运筹学电子教案1
- 格式:pptx
- 大小:189.70 KB
- 文档页数:57
第 1 次课 2 学时绪 论运筹学(operations research )是用数学方法研究各类系统最优化问题的学科。
运筹学通过建立系统的数学模型并求解,为决策者制定最优决策提供科学依据。
一、运筹学简史二、运筹学的主要分支1. 线性规划(Linear Programming )2. 目标规划(Goal Programming )3. 整数规划(Integer Programming )4. 非线性规划(Nonlinear Programming )5. 动态规划(Dynamic Programming )6. 图论与网络分析(Graph Theory and Network Analysis )7. 排队论(Queuing Theory )8. 存贮论(Inventory Theory )9. 对策论(Game Theory ) 10. 决策论(Decision Theory ) 三、运筹学的工作步骤 1. 提出和形成问题 2. 收集资料,确定参数 3. 建立模型4. 模型求解和检验5. 解的控制第一章 线性规划与单纯形法 §1.1 线性规划的基本概念§1.1.1线性规划的数学模型 特点:(1)每个行动方案可用一组变量(x 1,…,x n )的值表示,这些变量一般取非负值; (2)变量的变化要受某些限制,这些限制条件用一些线性等式或不等式表示; (3)有一个需要优化的目标,它也是变量的线性函数。
具备以上三个特点的数学模型称为线性规划(Linear Programming ,简记为LP ),一般形式为:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥=≤+++≥=≤+++≥=≤++++++=0,,),(),(),( max(min)21221122222121112121112211n mn mn m m n n n n n n x x x bx a x a x a b x a x a x a b x a x a x a x c x c x c z 采用求和符号Σ,可以简写为:⎪⎩⎪⎨⎧=≥==≥≤=∑∑==n j x m i b x a x c z ji nj jij nj jj ,,2,1 0,,2,1 ),( max(min)11§1.1.2图解法 1. 唯一最优 例4⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤++=0,124 202582 52 max 212212121x x x x x x x x x z图1-12. 无穷多最优3. 无界解(无最优解)第 2 次课 2 学时§1.2 线性规划的标准形式和解的性质§1.2.1 LP 的标准形式⎪⎩⎪⎨⎧=≥===∑∑==n j x m i b x a x c z ji nj jij nj jj ,,2,1 0 ,,2,1 max 11变换一般LP 为标准形式的方法:(1)如果原问题目标函数求极小值:∑==nj j jx cz 1min令z 1=-z ,转化为求∑=-=nj j jx cz 11)( max 。
《运筹学》教案适用专业:适用层次:本科教学时间:2011年上学期授课题目:绪论第一章线性规划及单纯形法第一节:线性规划问题及数学模型。
教学目的与要求:1.知识目标:掌握运筹学的概念和作用及其学习方法;掌握线性规划的基本概念和两种基本建模方法。
2.能力目标:掌握线性规划建模的标准形式及将普通模型化为标准模型的方法。
要求学生完成P43习题1.2两个小题。
3.素质目标:培养学生良好的职业道德、树立爱岗精神教学重点:1、线性规划的基本概念和两种基本建模方法;2、线性规划建模的标准形式及将普通模型化为标准模型的方法。
教学难点:1、线性规划的两种基本建模方法;2、将线性规划模型的普通形式化为标准形式。
教学过程:1.举例引入( 5分钟)2.新课(60分钟)(1)举例引入,绪论(20分钟)(2)运筹学与线性规划的基本概念(20分钟)(3)结合例题讲解线性规划标准型的转化方法3.课堂练习(20分钟)4.课堂小结(5分钟)5.布置作业《线性规划及单纯形法》(2课时)【教学流程图】举例引入,绪论运筹学运筹学与线性规划的基本概念线性规划(结合例题讲解)线性规划的标准型目标函数结合例题讲解线性规划标准型的转化方法约束条件的右端常数约束条件为不等式课堂练习课堂小结布置作业【教学方法】本课主要采用任务驱动和程序式思维相结合的教学方法,过程当中辅以案例讲解、启发提问、自主学习和协作学习等方式。
任务驱动是实现本课教学目标和完成教学内容的主要方法,任务是师生活动内容的核心,在教学过程中,任务驱动被多次利用。
自主学习能提高学生的自主探究能力,竞赛和协作学习调动学生的积极性,激发学生参与的热情。
学生之间互帮互助,共同分享劳动果实,从而激发了学生的团队意识,达到理想的教学效果。
【教学内容】一、教学过程:(一)举例引入:(5分钟)(1)齐王赛马的故事(2)两个囚犯的故事导入提问:什么叫运筹学?(二)新课:绪论一、运筹学的基本概念(用实例引入)例1-1战国初期,齐国的国王要求田忌和他赛马,规定各人从自己的上马、中马、下马中各选一匹马来比赛,并且说好每输一匹马就得支付一千两银子给予获胜者。
《运筹学Ⅰ》教案汇总第一章:运筹学概述1.1 教学目标了解运筹学的定义、发展历程和应用领域掌握运筹学的基本方法和步骤1.2 教学内容运筹学的定义和发展历程运筹学的应用领域运筹学的基本方法和步骤1.3 教学方法讲授法:介绍运筹学的定义、发展历程和应用领域案例分析法:分析运筹学在实际问题中的应用1.4 教学资源教材:运筹学基础案例素材:现实生活中运筹学的应用案例1.5 教学评估课堂讨论:学生对运筹学的理解和应用能力的评估课后作业:学生对运筹学基本方法和步骤的掌握程度的评估第二章:线性规划2.1 教学目标理解线性规划的定义、特点和应用掌握线性规划的基本方法和步骤2.2 教学内容线性规划的定义、特点和应用线性规划的基本方法和步骤线性规划的求解算法2.3 教学方法讲授法:介绍线性规划的定义、特点和应用案例分析法:分析线性规划在实际问题中的应用实践操作法:引导学生运用线性规划方法解决实际问题2.4 教学资源教材:线性规划与运作管理案例素材:现实生活中线性规划的应用案例软件工具:如LINDO、Excel等线性规划求解工具2.5 教学评估课堂讨论:学生对线性规划的理解和应用能力的评估课后作业:学生对线性规划基本方法和步骤的掌握程度的评估实践项目:学生运用线性规划方法解决实际问题的能力的评估第三章:整数规划3.1 教学目标理解整数规划的定义、特点和应用掌握整数规划的基本方法和步骤3.2 教学内容整数规划的定义、特点和应用整数规划的基本方法和步骤整数规划的求解算法3.3 教学方法讲授法:介绍整数规划的定义、特点和应用案例分析法:分析整数规划在实际问题中的应用实践操作法:引导学生运用整数规划方法解决实际问题3.4 教学资源教材:整数规划案例素材:现实生活中整数规划的应用案例软件工具:如LINDO、Excel等整数规划求解工具3.5 教学评估课堂讨论:学生对整数规划的理解和应用能力的评估课后作业:学生对整数规划基本方法和步骤的掌握程度的评估实践项目:学生运用整数规划方法解决实际问题的能力的评估第四章:非线性规划4.1 教学目标理解非线性规划的定义、特点和应用掌握非线性规划的基本方法和步骤4.2 教学内容非线性规划的定义、特点和应用非线性规划的基本方法和步骤非线性规划的求解算法4.3 教学方法讲授法:介绍非线性规划的定义、特点和应用案例分析法:分析非线性规划在实际问题中的应用实践操作法:引导学生运用非线性规划方法解决实际问题4.4 教学资源教材:非线性规划案例素材:现实生活中非线性规划的应用案例软件工具:如MATLAB、Python等非线性规划求解工具4.5 教学评估课堂讨论:学生对非线性规划的理解和应用能力的评估课后作业:学生对非线性规划基本方法和步骤的掌握程度的评估实践项目:学生运用非线性规划方法解决实际问题的能力的评估第五章:动态规划5.1 教学目标理解动态规划的定义、特点和应用掌握动态规划的基本方法和步骤5.2 教学内容动态规划的定义、特点和应用动态规划的基本方法和步骤动态规划的求解算法5.3 教学方法讲授法:介绍动态规划的定义、特点和应用案例分析法:分析动态规划在实际问题中的应用实践操作法:引导学生运用动态规划方法解决实际问题5第六章:排队论6.1 教学目标理解排队论的基本概念和排队模型掌握排队论的分析和应用方法6.2 教学内容排队论的基本概念和排队模型排队论的分析和应用方法排队论在实际问题中的应用案例6.3 教学方法讲授法:介绍排队论的基本概念和排队模型案例分析法:分析排队论在实际问题中的应用实践操作法:引导学生运用排队论方法解决实际问题6.4 教学资源教材:排队论及其应用案例素材:现实生活中排队论的应用案例软件工具:如Queuing System等排队论分析软件6.5 教学评估课堂讨论:学生对排队论的理解和应用能力的评估课后作业:学生对排队论分析和应用方法的掌握程度的评估实践项目:学生运用排队论方法解决实际问题的能力的评估第七章:存储论7.1 教学目标理解存储论的基本概念和存储模型掌握存储论的分析和应用方法7.2 教学内容存储论的基本概念和存储模型存储论的分析和应用方法存储论在实际问题中的应用案例7.3 教学方法讲授法:介绍存储论的基本概念和存储模型案例分析法:分析存储论在实际问题中的应用实践操作法:引导学生运用存储论方法解决实际问题7.4 教学资源教材:存储论及其应用案例素材:现实生活中存储论的应用案例软件工具:如Excel等存储论分析软件7.5 教学评估课堂讨论:学生对存储论的理解和应用能力的评估课后作业:学生对存储论分析和应用方法的掌握程度的评估实践项目:学生运用存储论方法解决实际问题的能力的评估第八章:对策论8.1 教学目标理解对策论的基本概念和博弈模型掌握对策论的分析和应用方法8.2 教学内容对策论的基本概念和博弈模型对策论的分析和应用方法对策论在实际问题中的应用案例8.3 教学方法讲授法:介绍对策论的基本概念和博弈模型案例分析法:分析对策论在实际问题中的应用实践操作法:引导学生运用对策论方法解决实际问题8.4 教学资源教材:对策论及其应用案例素材:现实生活中对策论的应用案例软件工具:如Game Theory Toolbox等对策论分析软件8.5 教学评估课堂讨论:学生对对策论的理解和应用能力的评估课后作业:学生对对策论分析和应用方法的掌握程度的评估实践项目:学生运用对策论方法解决实际问题的能力的评估第九章:网络优化9.1 教学目标理解网络优化的基本概念和方法掌握网络优化的分析和应用方法9.2 教学内容网络优化的基本概念和方法网络优化的分析和应用方法网络优化在实际问题中的应用案例9.3 教学方法讲授法:介绍网络优化的基本概念和方法案例分析法:分析网络优化在实际问题中的应用实践操作法:引导学生运用网络优化方法解决实际问题9.4 教学资源教材:网络优化及其应用案例素材:现实生活中网络优化的应用案例软件工具:如NetworkX等网络优化分析软件9.5 教学评估课堂讨论:学生对网络优化的理解和应用能力的评估课后作业:学生对网络优化分析和应用方法的掌握程度的评估实践项目:学生运用网络优化方法解决实际问题的能力的评估第十章:运筹学在实际问题中的应用10.1 教学目标理解运筹学在实际问题中的应用范围和重要性掌握运筹学解决实际问题的方法和步骤10.2 教学内容运筹学在实际问题中的应用范围和重要性运筹学解决实际问题的方法和步骤运筹学在实际问题中的应用案例分析10.3 教学方法讲授法:介绍运筹学在实际问题中的应用范围和重要性案例分析法:分析运筹学在实际问题中的应用案例实践操作法:引导学生运用运筹重点和难点解析教案编辑中需要重点关注的环节包括:1. 教学目标:这部分明确了学生应该达到的学习效果,是整个教案的出发点和归宿。
《运筹学》教案(本教案适用于20课时的班级)第一章线性规划与单纯形法1、教学计划第 1 次课 2 学时2、教案1.1线性规划问题及其数学模型线性规划模型的建立就是将现实问题用数学的语言表达出来。
例1:某工厂要安排生产Ⅰ、Ⅱ两种产品,每单位产品生产所需的设备、材料消耗及其利润如下表所示。
问应如何安排生产计划使工厂获利最多?解:设生产产品Ⅰ、Ⅱ的数量分别为1x 和2x 。
首先,我们的目标是要获得最大利润,即2132max x x z +=其次,该生产计划受到一系列现实条件的约束,设备台时约束:生产所用的设备台时不得超过所拥有的设备台时,即8221≤+x x原材料约束:生产所用的两种原材料A 、B 不得超过所用有的原材料总数,即1641≤x 1242≤x非负约束:生产的产品数必然为非负的,即0,21≥x x由此可得该问题的数学规划模型:⎪⎪⎩⎪⎪⎨⎧≥≤≤≤++=0,1241648232max 21212121x x x x x x x x z总结:线性规划的一般建模步骤如下: (1)确定决策变量确定决策变量就是将问题中的未知量用变量来表示,如例1中的1x 和2x 。
确定决策变量是建立数学规划模型的关键所在。
(2)确定目标函数确定目标函数就是将问题所追求的目标用决策变量的函数表示出来。
(3)确定约束条件将现实的约束用数学公式表示出来。
线性规划数学模型的特点(1)有一个追求的目标,该目标可表示为一组变量的线性函数,根据问题的不同,追求的目标可以是最大化,也可以是最小化。
(2)问题中的约束条件表示现实的限制,可以用线性等式或不等式表示。
(3)问题用一组决策变量表示一种方案,一般说来,问题有多种不同的备选方案,线性规划模型正式要在这众多的方案中找到最优的决策方案(使目标函数最大或最小),从选择方案的角度看,这是规划问题,从目标函数最大或最小的角度看,这是最优化问题。
1.2 线性规划问题的标准形式根据问题的性质,线性规划有多种形式,目标函数有要求最大化的,也有要求最小化的;约束条件可以是“≤”或“≥”的不等式,也可以是“=”;虽然决策变量一般是非负的,但也可是无约束的,即,可以在),(∞+-∞取值。
《运筹学》课程教案开课单位:物流管理系课程负责人:叶世杰适用于物流管理专业教学时数:45学时课程名称:运筹学(3学时*15周)授课教材:现代物流运筹学(第3版),沈家骅,电子工业出版社参考教材:运筹学(第3版),吴祈宗,机械工业出版社教学对象:物流应用专业三年级学生已修课程:英语、计算机基础、大学数学、物流专业导论、物流信息管理教学方法:引导提问、课堂讨论、案例教学、上机实践课程目标:使学生掌握运筹学在物流领域中的常见应用理论,启发学生将物流问题转化为运筹学模型并进行求解分析的能力和兴趣,奠定学生通过科学方法分析物流问题的思维模式,培养学生通过自我学习提升上述知识技能的能力。
章节目标:1. 第一章《绪论》,让学生了解运筹学在物流领域中的作用和意义,明确运筹学是物流专业人才所必须具备的知识和技能,培养学生根据实际物流问题建立运筹学模型并进行分析优化的思想基础。
2. 第二章《预测》,根据物流领域中不同预测需求,从易到难进行常规预测模型方法的讲解,让学生掌握线性预测模型和季节预测模型的建模思想和步骤,并能用计算机软件进行求解分析。
培养学生根据物流预测需求的具体特点采用合适预测模型进行分析的能力。
3. 第三章《线性规划》,以物流领域作为背景,让学生了解线性规划的概念和特点。
通过启发式讲解和讨论,使学生掌握建立物流线性规划模型的能力。
在此基础上引导学生掌握人工和计算机软件求解线性规划模型的能力,并根据求解结果进行分析,针对具体物流优化问题提出建议和措施。
4. 第四章《运输问题》,在之前广义的物流运筹模型的基础上进行细化。
将重心放在物流领域重点之一的运输上。
通过案例分析,使学生掌握将实际运输问题转化为运筹学模型的能力,并在此基础上进行人工求解和计算机求解,体会运筹学模型在物流运输中的重要性。
5. 第五章《动态规划》,在之前单步建模的基础上,使学生掌握动态规划中多阶段建模分析的能力,了解各阶段状态转换、决策制定的步骤,培养学生进行递归分析的能力。