恰好和球面相切,问将球从圆锥内取出后,圆锥内水面的高是多少?思路探究:设出球未取出时的水面高度和取出后的水面高度,由水面下降后减少的体积来建立一个关系式来解决.[解] 设△P AB 所在平面为轴截面,AB 为水平面,设球未取出时,水面高PC =h ,球取出后水面高PH =x ,如图所示.∵AC =r ,PC =3r ,∴以AB 为底面直径的圆锥的容积为V 圆锥=31πAC 2·PC=31π(r )2·3r =3πr 3,V 球=34πr 3.球取出后水面下降到EF ,水的体积为V 水=31πEH 2·PH =31π(PH ·tan 30°)2·PH =91πx 3.而V 水=V 圆锥-V 球,即91πx 3=3πr 3-34πr 3,∴x =153r . 故球取出后水面的高为153r .[规律方法]1.画出截面图是解答本题的关键.2.球的体积和表面积有着非常重要的应用.在具体问题中,要分清涉及的是体积问题还是表面积问题,然后再利用等量关系进行计算.[跟踪训练]2.圆柱形容器的内壁底面半径为5 cm ,两个直径为5 cm 的玻璃小球都浸没于容器的水中,若取出这两个小球,则容器的水面将下降多少?[解] 设取出小球后,容器中水面下降h cm ,两个小球的体积为V 球=2×34π×253=3125π,此体积即等于它们在容器中排出水的体积V =π×52×h ,所以3125π=π×52×h ,所以h =35(cm),即若取出这两个小球,则容器的水面将下降35 cm.与球有关的切、接问题[1.若长方体的长、宽、高分别为a ,b ,c ,则其外接球半径R 与三条棱长有何关系?[提示] 2R =.2.棱长为a 的正方体的外接球,其半径R 与棱长a 有何数量关系?其内切球呢?[提示] 外接球半径R =23a ;内接球半径R =21a .3.若一球与正方体的12条棱相切,则球半径R 与棱长a 有何数量关系?[提示] R =22a .(1)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为,则此球的体积为( )【导学号:07742068】A .πB .4πC .4πD .6π(2)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为________.思路探究:(1)作出截面图,由图易求出半径R ,进而求出其体积.(2)先求出球半径,再求球的表面积.(1)B (2)14π [(1)画出截面图,如图:∴R ==.∴其体积V =34πR 3=4π.故选B.(2)球的直径是长方体的体对角线,∴2R ==,S =4πR 2=14π.](1)在处理与球有关的相接、相切问题时,一般要通过作一适当的截面,将立体问题转化为平面问题解决,而这类截面往往指的是圆锥的轴截面、球的大圆等.(2)几个常用结论①球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;②球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径;③球与圆柱的底面和侧面均相切,则球的直径等于圆柱的高,也等于圆柱底面圆的直径;④球与棱锥相切,则可利用V 棱锥=31S 底h =31S 表R ,求球的半径R .[当 堂 达 标·固 双 基]1.直径为6的球的表面积和体积分别是( )A .144π,144πB .144π,36πC .36π,144πD .36π,36πD [半径R =3.所以S 表=4πR 2=36π,V =34πR 3=34π×27=36π. 故选D.]2.正方体的表面积为54,则它的外接球的表面积为( )A .27πB .32πC .36πD .23πA [设正方体的棱长为a ,则S =6a 2=54,∴a =3.∴其外接球半径为R =23a =23.∴外接球表面积为S =4πR 2=4π×23=27π.]3.表面积为Q 的多面体的每一个面都与表面积为64π的球相切,则这个多面体的体积为( )A.31Q B .Q C.34Q D .2Q C [4πR 2=64π⇒R =4,∴V =31QR =34Q ,故选C.]4.两个半径为1的实心铁球,熔化成一个球,这个大球的半径是________. 23 [设大球的半径为R ,则有34πR 3=2×34π×13,R 3=2,所以R =23.] 5.圆柱、圆锥的底面半径和球的半径都是r ,圆柱、圆锥的高都是2r ,(1)求圆柱、圆锥、球的体积之比;(2)求圆柱、圆锥、球的表面积之比.[解] (1)V 圆柱=πr 2·2r =2πr 3,V 圆锥=31·πr 2·2r =32πr 3,V 球=34πr 3,所以V 圆柱∶V 圆锥∶V 球=3∶1∶2.(2)S 圆柱=2πr ·2r +2πr 2=6πr 2,S 圆锥=πr ·+πr 2=(+1)πr 2,S 球=4πr 2,所以S 圆柱∶S 圆锥∶S 球=6∶(+1)∶4.。
课题:柱、锥、台、球的面积与体积备课时间:2008年12月1日主备人:唐春兵编号:043一、知识点梳理1、多面体的表面积多面体的表面积是各个侧面的面积和底面面积的总和.2、旋转体的表面积(1)圆柱的表面积公式S= (其中r为底面半径,l为母线长).(2)圆锥的表面积公式S= (其中r为底面半径,l为母线长).(3)圆台的表面积公式S= (其中/,r r为上、下底面半径,l为母线长). (4)球的表面积公式S= (其中R为球半径).3、几何体的体积公式(1)柱体的体积公式V= (其中S为底面面积,h为高).(2)锥体的体积公式V= (其中S为底面面积,h为高).(3)台体的体积公式V= (其中/S S、为上、下底面面积,h为高). (4)球的体积公式V= (其中R为球的半径).二、基础巩固练习1、一个正三棱柱的三视图如右图所示,则这个正三棱柱的表面积为 .2、棱长为1的正三棱锥的全面积是 .3、一张长、宽分别为8cm和4cm的矩形硬纸板,将这硬纸板折成正四棱柱的侧面,则此四棱柱的对角线长为 .4、圆锥母线长6cm,底面直径为3cm,在母线SA上有一点B,AB=2cm,那么由A点绕圆锥侧面一周到B点的最短距离为 .5、已知正四棱柱的底面面积为4,过相对侧棱的截面面积为8,则该正四棱柱的体积为 .6、一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 .7、将半径为R的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥的底面半径依次为123,,r r r,则123r r r++的值为 .8、若正四棱锥的底面积是Q,侧面积是S,则它的体积为 .三、例题精选例1、一个正三棱锥的高和底面边长都为a,求它的侧面积以及侧棱与底面所成的角.例2、将一个底面圆的直径为2,高为1的圆柱截成横截面为长方形的棱柱,设这个长方形截面的一条边长为x,对角线长为2,截面的面积为A.(1)求面积A的以x为自变量的函数式;(2)求出截得棱柱的体积的最大值.例3、如图,一个倒圆锥形容器,它的轴截面是正三角形,在容器内放一个半径为r的铁球,并向容器内注水,使水面恰好与铁球面相切.将球取出后,容器内的水深是多少?左视图主视图俯视图单位:mmAMCO1BO r例4、如图,在三棱柱111ABC A B C -中,底面是边长为a 的正三角形,且1AA 与,AC AB 所成角均为60︒,且1A A AB =,求该三棱柱的侧面积和体积例5、如图所示,等腰ABC ∆的底边AB =3CD =,点E 是线段BD 上异于点,B D 的动点,点F 在BC 边上,且EF AB ⊥.现沿EF 将BEF ∆折起到PEF ∆的位置,使.PE AE ⊥记,()BE x V x =表示四棱锥P ACFE -的体积.(1)求()V x 的表达式; (2)当x 为何值时,()V x 取得最大值.四、反馈练习1、正四棱台的上下底面边长分别为方程29180x x -+=的两根,其侧面积等于两底面积之和,则其高与斜高分别为 .2、正方体的全面积为2a ,它的顶点都在一个球面上,则这个球的表面积为 .3、体积为352cm 的圆台,一个底面面积是另一个底面面积的9倍,那么截得这个圆台的圆锥的体积为 .4、已知圆1O 是半径为R 的球O 的一个小圆,且圆1O 的面积与球O 的表面积的比值为29,则线段1OO 与R 的比值为 .5、已知正三棱锥P ABC -的外接球O 的半径为1,且满足0OA OB OC ++=,则正三棱锥P ABC -的体积为 .6、如图,已知正方体1111ABCD A B C D -的棱长为2,长为2的线段MN 的一个端点M 在楞1DD 上运动,点N 在正方形ABCD 内运动,则MN 中点P 的轨迹的面积是 .ABC DOA 1B 1C 1ABCFED PA 1AB CDB 1C 1D 1 M N7、正三棱锥S ABC -中,M N 、分别是棱SC BC 、中点,MN AM ⊥,若SA =,则此三棱锥S ABC -外接球的表面积是 .8、已知直平行六面体1111ABCD A B C D -的各棱长均为3,60BAD ∠=︒,长为2的线段MN 的一个端点M 在1DD 上运动,另一个端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹(曲面)与其一顶点D 的三个面所围成的几何体的体积为 . 9、如图,线段AB α⊂平面,线段CD ⊂平面β,且平面//α平面,,,,AB CD AB CD a βαβ⊥==的距离为h ,求四面体ABCD 的体积.10 、已知正三棱柱的底面边长为1,侧棱长为2,这样的三棱柱能否放进一个体积为16π的小球? AB CDβα。
A 级 课时对点练
一、选择题(本题共5小题,每小题5分,共25分) 1.母线长为1的圆锥的侧面展开图的圆心角等于4
3
π,则该
圆锥的体积为 ( )
A.2281π
B.881π
C.4581π
D.1081π
解析:设圆锥的底面半径为r ,则2πr 1=43π,∴r =2
3
,
∴圆锥的高h = 1-⎝ ⎛⎭
⎪⎫232
=53.
∴圆锥的体积V =13πr 2h =45
81
π.
答案:C
2.如图,是一个几何
体的三视图,侧视图和正视图均为矩形, 俯视图为正三角形,尺寸如图,则该几何 体的侧面积为 ( )
A .6
B .12 3
C .24
D .3
解析:注意到此题的几何体是底面边长为2的正三角 形,于是侧面积为S =6×4=24.
答案:C
3.下图为一个几何体的三视图,则该几何体的表面积为(不考虑接触点) ( )
A .6+3+π
B .18+3+4π
C .18+23+π
D .32+π
解析:据三视图可得几何体为一正三棱柱和其上方放置一个直径为1的球,其中正三棱柱底面边长为2,侧棱长为3,故其表面积
S =4π×⎝ ⎛⎭
⎪⎫
122+2×
3
4
×22+3×2×3=18+23+π. 答案:C
4.一个多面体的三视
图分别为正方形、等腰三角形和矩形,
如图所示.则该多面体的体积()
A.48 cm3
B.24 cm3
C.32 cm3
D.28 cm3
解析:据已知三视图可知几何体为一个三棱柱,如图.
其中侧面矩形ABCD中,AD=6(cm),AB=4(cm),底面等
腰三角形ADF的底边AD上的高为4(cm),则其体积V=1 2
×4×4×6=48(cm3).
答案:A
5.已知某几何体的
三视图如图,其中正(主)视图中半圆
的半径为1,则该几何体的体积为()
A.24-3
2πB.24-
π
3
C.24-πD.24-π2
解析:据三视图可得几何体为一长方体内挖去一个半圆柱,其中长方体的棱长分别为:2,3,4,半圆柱的底面半径
为1,母线长为3,故其体积V =2×3×4-1
2
×π×12×3=
24-3π2
.
答案:A
二、填空题:
6.如图,一个空间几何体的正视图和侧视 图都是边长为1的正方形,俯视图是直径
为1的圆,那么这个几何体的侧面积为________.
解析:由三视图的知识,它是底面直径与高均为1的圆柱,所以
侧面积S =π. 答案:π
7.若球O 1、O 2表面积之比S 1S 2=4,则它们的半径之比R 1
R 2
=
________.
解析:∵S1=4πR21,S2=4πR22,∴S1
S2=R21
R22=4,∴
R1
R2=2.
答案:2
8.下图是一个几何体的三视图,根据图中数据,可得该几何体的体积
为________.
解析:由三视图知该几何体是一个半圆柱,因此V=1 2
×π×12×2=π.
答案:π
三、解答题(本题共2小题,每小题10分,共20分)
9.已知某几何体的俯视图是如右图所
示的矩形,正视图(或称主视图)是一个
底边长为8、高为4的等腰三角形,侧
视图(或称左视图)是一个底边长为6、 高为4的等腰三角形.
(1)求该几何体的体积V ; (2)求该几何体的侧面积S .
解:由题设可知,几何体是一个高为4的四棱锥,
其底面是长、宽分别为8和6的矩形,正侧面及其
相对侧面均为底边长为8,高为h 1的等腰三角形,
左、右侧面均为底边长为6、高为h 2的等腰三角形, 如右图所示.
(1)几何体的体积为:V =13·S 矩形·h =1
3×6×8×4=64.
(2)正侧面及相对侧面底边上的高为:h 1=42+32=5. 左、右侧面的底边上的高为:h 2=42+42=4 2.
故几何体的侧面面积为:
S =2·⎝ ⎛⎭
⎪⎫12×8×5+1
2×6×42=40+24 2.
10.某高速公路收费站入口处的安全标识墩如图1所示,墩
的上半部分是正四棱锥P —EFGH ,下半部分是长方体ABCD —EFGH .图2、图3分别是该标识墩的正视图和俯视图.
(1)请画出该安全标识墩的侧视图; (2)求该安全标识墩的体积.
解:(1)侧视图同正视图,如图所示: (2)该安全标识墩的体积为 V =V P -EFGH +V ABCD -EFGH =1
3
×402×60+402×20 =64 000(cm 3).
B 级 素能提升练
(时间:30分钟 满分:40分)
一、选择题(本题共2小题,每小题5分,共10分)
1.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都
在一个球面上,则该球的表面积为 ( )
A .πa 2
B.73πa 2
C.113
πa 2
D .5πa 2
答案:B
2.如图,正方体ABCD-A1B1C1D1的棱长为2,动点E、F 在棱A1B1上,动点P,Q分别在棱AD,CD上,若EF=1,A1E=x,DQ=y,DP=z(x,y,z大于零),则四面体PEFQ 的体积()
A.与x,y,z都有关
B.与x有关,与y,z无关
C.与y有关,与x,z无关
D.与z有关,与x,y无关
解析:从题图中可以分析出,△EFQ的面积永远不变,为
面A1B1CD面积的1
4,而当P点变化时,它到面A1B1CD的
距离是变化的,因此会导致四面体体积的变化.
答案:D
二、填空题(本题共2小题,每小题5分,共10分)
3.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.
解析:V1
V2=
1
3S1h1
1
3S2h2
=
S1
S2·
h1
h2=
1
4×
1
2=
1
8.
答案:1∶8
4.已知一几何体的三视图如图所示,正视图与侧视图为全等的等腰直角三角形,直角边长为6,俯视图为正方形,
一个小正四棱柱内接于这个几何体,棱柱底面在面ABCD 内,其余顶点在几何体的棱上,当棱柱的底面边长为________,高为________时,棱柱的体积最大,这个最大值是________.
解析:根据条件可知这是一个有一条侧棱垂直于底面的四
棱锥,设内接于这个几何体的小正四棱柱底面边长为x,则高为6-x,从而由V=x2(6-x)知,当x=4时,即底面边长为4,高为2时,棱柱的体积最大,最大体积为32.
答案:4232
三、解答题(本题共2小题,每小题10分,共20分)
5.直三棱柱高为6 cm,底面三角形的边长分别为3 cm,4 cm,
5 cm,将棱柱削成圆柱,求削去部分体积的最小值.
解:如图所示,只有当圆柱的底面圆为直三棱柱的底面三角形的内切圆时,圆柱的
体积最大,削去部分体积才能最小,设此时圆柱的底面半径为R,圆柱的高即为直三棱柱的高.
∵在△ABC中,AB=3(cm),BC=4(cm),AC=5(cm),∴△ABC为直角三角形.根据直角三角形内切圆的性质可得7-2R=5,
∴R=1(cm).∴V圆柱=πR2·h=6π(cm).
而三棱柱的体积为V三棱柱=1
2×3×4×6=36(cm
3).
∴削去部分体积为36-6π=6(6-π)(cm3).
即削去部分体积的最小值为6(6-π)cm3.
6.如图所示,一个直三棱柱形容器中盛有水,且侧棱AA1=8.若侧面AA1B1B水平放置时,液面恰好过
AC、BC、A1C1、B1C1的中点,当底面ABC水平放
置时,液面高为多少?
解:当侧面AA1B1B水平放置时,水的形状为四棱柱形,底面ABFE为梯形.
设△ABC的面积为S,则S梯形ABFE=3
4S,
V水=3
4S·AA1=6S.
当底面ABC水平放置时,水的形状为三棱柱形,设水面高
精品文档
为h,则有V水=Sh,
∴6S=Sh,∴h=6.
故当底面ABC水平放置时,液面高为6. 精品文档。