短程硝化_反硝化生物脱氮技术研究_姚阔为
- 格式:pdf
- 大小:288.97 KB
- 文档页数:5
短程硝化反硝化生物脱氮技术短程硝化反硝化生物脱氮技术引言近年来,随着城市化进程的加快和人口的迅速增长,污水处理厂在城市环境中扮演着至关重要的角色。
污水中氮的浓度过高,容易造成水体富营养化,影响水质,对水生生物和人类健康产生不利影响。
因此,对污水中氮的有效去除成为了污水处理工艺的重要研究方向。
背景氮是一种不可替代的生物元素,对生物体的生长和发育具有重要影响。
然而,过高浓度的氮对水体环境产生负面影响。
目前,世界上使用最广泛的氮去除方法是硝化和反硝化。
传统的污水处理工艺采用全程硝化反硝化技术,即将氨氮通过好氧硝化作用转化为亚硝酸盐,再通过厌氧反硝化作用转化为氮气,从而实现氮的去除。
然而,全程硝化反硝化技术存在几个问题:首先,硝化和反硝化两个过程分开进行,需要两个不同的环境条件,增加了处理工艺的复杂性;其次,亚硝酸盐容易被氧化为硝酸盐,导致氮的去除效率下降;最后,传统工艺通常需要较长的停留时间和大量的废液处理。
短程硝化反硝化生物脱氮技术的原理短程硝化反硝化技术克服了传统全程硝化反硝化的一些不足,在氮的去除效率和处理效果上具有一定的优势。
短程硝化反硝化生物脱氮技术是同时进行硝化和反硝化过程的一种处理方法。
通过合理调节反应器的操作条件和控制意图,可以实现在同一反应器中达到硝化和反硝化的目的。
短程反应器通常使用拟氧条件,提供带氧和无氧环境,从而满足硝化和反硝化反应的需求。
短程硝化反硝化生物脱氮技术的核心是合理控制和利用硝化反硝化菌的转化能力。
传统的全程硝化反硝化中硝化菌主要通过氨氧化过程将氨氮转化为亚硝酸盐,然后反硝化菌将亚硝酸盐通过反硝化过程转化为氮气。
而短程硝化反硝化则是通过单一菌株或混合菌株的双重能力实现硝化和反硝化,从而达到了节约空间和提高氮去除效率的目的。
应用案例短程硝化反硝化生物脱氮技术已经在一些污水处理厂得到了应用,并取得了良好的效果。
以某污水处理厂为例,该处理厂采用了短程硝化反硝化生物脱氮技术,取得了显著的效果。
《短程硝化反硝化生物脱氮技术》篇一一、引言随着人类社会的高速发展,工业化和城市化进程不断加快,水体富营养化问题日益严重,其中氮污染成为水环境治理的重要难题。
短程硝化反硝化生物脱氮技术作为一种新型的生物脱氮技术,因其高效、节能、环保等优点,受到了广泛关注。
本文将介绍短程硝化反硝化生物脱氮技术的原理、应用及优势,并探讨其发展前景。
二、短程硝化反硝化生物脱氮技术原理短程硝化反硝化生物脱氮技术是指在一定条件下,通过生物反应过程实现氮的去除。
其基本原理包括硝化反应和反硝化反应两个过程。
1. 硝化反应:在好氧条件下,氨氮通过亚硝酸盐型硝化过程被氧化为亚硝酸盐,此过程由亚硝酸盐菌完成。
2. 反硝化反应:在缺氧条件下,亚硝酸盐通过反硝化过程被还原为氮气,从而实现氮的去除。
此过程由反硝化菌完成。
短程硝化反硝化生物脱氮技术的关键在于实现亚硝酸盐的积累,即在硝化过程中将氨氮直接氧化为亚硝酸盐,而非传统意义上的硝酸盐。
这有助于降低能耗,提高反应效率。
三、短程硝化反硝化生物脱氮技术的应用短程硝化反硝化生物脱氮技术已广泛应用于城市污水处理、工业废水处理和农业废水处理等领域。
在城市污水处理中,该技术可有效去除污水中的氮,降低污水排放对环境的污染。
在工业废水处理中,该技术可处理含有高浓度氨氮的废水,如化肥、制药等行业。
在农业废水处理中,该技术可处理养殖业废水,减少氮磷等营养物质的排放,保护水生态环境。
四、短程硝化反硝化生物脱氮技术的优势相比传统生物脱氮技术,短程硝化反硝化生物脱氮技术具有以下优势:1. 节能:通过实现亚硝酸盐的积累,降低了能耗,提高了反应效率。
2. 高效:该技术可快速去除污水中的氮,提高处理效率。
3. 环保:该技术可有效降低污水排放对环境的污染,保护水生态环境。
4. 灵活性:该技术适用于不同来源的废水处理,具有较好的灵活性和适应性。
五、发展前景随着环保意识的不断提高和政策的不断推动,短程硝化反硝化生物脱氮技术将得到更广泛的应用。
随着中国经济的快速发展,水资源供需矛盾日趋激化。
而我国现有的污水处理厂对导致水体富营养化的主要营养盐—氮的去除率很低,导致水体富营养化现象加剧。
因此,研究和开发高效、经济的生物脱氮工艺已成为当前热点。
污水的脱氮处理工艺中,生物法因工艺简单、处理能力强、运行方式灵活,近年来已成为城市污水脱氮处理的重要方法,得到广泛应用。
1短程硝化反硝化理论的提出传统生物脱氮理论认为氨氮是借助两类不同的细菌(硝化菌和反硝化菌)将水中的氨转化为氮气而去除,即NH 4+需要经历典型的硝化和反硝化过程。
硝化反应中,首先亚硝酸细菌将氨氮转化为亚硝酸盐(NO 2-),之后硝酸细菌将亚硝酸盐转化为硝酸盐(NO 3-)。
硝化反应过程需在好氧条件下进行,并以氧作为电子受体。
反硝化过程为将硝酸盐或亚硝酸盐转化为N 2的过程。
反硝化细菌利用各种有机基质作为电子供体,以硝酸盐或亚硝酸盐作为电子受体,进行缺氧呼吸。
所谓短程硝化反硝化就是将硝化过程控制在NO 2-阶段,阻止NO 2-进一步氧化为NO 3-,直接以NO 2-作为电子最终受氢体进行反硝化[1]。
与传统生物脱氮工艺相比,短程硝化-反硝化生物脱氮工艺可节约供氧量25%左右;节约反硝化所需碳源40%左右;减少污泥生成量;减少硝化过程的投碱量;缩短反应时间,相应地减少了反应器容积30%~40%[2]。
2影响亚硝酸积累的因素如何控制硝化反应停止在NO 2-阶段是实现短程硝化的关键。
控制那些能对硝酸菌和亚硝酸菌产生不同作用的影响因素,可以影响硝化形式,从而实现亚硝酸盐积累。
影响短程硝化的因素主要有温度、DO 浓度、pH 值、游离氨浓度(FA )、泥龄及有毒物质[3]。
2.1温度生物硝化反应在4℃~45℃内均可进行:在12℃~14℃下,活性污泥中硝酸菌活性受到严重抑制,出现HNO 2积累;15℃~30℃下,硝化过程形成的NO 2-可完全被氧化成NO 3-;温度超过30℃后又出现NO 2-的积累[3]。
文章编号:!""#$%&’((’""))"&$""%*$"’短程硝化—反硝化生物脱氮技术研究收稿日期:’"")$"’$!&作者简介:刘吉明(!#*)$),男,太原理工大学在读硕士研究生,山西太原"+""’)杨云龙(!#(+$),男,!#*&年毕业于太原工学院给排水专业,教授,太原理工大学,山西太原"+""’)刘吉明杨云龙摘要:对传统生物脱氮工艺原理和短程硝化—反硝化工艺原理进行了比较,分析了短程硝化,反硝化技术的实用价值,提出了实现短程反硝化的控制条件。
关键词:短程硝化,短程反硝化,生物脱氮中图分类号:-.##!/’文献标识码:0随着社会经济的发展和人民生活水平的提高,越来越多的含氮化合物进入水体,它们消耗大量的溶解氧,导致水体富营养化,破坏了水体的使用价值。
我国水资源的严重匮乏和水污染防治标准的不断提高,消除含氮化合物对水体污染的要求越来越迫切。
目前最有效、应用最广泛的脱氮方法是生物脱氮工艺。
但传统生物脱氮工艺存在着流程长、构筑物多、投资大、控制因素多、运行费用高等不足之处。
针对传统脱氮工艺存在的问题,专家学者依据生物降解机理,提出短程硝化—反硝化的生物脱氮方法,并进行积极的探索,为脱氮新工艺的开发奠定了基础。
!生物脱氮原理及新工艺优势短程硝化—反硝化生物脱氮,就是抑制硝酸菌的细菌活性,把硝化阶段控制在亚硝酸阶段,使整个生物脱氮过程通过12+—1!13’,—1!1’这样的途径完成。
可以看出,相对于传统硝化—反硝化生物脱氮,短程硝化—反硝化生物脱氮具有以下优点:!)亚硝酸菌世代周期比硝酸菌世代周期短,控制在亚硝酸型阶段易提高微生物浓度和硝化反应速度,缩短硝化反应的时间,从而可以减少反应器容器,节省基建投资。
《短程硝化反硝化生物脱氮技术》篇一一、引言随着工业化和城市化的快速发展,水体富营养化问题日益严重,其中氮污染成为了一个亟待解决的问题。
短程硝化反硝化生物脱氮技术作为一种新兴的污水处理技术,因其高效、节能等优点,受到了广泛关注。
本文将详细介绍短程硝化反硝化生物脱氮技术的基本原理、应用现状及发展趋势。
二、短程硝化反硝化生物脱氮技术的基本原理短程硝化反硝化生物脱氮技术是一种通过控制硝化过程,使氨氮氧化为亚硝酸盐氮,然后进行反硝化反应,将亚硝酸盐氮还原为氮气的生物脱氮技术。
该技术主要包括短程硝化阶段和反硝化阶段两个过程。
1. 短程硝化阶段:在一定的环境条件下,通过控制氨氧化细菌的活性,使氨氮仅被氧化为亚硝酸盐氮,而不再进一步氧化为硝酸盐氮。
这一过程需要控制适宜的pH值、温度、溶解氧等环境因素。
2. 反硝化阶段:在缺氧环境下,通过反硝化细菌的作用,将亚硝酸盐氮还原为氮气。
这一过程需要提供足够的碳源和适宜的电子受体。
三、短程硝化反硝化生物脱氮技术的应用现状短程硝化反硝化生物脱氮技术在国内外得到了广泛应用。
该技术具有脱氮效率高、能耗低、污泥产量少等优点,尤其适用于低C/N比污水处理。
在实际应用中,该技术常与其他生物脱氮技术结合使用,如AAO(厌氧-好氧)工艺、UCT(University of Cape Town)工艺等。
此外,该技术还可应用于垃圾渗滤液、养殖废水等高氨氮废水的处理。
四、短程硝化反硝化生物脱氮技术的发展趋势随着科学技术的不断发展,短程硝化反硝化生物脱氮技术也在不断进步。
未来,该技术将朝着以下几个方面发展:1. 技术优化:通过改进工艺流程、提高设备性能等手段,进一步提高短程硝化反硝化生物脱氮技术的效率。
2. 自动化控制:利用现代信息技术和自动化控制技术,实现短程硝化反硝化生物脱氮技术的自动化控制,提高操作管理的便捷性。
3. 组合工艺:将短程硝化反硝化生物脱氮技术与其他污水处理技术相结合,形成组合工艺,以提高整体处理效果。
短程硝化反硝化生物脱氮技术概述短程硝化反硝化脱氮工艺随着水体受到氮素污染越来越严重,废水脱氮日益受到人们的重视。
其中生物脱氮技术将有机氮和氨氮通过硝化反硝化过程去除具有无可比拟的发展前景。
其中传统的生物脱氮技术认为要完全去除水中的氨态氮就必须要经过完整的硝化与反硝化过程,即以硝酸盐作为硝化的终点和反硝化的起点,这主要是基于要防止对环境危害较大的亚硝酸盐的积累以及对好氧硝化菌和兼性厌氧反硝化菌不能在同一个反应器里同时大量存在的认识导致的。
而现在的大量研究表明,好氧硝化菌和兼性厌氧反硝化菌是可以在同一个反应器里共同起作用的。
因为在整体和每一单元填料表面所附着的生物膜上都存在基质和溶解氧的浓度梯度分布,这就为各种生态类型的微生物在生物膜内不同部位占据优势生态位提供了条件。
由于短程硝化反硝化脱氮比传统的脱氮技术具有很多的优点,因此引起了国内外研究者的广泛关注,对影响短程硝化反硝化的因素以及实现和维持短程硝化反硝化的工艺控制进行了大量的研究。
1.传统硝化反硝化脱氮机理1.1 硝化反应硝化反应是由一类自养耗氧微生物完成的,包括两个步骤:第一步为亚硝化过程,是由亚硝酸菌将氨氮转化为亚硝酸盐;第二步为硝化过程,由硝酸菌将亚硝酸盐进一步氧化为硝酸盐,亚硝酸菌和硝酸菌统称为硝化菌,都利用无机碳化合物如CO32-、HCO3-和CO2作为碳源,从NH3、NH4+或NO2-的氧化反应中获取能量。
亚硝酸菌和硝酸菌的特性大致相似,但前者的世代期较短,生长率较快,因此较能适应冲击负荷和不利的环境条件,当硝酸菌受到抑制时,有可能出现NO2-积累的情况。
1.2反硝化反应反硝化反应是由一群异养性微生物完成的生物化学过程,它的主要过程是在缺氧的条件下,将硝化过程中产生的亚硝酸盐和硝酸盐还原成气态氮。
反硝化细菌多数是兼性细菌,有分子态氧存在时,反硝化氧化分解有机物,利用分子氧作为最终电子受体。
在无分子态氧条件下,反硝化菌利用硝酸盐和亚硝酸盐中的N5+和N3-作为电子受体,O2-作为受氢体生成H2O和OH-碱度,有机物则作为碳源和电子供体提供能量,并得到氧化稳定。
短程硝化反硝化生物脱氮技术处理垃圾渗滤液的应用【摘要】本文介绍了短程硝化反硝化生物脱氮技术在处理垃圾渗滤液中的应用。
首先分析了垃圾渗滤液的特点和短程硝化反硝化生物脱氮技术的概述。
接着详细讨论了该技术在垃圾渗滤液处理中的应用、工艺流程介绍、操作参数优化以及处理效果评价。
经济性分析显示该技术具有较高的经济效益。
结论部分指出短程硝化反硝化生物脱氮技术对垃圾渗滤液处理的意义,探讨了未来的发展方向并进行了总结。
通过本文的研究可以发现该技术对提高垃圾渗滤液处理的效率和减少环境污染具有重要意义,同时为该技术在未来的应用提供了指导思路。
【关键词】关键词:垃圾渗滤液、短程硝化反硝化生物脱氮技术、工艺流程、操作参数优化、处理效果评价、经济性分析、生物处理技术、环境保护、可持续发展。
1. 引言1.1 垃圾渗滤液的特点垃圾渗滤液是指从垃圾堆中滤出的液体,主要包括废水、溶解的有机物、无机盐、重金属等。
其特点主要表现在以下几个方面:垃圾渗滤液的成分复杂。
由于垃圾堆中包含各类生活废弃物和工业废料,渗出的液体中包含了大量有机物、无机盐和微量重金属等成分,使得难以直接进行处理和排放。
垃圾渗滤液具有高度污染性。
因为垃圾渗滤液中含有大量的有机物和氮、磷等营养元素,易导致水体富营养化,加剧水质恶化,对周围环境产生严重影响。
垃圾渗滤液具有变化性强。
由于垃圾组成、堆放方式和季节等因素的不同,垃圾渗滤液的性质会不断发生变化,处理难度较大。
垃圾渗滤液的特点是成分复杂、高度污染、变化性强,对环境造成潜在威胁,因此需要采用适当的处理技术进行处理。
1.2 短程硝化反硝化生物脱氮技术概述短程硝化反硝化生物脱氮技术是一种高效的氮污染治理技术,主要通过将硝化菌和反硝化菌引入生物反应器中,利用其在无氧和有氧环境下的代谢过程,将废水中的氨氮、亚硝酸盐等氮化合物转化为氮气,实现氮的高效去除。
该技术具有反应器体积小、处理效率高、操作简便、无需外加药剂等特点。
在垃圾渗滤液处理中,短程硝化反硝化生物脱氮技术可有效降低氮污染物的浓度,提高废水的处理效果,减少对环境的影响。
短程硝化反硝化生物脱氮技术短程硝化反硝化生物脱氮技术随着城市化进程的不断加快和人口的不断增加,废水处理成为城市环境建设中的一项关键任务。
废水中的氮污染成为严重的环境问题,对水生态系统和人类健康造成了威胁。
因此,寻找高效、经济、可持续的氮污染控制技术变得尤为重要。
短程硝化反硝化生物脱氮技术是一种先进的废水处理技术,可以高效地去除废水中的氮污染物。
其原理是通过调节废水处理系统中的氧气供应条件和生物菌群的运行状态,实现氨氮在较短的时间内从废水中转化为氮气的过程。
这项技术的核心是利用硝化和反硝化两步反应,将废水中的氨氮转化为较为稳定的氮气。
在硝化过程中,废水中的氨氮通过细菌的氧化作用转化为硝酸盐氮,而在反硝化过程中,废水中的硝酸盐氮通过细菌的还原作用转化为氮气。
通过这两个步骤的有机结合,可以高效去除硝酸盐氮和氨氮。
短程硝化反硝化生物脱氮技术具有许多优点。
首先,其技术流程相对简单,操作方便。
其次,该技术过程中的能耗较低,成本相对较低。
另外,短程硝化反硝化生物脱氮技术对氮污染的去除率高,处理效果好,能够将废水中的氮成分降到国家标准以内。
同时,该技术还可以减少化学药剂的使用,降低化学药剂对环境的污染。
然而,短程硝化反硝化生物脱氮技术仍然面临一些挑战和问题。
首先,该技术对于废水中的有机物浓度要求较高,当有机物浓度较低时,可能会导致废水处理效果不佳。
其次,由于生物反应器中的生物菌群对外界环境的影响较为敏感,当环境条件发生变化时,可能导致生物菌群的运行状态发生不稳定,进而影响整个处理系统的效果。
因此,为了更好地应对这些问题,我们需要采取一系列的优化措施。
首先,可以通过提高废水有机物浓度、调整操作参数、增加气体供应以及提高生物菌群的抗冲击能力等措施,来提高技术的处理效果。
其次,可以采用生物膜反应器等工艺改进手段,来提高处理系统的稳定性和抗干扰能力。
总之,短程硝化反硝化生物脱氮技术是一种高效、经济、可持续的废水处理技术,对解决废水中的氮污染问题具有重要意义。
短程硝化反硝化生物脱氮技术简介:是一种高效的生物处理技术,用于处理含高浓度氨氮的废水。
本文将介绍的原理、应用、优缺点以及未来发展方向。
一、原理是利用硝化细菌和反硝化细菌的协同作用,将废水中的氨氮转化为氮气释放。
整个过程可以分为两步:硝化和反硝化。
硝化指的是将废水中的氨氮通过硝化细菌氧化为亚硝酸盐,进一步氧化为硝酸盐的过程。
这一步在好氧条件下进行,需要提供足够的氧气供给。
反硝化指的是将硝酸盐通过反硝化细菌还原为氮气并释放到大气中的过程。
这一步在缺氧条件下进行,需要消耗有机物作为电子供体。
二、应用1. 功能与特点在处理含高浓度氨氮废水时具有以下功能与特点:(1)高效除氮:该技术能够将氨氮转化为氮气释放,实现高效除氮,将废水中的氨氮浓度降低至国家排放标准以下。
(2)占地面积小:相比传统的生物脱氮技术,短程硝化反硝化技术所需的处理设施相对较小,能够节约占地面积和投资成本。
(3)适用范围广:该技术适用于各类含高浓度氨氮的废水,如城市生活污水、养殖废水等。
2. 应用案例在各个领域得到了广泛应用。
(1)城市生活污水处理:城市污水处理厂采用该技术对处理前的生活污水进行处理,将废水中的氨氮降低至符合排放标准。
(2)养殖废水处理:养殖业废水中含有大量的氨氮,使用该技术可以将废水中的氨氮转化为氮气释放,减少对水环境的污染。
(3)工业废水处理:一些工业废水中含有高浓度氨氮,采用短程硝化反硝化技术可实现高效除氮。
三、优缺点1. 优点(1)高效除氮:短程硝化反硝化技术能够将氨氮转化为氮气释放,实现高效除氮。
(2)占地面积小:相比传统的生物脱氮技术,所需处理设施相对较小,能够节约占地面积和投资成本。
(3)处理效果稳定:短程硝化反硝化技术对氨氮的去除效果较为稳定,能够适应废水中氨氮含量的变化。
2. 缺点(1)对氧气要求高:硝化过程需要提供足够的氧气,因此对通气设备的要求较高。
(2)电子供体限制:反硝化过程需要消耗有机物作为电子供体,在有机物供应不足时,可能影响反硝化效率。