北师大版数学七年级下册第六章 小结与复习
- 格式:ppt
- 大小:480.00 KB
- 文档页数:13
回顾与反思教学设计教学设计思想:本堂课为章节复习课,需一课时讲授;首先教师提出问题引入变量与变量之间的关系,开拓学生思维,然后师生一起讨论、交流回顾本章的知识要点,构建本章的框架图,再通过课堂练习的方式,深化对变量关系知识的理解及其应用.学习本章,教师引导学生从常量的世界进入变量的世界,开拓一种新的思维方式.一、教学目标(一)知识与技能1.回顾总结表示变量之间关系的方法.2.学会用变量之间关系的各种形式分析变量之间的关系,并作出预测.(二)过程与方法1.从常量的世界走入变量的世界,开始接触一种新的思维方式——用运动变化的观点去认识数学对象,发展符号感和抽象思维.2.发展有条理的思考和进行表达的能力.(三)情感、态度与价值观能从运动变化的角度解释生活中的数学现象,体验成就感,获得学习的快乐,发展对数学更高层次的认识.二、教学重、难点重点1.进一步体会变量与变量之间关系的实例,并且试着用表格、图象和关系式来表示它们之间的关系.2.根据各种表示变量之间关系的方法,对变量之间的关系进行分析,从而作出预测.难点能读懂表格、关系式、图象所表示的信息,还能用表格、关系式、图象刻画一些具体情境中变量之间的关系.三、教学方法讨论交流法使学生在充分思考和交流讨论的基础上,逐渐建立本章的知识体系.四、教具准备投影片.五、教学过程1专心爱心用心.Ⅰ.提出问题,开拓思维P试一试:[师]首先我们看上节课留的作业,课本179分析反映变量之间关系的图6-22,想象一个适合它的实际情境.图6-22我想,同学们一定想好了一个合情合理的情境.[生]我是这样想的:如果横轴和纵轴分别代表时间和离家的距离,那么这个图可表示为:小明从学校回家,行走了一段后,停下来在街心公园看了一会儿爷爷们下棋,然后又开始往家走,直到回家.[师]这位同学的描述是不是合情合理呢?[生]是的.老师我是这样描述的:如果横轴和纵轴分别代表时间和汽车的速度,那么这个图可以表示为一辆汽车从高速公路下来,先逐渐降低速度后,匀速行驶了一段时间,然后逐渐减速,到了目的地停下来.[生]老师,我是把横轴和纵轴分别代表时间和汽车油箱里油量,那么这个图可以表示为一辆汽车装满油后,行驶在公路上,行驶一段后,司机到路边的饭店吃饭,休息,随后,开车向省城开去,快到省城的时候,油箱里的油用完.[生]如果把横轴和纵轴分别代表时间和飞机行驶的高度,那么这个图就可以表示为:南方航空公司的一架飞机从一定的飞行高度慢慢下降一个高度,然后在这一高度飞行了一段时间后,快到机场时,开始降落,最后降落在机场.……[师]同学们的想象很丰富.看来,我们已经进入一个变量的世界.今天,我们就在这个五彩缤纷的世界里把第六章的内容回顾一下,通过思考、讨论、交流生活中的问题,构建本章的结构图. Ⅱ.回顾与思考,构建本章的框架图P的回顾与思考中的三个问题,我们先独立思考,然后在小组内[师]大家请看课本180交流、讨论,最后我们以组为单位在全班交流.(学生在交流、讨论时,教师可参与到同学们中间去,和同学们以朋友的身份交流.同学们回答问题时,关注学生运用自己的语言解释答案的过程).[生]在烧水的过程中,水的温度随时间的变化而变化.[生]家里的电表上的数字,随时间的变化而变化.2专心爱心用心.[生]燃烧的蜡烛的高度,随燃烧时间的变化而变化.[生]一杯开水的温度,随放凉时间的增大,水变得越来越凉.[生]铅球运动员掷出铅球的球的高度随掷出去的时间的变化而变化.[生]我们星期一早上升旗,上升的国旗的高度随时间的变化而变化.……[师]大家举的例子都很好,能和生活紧密相联,能用变化的眼光欣赏我们眼前所发生的一切.我们可以用什么方法表示变量之间的关系呢?举例说明.[生]表示变量之间的关系可用表格、图象、关系式来表示.例如:一棵小树苗,刚栽下去时树高为2.1米,我想看一下树高是如何随每年时间的变化而变化的,我用表格的方法表示它每年来高度的变化.列表如下:时间(年) 1年后 2年后 3年后 4年后 5年后小树高度2.1+0.3 2.1+0.6 2.1+0.9 2.1+1.2 2.1+1.5(米)hx年后时间的关系,根据表格我们可以发也可用关系式来表示小树的高(米)与hx.现:=2.1+0.3hx变化的情况.如图用图象更能直观地表示出小树的高度6随时间-23.图6-23[生]从这个同学举的例子及其表示变量之间关系的方法分析、预测10年后树高的情况.例如:从表格中,我们可以读出小树每年长高0.3米,所以10年后小树的高度就是2.1+0.3×10=5.1(米).hxxh的值,就可输出=10从关系式=2.1+0.3输入到关系式中,求 10年后的树高只需把h=2.1+0.3×10=5.1(米)即hx增大,而呈逐渐上升的趋势,从图象中,我们可以读出我们把这种趋势延长下去,随然后过横轴上表示10的点作垂线交图象于一个点,过此点作横轴的平行线,交纵轴于一点,这点的读数,便是10年后小树的树高.[师]我相信同学们还有很多的例子要讲给大家,下面还请同学们在小组内交流、讨论,3专心爱心用心.同时试着建立本章的结构框架图.[师生共析]本章的框架图如下:Ⅲ.深化,应用[例1]某书店将一周的售书情况记录如下:星期一二三四五六日/收入750 800 850 900 950 1000 1050元(1)上表反映的是哪两个变量之间的关系?(2)画折线图表示两个变量之间的关系.[分析]读懂表格,并用图象表示变量之间的关系.解:(1)上表反映的是收入和星期数之间的关系.(2)用折线图表示两个变量之间的关系如下:图6-24[例2]海拔高度每增加1000米,温度下降6 ℃,已知某地地面温度为32 ℃.计算海拔高度分别为1000米、2000米、3000米、4000米时相应的温度值.分析:根据题意,先找到变量之间的关系式,特别注意单位.解:某地地面温度为32 ℃,每增加1000米,即1千米,温度下降6 ℃,设海拔高度为htth. -,根据题意可知6千米时相应温度为=32 ℃ht=32-6×1=26 =1000米=1千米时,℃;当ht=32-6×2=20 ℃;当=2=2000米千米时,ht=32-6×千米时,3=14 ℃; =3当=3000米4专心爱心用心.ht=32-6×4=8 =4=4000米千米时,℃.当[例3]图6-25是某厂一年的收入变化的图象,根据图象回答:在这一年中,图6-25(1)什么时候收入最高?什么时候收入最低?最高收入和最低收入各为多少?(2)6月份收入是多少?(3)哪个月的收入为4百万元?(4)哪段时间的收入不断增加?(5)哪段时间的收入不断减少?[分析]此题要求同学能读懂图象所反映出来的信息.解:(1)由图象可知,12月份的收入最高;为5百万;8月份的收入最低,为1百万;(2)6月份的收入为2百万元;(3)1月份收入为4百万元;(4)从8月份到12月份收入不断增加;(5)从1月份到7月份收入不断减少.33tV贮水时间为,设贮水量为(时)(米),4[例]某贮水池开始贮水,每时进水20米tV(1)之间的关系式是什么?与Vt1),相应的值?(2)用表格表示当时(每次增加从2变化到831000米,则需多长时间能贮满水?3()若贮水池最大贮水量为Vt.)当(4怎样变化?说说你的理由逐渐增加时,已知一个变量考查关系式和表格表示变量之间关系的方法,以及从关系式中,[分析].的值,可以求出另一个变量的值tV;)=20解:(1 (2)时间2 3 4 5 6 7 8/时5专心爱心用心.水160120140604080100/3tVt. =50,解,得(3)把时=1000米输入关系式,得1000=20tVVt. 也在逐渐增加,因为(4)当的正整数倍逐渐增加时,是课时小结Ⅳ. 回顾一章的内容,主要包括:并通过对变量之间关系的分通过丰富的现实情境引入变量与变量之间的关系的讨论,1..析解决问题,进行预测图象等表示方法的关系式、2.在探索和经历表示变量之间关系的过程中,获得对表格、.并能读懂它们所表示的信息,并能用它们刻画一些具体情境中变量之间的关系体验..能用语言大致描述表格、关系式和图象所表示的关系3.开始接触一种新的从常量的世界进入了变量的世界,也就是说,我们学习了这一章后,.思维方式课后作业Ⅴ..C组A、B、1.课本复习题并回顾自己在本章学习中的收获、独立完成一份小结,用自己的语言梳理本章的内容,2..困难和需要改进的地方活动与探究Ⅵ.某航空公司邮递物品时,通常需要交纳一定的航空运输费用,下表表示了它们之间.的关系运输费邮递货物的价格$4.25 $0.00~$30.00$5.75 $30.01~$70.00$6.95$70.01及以上)按照下表填空:(1需邮递的货物$100$42 $15 $70 的价格运输费6专心爱心用心.(2)上述哪些量在变化?自变量和因变量各是什么?(3)你能画出自变量和因变量关系的图象吗?[过程]这是生活中一个实际背景,我们出行时,经常会遇到这样的表格,为了使出行手续顺利而迅速的办妥,必须读懂表格,还要根据自己的情况,得出相应的结论.[结果](1)按表填空:需邮递的货物$15 $42 $70 $100的价格$4.25 $5.75 运输费 $5.75 $6.95(2)运输费随邮递货物的价格变化而变化,邮递货物价格是自变量,运输费是因变量. (3)图6-26六、板书设计§6.5 回顾与思考一、二、例题讲解7专心爱心用心.三、课时小8专心爱心用心.20XX—019学年度第一学期生物教研组工作计划指导思想学习方式。
北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式 整 式 多项式同底数幂的乘法 幂的乘方 积的乘方幂运算 同底数幂的除法 零指数幂 负指数幂 整式的加减 单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
二、多项式1、多项式、多项式的次数、项 几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式:单项式和多项式统称为整式。
四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。
五、幂的运算性质: 1、同底数幂的乘法:a m﹒a n =am+n(m,n 都是正整数);2、幂的乘方:(am)n=amn(m,n 都是正整数); 3、积的乘方:(ab )n=a n bn(n 都是正整数);4、同底数幂的除法:am÷a n=am-n(m,n 都是正整数,a ≠0) ;整 式 的 运算六、零指数幂和负整数指数幂: 1、零指数幂:a=1(a ≠0);2、负整数指数幂:p 是正整数。
七、整式的乘除法:1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、p 是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式乘以多项式: 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
北师大版七年级下册数学各章知识点总结(完整详细版)本文介绍了数学中整式的运算,包括幂运算、单项式、多项式、同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法、零指数幂、负指数幂、整式的加减、整式的乘法、整式的除法等知识点。
首先,单项式是只含有数字与字母的积的代数式,一个单项式中所有字母的指数的和叫做这个单项式的次数。
多项式是几个单项式的和,其中每个单项式叫做这个多项式的项,多项式中次数最高的项的次数,叫做这个多项式的次数。
单项式和多项式统称为整式。
整式的加减法的一般步骤是去括号,合并同类项。
幂的运算性质包括同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法。
其中同底数幂的乘法是指相同底数的幂相乘,幂的乘方是指一个幂再乘以一个幂,积的乘方是指两个数的积的幂等于这两个数分别的幂的积,同底数幂的除法是指相同底数的幂相除。
整式的乘除法也是重要的知识点,单项式乘以单项式的法则是把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
单项式乘以多项式的法则是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
多项式乘以多项式的方法是先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
单项式除以单项式的方法是把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
多项式除以单项式的方法是先把这个多项式的每一项分别除以单项式,再把所得的商相加。
最后,本文介绍了整式乘法公式,包括平方差公式和完全平方公式。
平方差公式是指一个二次多项式的两个相邻项之间的差可以表示为两个一次多项式的乘积,完全平方公式是指一个二次多项式可以表示为两个一次多项式的平方差。
锐角三角形直角三角形钝角三角形7、全等三角形:若两个三角形的三个对应边分别相等,则这两个三角形全等,记作△ABC≌△DEF。
8、全等三角形的性质:1)对应角相等;2)对应边相等;3)对应角平分线相等;4)对应角的余角相等;5)对应边上的中线相等;6)对应边上的高线相等;7)对应边上的角平分线相等;8)对应边上的中线平行;9)对应边上的高线垂直;10)全等三角形的面积相等。
北师大版七年级下册数学各章知识点总结编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北师大版七年级下册数学各章知识点总结)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北师大版七年级下册数学各章知识点总结的全部内容。
北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式式多项式同底数幂的乘法幂的乘方积的乘方同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘 整式运算平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
一个单项式中,所有字母的指数的和叫做这个单项式的次数.二、多项式1、多项式、多项式的次数、项几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项.多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式:单项式和多项式统称为整式。
四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。
五、幂的运算性质:1、同底数幂的乘法:a m﹒a n=a m+n (m,n都是正整数);2、幂的乘方:(a m )n =a mn (m ,n 都是正整数);3、积的乘方:(ab )n =a n b n (n 都是正整数);4、同底数幂的除法:a m ÷a n =a m-n (m,n 都是正整数,a≠0) ;六、零指数幂和负整数指数幂:1、零指数幂:a 0=1(a≠0);2、负整数指数幂:1(0)p p a a a -=≠p 是正整数。
北师大版七年级下册数学第六章概率知识点归纳附测试卷第六章概率@考点归纳1. 必然事件一、事件 2.不可能事件3.不确定事件概率二、等可能性游戏的公平性1. 概率的定义三、概率 2.几何概率3. 设计概率模型一、事件1、事件分为必然事件、不可能事件、不确定事件。
2、必然事件:事先就能肯定一定会发生的事件。
也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。
3、不可能事件:事先就能肯定一定不会发生的事件。
也就是指该事件每次都完全没有机会发生,即发生的可能性为零。
4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。
5、三种事件都是相对于事件发生的可能性来说的,若事件发生的可能性为100%,则为必然事件;若事件发生的可能性为0,则为不可能事件;若事件不一定发生,即发生的可能性在0∽1之间,则为不确定事件。
6、简单地说,必然事件是一定会发生的事件;不可能事件是绝对不可能发生的事件;不确定事件是指有可能发生,也有可能不发生的事件。
7、表示事件发生的可能性的方法通常有三种:(1)用语言叙述可能性的大小。
(2)用图例表示。
(3)用概率表示。
二、等可能性1、等可能性:是指几种事件发生的可能性相等。
2、游戏规则的公平性:就是看游戏双方的结果是否具有等可能性。
(1)首先要看游戏所出现的结果的两种情况中有没有必然事件或不可能事件,若有一个必然事件或不可能事件,则游戏是不公平的;(2)其次如果两个事件都为不确定事件,则要看这两个事件发生的可能性是否相同;即看双方获胜的可能性是否相同,只有双方获胜的可能性相同,游戏才是公平的。
(3)游戏是否公平,并不一定是游戏结果的两种情况发生的可能性都是二分之一,只要对游戏双方获胜的事件发生的可能性一样即可。
三、概率1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。
第六章概率初步全章复习教案一、考点突破:本讲主要内容是概率初步的有关知识,具体要求如下:1. 感受生活中的随机现象,并体会不确定事件发生的可能性大小。
2. 通过试验感受不确定事件发生的频率的稳定性,理解概率的意义。
3. 能求一些简单不确定事件发生的概率,并能设计符合要求的简单概率试验。
4. 体会概率是描述随机现象的数学模型,发展数据分析观念。
中考要求:概率初步是各地每年中考的必考题,主要考查学生对概率理解与掌握的情况,知识点较简单,考查的形式较单一,由于随机现象贴近生活,所以其分数所占的比例越来越大。
在近几年的中考中,出现了概率和平面图形、统计图、平均数、中位数、众数、函数等知识的综合题,难度较大。
中考命题以三种题型为主:一是有关事件确定的基础题,二是与概率数值有关的计算题,三是用设计模拟试验估计事件发生的概率的实际应用题。
二、重难点提示:重点:随机事件、必然事件、不可能事件的定义;概率的意义;用列表法、树形图法及模拟试验的方法求事件发生的概率。
难点:概率的意义;用列表法、树形图法及模拟试验的方法求事件发生的概率。
知识脉络图:知识点一:感受可能性要点精讲:典例精析:例题1 下列事件中,不可能事件是()A. 掷一枚六个面分别刻有1~6的均匀正方体骰子,向上一面的点数是“1”B. 任意选择某个电视频道,正在播放动画片C. 肥皂泡会破碎D. 在平面内,度量一个三角形的内角度数,其和为360°例题2 下列事件是必然事件的是()A. 今年10月1日南京的天气一定是晴天B. 小明放学回家,妈妈正在家里℃时,将一碗清水放在室外会结冰C. 当室外温度低于10D. 打开电视,正在播广告例题3 下列四个事件中,是随机事件(不确定事件)的为()A. 颖颖上学经过十字路口时遇到绿灯B. 不透明袋子中放了大小相同的一个乒乓球、两个玻璃球,从中摸出乒乓球C. 本题为第10题,你这时正在解答本试卷的第12题D. 明天我市最高气温为60℃知识点二:频率的稳定性要点精讲:典例精析(1)计算并填写表中优等品的频率;(2)估计从该批次零件中任取一个零件是优等品的概率。
北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式式 多项式 同底数幂的乘法幂的乘方积的乘方 同底数幂的除法 零指数幂 负指数幂 整式的加减 单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘 整式运算 平方差公式 完全平方公式单项式除以单项式整式的除法多项式除以单项式一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式.单独的一个数或一个字母也是单项式。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
二、多项式1、多项式、多项式的次数、项几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式:单项式和多项式统称为整式. 四、整式的加减法: 整式加减法的一般步骤:(1)去括号;(2)合并同类项。
五、幂的运算性质: 1、同底数幂的乘法:a m﹒a n =am+n(m,n 都是正整数);2、幂的乘方:(am)n=amn(m ,n 都是正整数);3、积的乘方:(ab )n=a n bn(n 都是正整数);4、同底数幂的除法:am÷a n=am-n(m ,n 都是正整数,a ≠0) ;六、零指数幂和负整数指数幂: 1、零指数幂:a=1(a ≠0);2、负整数指数幂:p 是正整数。
七、整式的乘除法:1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、p 是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得1(0)p pa a a -=≠的积相加。
3、多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式. 5、多项式除以单项式:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加. 八、整式乘法公式:1、平方差公式:(a+b )(a —b)=a 2-b22、完全平方公式:第二章 平行线与相交线余角余角补角补角角 两线相交同位角 三线八角 内错角同旁内角222222()2,()2,a b a ab b a b a ab b +=++-=-+平行线与相交平行线的判定平行线平行线的性质尺规作图一、余角和补角:1、余角:定义:如果两个角的和是直角,那么称这两个角互为余角.性质:同角或等角的余角相等。