第一章 几何光学的基本定律
- 格式:pptx
- 大小:2.69 MB
- 文档页数:29
第一章 几何光学基本定律1. 已知真空中的光速c =3810⨯m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s , 当光在金刚石中,n=2.417时,v=1.24 m/s 。
2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm 。
3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。
若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n = 66666.01sin 22==n I745356.066666.01cos 22=-=I1mm I 1=90︒n 1 n 2200mmL I 2 x88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。
主要内容一、几何光学的三个基本定律二、光路可逆原理三、全反射、光学纤维四、费马原理光线:空间的几何线。
各向同性介质中,光线即波面法线。
光的直线传播、反射和折射都可以用直线段及其方向的改变表示。
几何光学是关于光的唯象理论。
对于光线,是无法从物理上定义其速度的。
几何光学是关于物体所发出的光线经光学系统后成像的理论。
几何光学实验定律成立的条件:1.被研究对象的几何尺寸D远大于入射光波波长λD/ λ>>1 衍射现象不明显,定律适用。
D/ λ~1 衍射现象明显,定律不适用。
2.入射光强不太强在强光作用下可能会出现新的光学现象。
强光:几何光学的基本实验定律有一定的近似性、局限性。
一、几何光学的三个基本定律1.光的直线传播定律在真空或均匀介质中,光沿直线传播,即光线为2.光的独立传播定律自不同方向或由不同物体发出的光线在空间相交后,对每一光线的独立传播3.光的反射和折射定律3.1 反射定律G 3.2 折射定律入射面n光线在梯度折射率介质中的弯曲nn 5n 1n 3n 2n 4n 6海市蜃楼:沙漠中海面上光线在梯度折射率介质中的弯曲二、光路可逆原理在弱光及线性条件下,当光的传播方向逆转时,•光线如果沿原来反射和折射方向入射时,则相应的反射和折射光将沿原来的入射光的方向。
如果物点Q发出的光线经光学系统后在Q三、全反射、光学纤维1.全反射原理。
继续增大入射角,,而是按反射定律确定的方向全部反射。
全反射的应用:增大视场角毛玻璃r rr2.光纤的基本结构特性(1)光纤的几何结构光纤的几何结构(2)光纤分类①按纤芯介质分:均匀光纤,非均匀光纤。
(3)光纤的传光条件i cn 0n 2n 1(4)光纤的数值孔径四、费马原理物质运动的趋势:达到一种平衡状态或极值状态费马原理:在所有可能的光传播路径中,实际路径所需的时间取极值。
1说明:费马原理是光线光学的理论基础。
① 直线传播定律:两点间的所有可能连线中,线段最短——光程取极小值。
1.1_几何光学的基本定律第一节几何光学的基本定律几何光学是以光线的概念为基础,采用几何的方法研究光在介质中的传播规律和光学系统的成像特性按几何光学的观点,光经过介质的传播问题可归结为四个基本定律:光的直线传播定律、光的独立传播定律、光的反射定律和折射定律ref: 几何光学的发展先秦时代《墨经》330-260BC 欧几里德《反射光学》965-1038AD 阿勒·哈增《光学全书》十七世纪开普勒、斯涅尔、笛卡儿、费马折射定律的确立,使几何光学理论得到很快的发展。
1.光波、光线、光束light waves、raysand beams·光波光波是一种电磁波,是一定频率范围内的电磁波,波长比一般的无线电波的短可见光:400nm-760nm紫外光:5-400nm红外光:780nm-40μm近红外:780nm-3μm中红外:3μm-6μm远红外:6μm-40μm·光源light sources光源:任何能辐射光能的的物体点光源:无任何尺寸,在空间只有几何位置的光源实际中是当光源的大小与其辐射光能的作用距离相比可忽略不计,则视为点光源光学介质optical mediums光学介质:光从一个地方传至另一个地方的空间。
空气、水、玻璃?各向同性介质:光学介质的光学性质不随方向而改变各向异性介质:单晶体(双折射现象)均匀介质:光学介质的不同部分具有相同的光学性质均匀各向同性介质·波前wave front波前:某一瞬间波动所到达的位置构成的曲面波面:传播过程中振动相位相同的各点所连结成的曲面在任何的时刻都只能有一个确定的波前;波面的数目则是任意多的?球面波:波面为球面的波,点光源平面波:无穷远光源柱面波:线光源光线:传输光能的有方向的几何线在各向同性介质中,光沿着波面的法线方向传输,所以波面的法线就是光线光束光束:具有一定关系的光线的集合同心光束:同一个发光点发出或相交于同一点平行光束:发光点位于无穷远,平面光波像散光束:既不相交于一点,又不平行,但有一定关系的光线的集合,与非球面的高次曲面光波相对应同心光束平行光束ref: 像散光束·光线既不平行,又不相交,波面为曲面。
第一节几何光学的基本定律1、当半径为r 的不透明圆盘被照亮时,在其后l 处的屏上,得到半径为1r 的全影和半径为的半影。
光源也是圆盘形的而且由其中心到不透明圆盘中心的2r 连线垂且两圆盘和屏面,求光源的尺寸和光源矩被照亮圆盘的距离。
解:距离,光源半径r r r rl x 2221−+=rr r r r r y 2)(2112−+−=2、太阳光球的直径等于1390000千米,太阳与地球之间的距离变化不大,平均为150000000千米,月球中心到地球表面的距离在357000至390000千米之间变动。
若月球直径为3480千米,那么何时能有日全蚀?何时能有日环蚀?解:当月球中心到地球表面的距离小于376000千米时.常发生日全蚀,当距离大于此值时,常发生日环蚀。
3、由光源发出的光通过孔之后,在孔后的屏上成象:试解释为什么当孔小时,成光源的象,而孔大时却成孔的象。
解:(略)4、太阳光照射到不大的正方形平面镜上,反射后又照射到屏上,屏上照亮的部分是什么形状?它将如何随着平面镜和屏之间的距离的改变而改变?解:若屏离镜面近,则被照亮的部分为四边形,着屏离镜面远则太阳成椭圆形的象。
5、在竖直的正方形金属网前放一水平的长狭缝。
用强的扩展光源照亮狭缝,光通过缝和网射到远处屏上,试描述在屏上得到什么样的图象,当继绕网平面的垂线旋转90度和45度时,将发生什么现象?研究如图l-a 和图1-b 所示的图。
解:屏上得到水平的明、暗条纹系。
将缝旋转90度时,条纹变成竖直的。
将其转45度时,在图la 所示格子的情况下,条纹消失,如图1b 所示格子的情况下,呈现与水平成45度角的条纹。
在后一种情况下,条纹间距是水平(或竖直)条纹的间距的分之一。
在所有情况下,条纹皆与缝平行。
26、上题中,若交换缝和网的位置,屏上图形将发生什么变化?解:图像的特性不变,然而条纹已经变得不很多了。
7、两平面镜彼此倾斜,形成二面角а。
光线在垂直于角棱的平面内射到镜上。
§1 几何光学的基本定律1.1 几何光学三定律折射定律的斯涅耳(W. Snell, 1621公式 1.2 全反射1.3 棱镜与色散1.4 光的可逆性原理定义:撇开光的波动本性,仅以光的直线传播、反射折射定律为基础,研究光在透明介质中的传播问题。
适用范围:尺度远大于波长,是应用光学的基础特点:原理简单、计算复杂,计算软件(追迹的发展替代了复杂的计算§1 几何光学的基本定律光线 (rayof light :用一条表示光传播方向的几何线来代表光,称这条几何线为光线1.1 几何光学三定律1. 直线传播定律:在均匀介质中光沿直线传播2. 独立传播定律:不同方向的光线相交,不影响每一光线的传播3. 反射 (reflection、折射 (refraction定律:在两种媒质的界面发生反射、折射夏日机场跑道上方温度梯度较大,导致空气折射率发生变化:例:机场跑道能看多远?n y (=n 01+βy(β≈1.5⨯10-6/m人站在跑道的一端,最远能看多远?例:全反射棱镜光纤发展历史✧~1840, D Colladon 和 J Babinet提出可以依靠光折射现象来引导光线的传播。
✧1854, J Tyndall在英国皇家学会的一次演讲中用实验证实:光线能够沿盛水的弯曲管道传输。
✧1927, JL Baird利用光纤阵列传输图像。
✧1957, Hirschowitz 在美国胃镜学会上展示了研制的光导纤维内窥镜。
✧1961, E Snitzer完成了单模光纤的理论工作。
✧1963,西泽润一提出了使用光纤进行通信的概念。
✧1964,西泽润一他发明了渐变折射率光学纤维 (gradedindex fiber,GIF 。
✧1970,美国康宁玻璃 (Corning Glass根据高锟的设想,制造出当时世界上第一根超低损耗光纤,得到 30米光纤样品,首次迈过了“20dB/km” 的门槛。
✧1972,4dB/km。
第一章 几何光学的基本定律§ 1-1 发光点、波面、光线、光束 返回本章要点 发光点 ---- 本身发光或被照明的物点。
既无大小又无体积但能辐射能量的几何点。
对于光学系统来说, 把一个物体看成由许多物点组成,把这些物点都看成几何点 ( 发光点 ) 。
把不论多大的物体均看作许多 几何点组成。
研究每一个几何点的成像。
进而得到物体的成像规律。
当然这种点是不存在的,是简化了的概念。
一个实际的光源总有一定大小才能携带能量,但在计算时,一 个光源按其大小与作用距离相比很小便可认为是几何点。
今后如需回到光的本质的讨论将特别指出。
波面 --- 发光点在某一时刻发出的光形成波面 如果周围是各向同性均匀介质,将形成以发光点为中心的球面波或平面波 第二章 球面和球面系统§ 2-1 什么是球面系统?由球面组成的系统称为球面系统。
包括折射球面和反射球面反射面:n ' =-n.平面是半径为无穷大的球面,故讨论球面系统具有普遍意义折射系统折反系统§ 2-2 概念与符号规则•概念① 子午平面 —— 包含光轴的平面② 截距:物方截距 —— 物方光线与光轴的交点到顶点的距离像方截距 —— 像方光线与光轴的交点到顶点的距离③ 倾斜角:物方倾斜角 —— 物方光线与光轴的夹角像方倾斜角 —— 像方光线与光轴的夹角返回本章要点•符号规则返回本章要点因为分界面有左右、球面有凹凸、交点可能在光轴上或下,为使推导的公式具有普遍性,参量具有确切意 义,规定下列规则:a. 光线传播方向:从左向右b. 线段:沿轴线段 ( L,L',r ) 以顶点 O 为基准,左“ - ”右“ + ” 垂轴线段 ( h ) 以光轴为准,上“ + ”下“ - ” 间隔 d(O1O2) 以前一个面为基准,左“ - ”右“ + ” c. 角度:光轴与光线组成角度 ( U,U' ) 以光轴为起始边,以锐角方向转到光线,顺时针“ + ”逆时针“ - ”光线与法线组成角度 ( I,I' ) 以光线为起始边,以锐角方向转到法线,顺“ + ”逆“ - ”光轴与法线组成角度 ( φ ) 以光轴为起始边,以锐角方向转到法线,顺“ + ”逆“ - ”§ 2-3 折射球面返回本章要点•由折射球面的入射光线求出射光线已知: r, n, n',L, U 求: L', U',由 以上几个公式可得出 L' 是 U 的 函数这一结论, 不同 U 的光线经 折射后不能相交于一点点-》斑,不完善成像•近轴光线经折射球面折射并成像.1 .近轴光线:与光轴很靠近的光线,即 -U 很小 , sin(-U) ≈ -U ,此时用小写:sin(-U)= - usinI=iL=l 返回本章要点近轴光线所在的区域叫近轴区2 .对近轴光,已知入射光线求折射球面的出射光线:即由 l , u —> l ',u' , 以上公式组变为:当 u 改变时, l ' 不变!点 —— 》点,完善成像 此时 A , A' 互为物像,称共轭点近轴光所成像称为高斯像,仅考虑近轴光的光学叫高斯光学返回本章要点近轴光线经折射球面计算的其他形式(为计算方便,根据不同情况可使用不同公式)利用:可导出返回本章要点4 .(近轴区)折射球面的光焦度,焦点和焦距可见,当( n'-n )/r 一定时, l ' 仅与 l 有关。