平面直角坐标系
- 格式:doc
- 大小:410.50 KB
- 文档页数:7
平面直角坐标系平面直角坐标系是平面上最常用的坐标系统之一,用于描述平面上的点和其它几何图形的位置。
它由两条相互垂直的直线组成,分别称为x轴和y轴,它们的交点被称为原点。
一、坐标系介绍坐标系是用来刻画空间中各点位置的系统,而平面直角坐标系是坐标系中的一种。
平面直角坐标系的构成:1. x轴:水平的直线,向右延伸为正方向,向左延伸为负方向。
2. y轴:垂直于x轴的直线,向上延伸为正方向,向下延伸为负方向。
3. 原点:x轴和y轴的交点,被称为坐标系的原点。
二、坐标的表示方法在平面直角坐标系中,每个点可以表示为一个有序数对,即(x, y),其中x表示横坐标,y表示纵坐标。
1. 横坐标:横坐标表示点在x轴上的位置。
在原点的右边为正方向,左边为负方向。
2. 纵坐标:纵坐标表示点在y轴上的位置。
在原点的上方为正方向,下方为负方向。
三、点的位置关系根据坐标系的定义,我们可以判断点的位置关系。
1. 同一直线上的点:如果两个点的横坐标相等,纵坐标不同时,它们在同一条直线上,且与原点的距离相等。
2. 垂直关系:如果两个点的纵坐标相等,横坐标不同时,它们在同一条垂直线上,且与原点的距离相等。
3. 斜率:直线斜率是用来描述直线的倾斜程度的,斜率为0表示水平线,无限大表示垂直线。
4. 象限:根据点的坐标正负关系,可以将平面分为四个象限。
第一象限:x>0,y>0;第二象限:x<0,y>0;第三象限:x<0,y<0;第四象限:x>0,y<0。
四、点、线和图形的表示方法在平面直角坐标系中,我们可以使用坐标来表示点、线和图形。
1. 表示点:一个点的位置可以使用有序数对(x, y)来表示。
如点A(2, 3)表示横坐标为2,纵坐标为3的点A。
2. 表示线段:线段由两个端点组成,可以使用两个点的坐标来表示。
如线段AB由两个点A(2, 3)和B(4, 5)表示。
3. 表示直线:直线的方程可以使用斜率截距形式或一般式来表示。
平面直角坐标系简介平面直角坐标系是数学中一种常见的坐标系,用于描述平面上的点的位置。
它由两条相互垂直且共同交于原点的直线构成,分别称为x轴和y轴。
通过x、y轴上的数值,可以确定平面上的每一个点的坐标。
坐标轴平面直角坐标系由两个垂直的坐标轴组成,分别是x轴和y轴。
x轴是从左到右水平延伸的直线,y轴是从下到上垂直延伸的直线。
两轴交于原点O,原点是坐标系的起点,它的坐标为(0, 0)。
坐标轴上的点的坐标是由数值决定的,正方向上的数值代表右移或上移,负方向上的数值代表左移或下移。
x轴上的正方向可以取右移,y轴上的正方向可以取上移。
在平面上的点的位置是通过坐标值的组合来表示的。
坐标值在平面直角坐标系中,每个点的位置都有唯一的坐标值来确定。
一个坐标值由两个实数(x, y)组成,x表示该点在x轴上的位置,y表示该点在y轴上的位置。
坐标值的顺序可以是(x, y)或者y,x。
根据坐标轴和原点的位置,可以将坐标值分为四个象限。
第一象限的点具有正的x和y值,第二象限的点具有负的x值和正的y值,第三象限的点具有负的x 和y值,第四象限的点具有正的x和负的y值。
坐标变换平面直角坐标系除了可以用来表示点的位置外,还可以进行坐标变换。
坐标变换包括平移、旋转、缩放和倾斜等操作,这些操作可以改变坐标轴的位置和方向,从而达到变换坐标的目的。
平移是将整个坐标系在平面上沿着一个方向移动一定的距离。
例如,将坐标系向右平移3个单位,则所有点的x坐标都会增加3个单位。
类似地,将坐标系向上平移2个单位,则所有点的y坐标都会增加2个单位。
旋转是将整个坐标系绕原点或者其他点旋转一定的角度。
例如,将坐标系逆时针旋转90度,则x轴会变为新的y轴,y轴会变为新的-x轴。
通过旋转,可以改变坐标系中点的位置。
缩放是将整个坐标系沿着x轴和y轴的方向分别进行比例缩放。
例如,对x轴进行2倍缩放,则所有点的x坐标都会乘以2,从而使整个坐标系在x轴方向拉长。
类似地,对y轴进行2倍缩放,则所有点的y坐标都会乘以2,从而在y轴方向拉长。
平面直角坐标系平面直角坐标系是一种常用的二维坐标系统,用于描述平面内的点的位置。
它由两条相互垂直的数轴组成,一条是水平的x轴,另一条是垂直的y轴。
通过这两个轴,我们可以准确地定位和描述平面上的任意点。
在平面直角坐标系中,每个坐标点由一个有序数对(x,y)表示,其中x表示点在x轴上的位置,y表示点在y轴上的位置。
x轴和y轴的交点被称为原点,坐标为(0,0)。
x 轴向右延伸,以正数表示,y轴向上延伸,以正数表示,两个轴上都存在负数,表示左侧和下方的区域。
在这个坐标系中,每个点都与唯一的坐标对应,并且每个坐标都对应唯一的点。
通过给定的坐标,我们可以确定一个点的具体位置,并与其他点进行比较和运算。
平面直角坐标系被广泛应用于几何学、物理学、工程学和计算机图形学等领域。
在几何学中,直角坐标系可以用于描述图形的形状和位置关系。
在物理学中,直角坐标系可以用于描述物体在平面内的运动和受力情况。
在工程学中,直角坐标系可以用于定位和测量物体。
在计算机图形学中,直角坐标系可以用于图像的表示和处理。
在平面直角坐标系中,我们可以进行各种运算,例如点的平移、旋转和缩放等。
通过坐标系的转换和变换,我们可以改变点的位置和形状,实现各种需要的效果。
这为我们提供了解决问题和设计方案的灵活性和便利性。
在使用平面直角坐标系时,我们需要了解一些基本概念和原则。
首先,两个坐标轴之间的距离被称为单位距离,通常用1表示。
其次,两个坐标轴的正向确定了平面直角坐标系的方向。
最后,两个坐标轴的刻度线上的数值表示点到原点在两个轴上的距离,可以是整数、小数或负数。
总之,平面直角坐标系是一种用于描述平面上点位置的常用工具。
通过数轴和坐标系的概念,我们可以准确地定位和描述点在平面上的位置,实现各种运算和变换。
在各个领域的应用中,平面直角坐标系都扮演着重要的角色,为解决问题和实现设计提供了便利和灵活性。
通过深入学习和理解平面直角坐标系的原理和应用,我们可以更好地应用它来解决实际问题和进行创新设计。
平面直角坐标系平面直角坐标系是一种描述平面上点位置的坐标系统。
它由两条互相垂直的数轴组成,分别被称为x轴和y轴。
x轴用于表示水平方向的位置,y轴用于表示垂直方向的位置。
这两条轴的交点被称为坐标原点,以此为基准,可以确定平面上任意点的位置。
在平面直角坐标系中,每个点都可以用一对有序实数(x, y)来表示,其中x表示该点在x轴上的位置,y表示该点在y轴上的位置。
这一对实数被称为该点的坐标。
x轴的正方向是向右的,负方向是向左的;y轴的正方向是向上的,负方向是向下的。
因此,平面直角坐标系可以将平面上的每个点都精确地表示出来。
在平面直角坐标系中,每个点在与坐标轴交点相应处有一条与之平行的线段,这些线段被称为坐标轴线。
以坐标原点为顶点的两条坐标轴构成了一个正方形,这个正方形被称为坐标平面。
坐标平面被分成四个象限,分别是第一象限、第二象限、第三象限和第四象限。
第一象限是x轴和y轴都为正的象限;第二象限是x轴为负、y轴为正的象限;第三象限是x轴和y轴都为负的象限;第四象限是x轴为正、y轴为负的象限。
平面直角坐标系的使用极为广泛。
它不仅仅用于描述几何图形的位置,还可以用来表示物体在平面上的运动、函数图像以及解决问题。
在几何学中,平面直角坐标系可以用于确定点、直线、线段、角度和图形的面积等。
在物理学中,平面直角坐标系可以用于描述物体在平面上的受力和运动。
在数学中,平面直角坐标系可以用于表示函数关系,解决方程和不等式的问题。
总之,平面直角坐标系是一种非常有用的工具,它可以帮助我们理解和描述平面上的各种现象和问题。
通过熟练地运用平面直角坐标系,我们能够更好地分析和解决各种与位置、运动和图形相关的数学和物理问题。
因此,学习和掌握平面直角坐标系的基本知识和技能是非常重要的。
平面直角坐标系平面直角坐标系是解析几何中常用的坐标系,用于描述平面上的点和其它几何图形。
本文将详细介绍平面直角坐标系的定义、性质及应用。
一、定义平面直角坐标系由两个互相垂直的数轴(x轴和y轴)构成。
x轴水平放置,从左到右逐渐增大;y轴垂直于x轴,从下往上逐渐增大。
两条轴的交点称为原点,记作O。
平面直角坐标系将平面上的点与有序的实数对(x,y)一一对应。
二、性质1. 坐标轴性质:x轴上的点坐标为(x, 0),y轴上的点坐标为(0, y)。
2. 坐标线性质:对于坐标系内的一点P(x, y),以x轴和y轴为边,可以得到4个区域,分别对应第一象限、第二象限、第三象限和第四象限。
3. 距离计算公式:两点P1(x1, y1)和P2(x2, y2)之间的距离d可以通过勾股定理求得:d = √[(x2 - x1)² + (y2 - y1)²]。
三、应用平面直角坐标系在解析几何中有广泛的应用,常与方程、图形和向量等相关联。
1. 方程:通过坐标系可以解决一元和两元方程的问题。
对于一元方程,可以将其在坐标系中表示为一条直线,并求解其根;对于两元方程,可以表示为一条曲线,通过坐标系求解方程组的解。
2. 图形:通过坐标系,可以准确地表示和描述各种几何图形,如直线、抛物线、双曲线等。
在坐标系中,每个点都有唯一的坐标,因此可以使用坐标来确定图形上的点的位置。
3. 向量:向量是平面直角坐标系中的重要概念之一。
向量的起点可以任意选取,表示为一个有向线段,并通过坐标系表示其方向和大小。
向量可以进行加法、减法、数量积等运算,在物理学、工程学等领域有广泛的应用。
总结:平面直角坐标系是解析几何中最基本的坐标系之一,通过两个垂直的坐标轴构成。
它具有一些重要的性质,如坐标轴和坐标线的性质,以及距离计算公式。
平面直角坐标系在方程、图形和向量等方面有广泛的应用,能够准确地描述和解决各种几何问题。
平面直角坐标系平面直角坐标系是数学上常用的一种表示平面点位置的方法。
它由两条相互垂直的坐标轴组成,通常被称为x轴和y轴。
在平面直角坐标系中,每一个点可以由一个有序数对(x, y)来表示,其中x代表点在x轴上的位置,y代表点在y轴上的位置。
一、坐标轴和坐标平面平面直角坐标系以一个平面为基准面,通过在基准面上选择两条相互垂直的线段作为坐标轴,构成直角坐标系。
x轴和y轴分别与基准面的一个定点O相交于点O,被称为坐标原点。
二、坐标值在平面直角坐标系中,每一条坐标轴被划分为无限个等分,用来表示点在该轴上的位置。
任意一点的坐标值都是由该点在x轴和y轴上的投影决定的。
三、点的位置平面直角坐标系中的点可以分为四个象限:第一象限、第二象限、第三象限和第四象限。
第一象限位于x轴和y轴的正方向,第二象限位于x轴的负方向和y轴的正方向,第三象限位于x轴和y轴的负方向,第四象限位于x轴的正方向和y轴的负方向。
四、距离和斜率在平面直角坐标系中,可以通过坐标值计算两点之间的距离和斜率。
两点之间的距离可以通过使用勾股定理计算,而斜率则可以通过斜率公式计算,斜率公式为:m = (y2 - y1) / (x2 - x1),其中m为斜率,(x1,y1)和(x2, y2)分别为两点坐标。
五、图形的表示在平面直角坐标系中,不同的图形可以通过将点的集合按照一定规则进行连接而得到。
例如,直线可以由两个点确定,抛物线可以由若干个点确定,圆可以由一个点和半径确定等。
总结:平面直角坐标系是表示平面点位置的常用方法,通过坐标轴和坐标值可以准确地表示点在平面上的位置。
在平面直角坐标系中,可以计算两点之间的距离和斜率,同时可以通过连接点来表示不同的图形。
平面直角坐标系是数学中一个重要的概念,被广泛应用于几何学、代数学等领域。
17.2.1平面直角坐标系导学案
班级____班级_____
学习目标:
1、认识平面直角坐标系,了解点的坐标的意义,正确画坐标和找对应点。
2、理解平面内的点与有序数对的一一对应关系。
学习重难点:
平面直角坐标系和点的坐标.
一、独立看书34——35页(8分钟)
二、学习导航:
1、平面直角坐标系
在平面内画两条互相__、原点重合的数
轴,组成____________.水平的数轴称为
______,习惯上取______为正方向;竖直
的数轴称为__________,取______为正方向;两坐标轴的交点为平面直角坐标系的_____. 请你动手,在页面空白处画一个平面直角坐标系。
2、点的坐标
(1)已知点的位置写坐标:有了平面直角坐标系,平面内的点就可以用一个坐标来表示了.图中点A的坐标是(3,4),请写出点B、C、D的坐标:B(___,___)、C(___,___)、D(___,___).原点的坐标是(___,___).
(2)已知点坐标确定点的位置:如给你一个坐标G(-2,3),则
先在x轴上找到表示-2的点,过这个点做x轴的垂线;再在y 轴上找到表示3的点,过这个点做y轴的垂线,两条垂线的交点为G(-2,3)。
你能画出已知点E(-5,0),F(5,-2)吗?,请在图中画出点E、F.
平面内点的坐标是有序数对,其顺序是_____在前,____在后,中间用“,”分开.
当a b≠时,(),a b和(),b a表示相同的点吗?
3、象限的概念
(1)建立了平面直角坐标系的平面是坐标平面,坐标平面被两条坐标轴分成四个部分,分别叫做第一、
二、三、四象限. 如上图中的点A在第
___象限,点B在第___象限.
坐标轴上的点不属于_____.
(2)坐标平面内的点的坐标有如下特征:
点(),
P x y在第一象限:0,0.
>>
x y
点(),
P x y在第二象限:_________.
点(),
P x y在第三象限:_________.
点(),
P x y在第四象限:_________.
点(),
P x y在x轴上:
点(),
P x y在y轴上:
点(),
P x y在原点上:
三、练习案:
【第一关】1. . 写出图中
点A、B、C、D、E、F的坐标.
2. 在上图中描出下列各点:L(-2, 3),
M(-4,-1),N(4,5),P(2.5,-2).,Q(0,-4)
3. 在平面直角坐标系中,点P的坐标为(-4,6),则点P在()
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
★4.已知有一点P(m-1,m+2)在直角坐标系中的x轴上,则点P的坐标为(,)。
5、点(0,-3)在()
A.x轴上B.y轴上C.在原点D.与x轴平行的直线上
★6、在直角坐标系中,点A(-3,2),点B(3,2),连接AB所成的线段与_____轴平行.
【第二关】
7. 点A在x轴上,距离原点4个单位长度,则A点的坐标是
_______________。
8. 点A(8,0)的位置是在平面直角坐标
9.分别写出右图中各点的坐标,并指出
它们属于哪个象限。
【第三关】
10.点(),
A x y的坐标满足0
xy=,点A在
()★★
A.x轴上B.y轴上
C.坐标轴上D.无法确定
11 . 如果同一直角坐标系下两个点的横坐标相同,那么过这两
点的直线()★
(A)平行于x轴(B)平行于y轴(C)经过原点(D)
以上都不对
★★12. 在平面直角坐标系内,已知点P ( a , b ), 且a b < 0 , 则
点P的位置在__ __象限。
(9题图)
课题:17.2.2 函数的图像
姓名班级______________【学习目标】1、能用描点法作出简单的函数图像。
2、通过观察函数的图象,能够从所给的图象中获取信息,从而解答一些简单的实际问题.
教学重点、难点:对已知图象能读图、识图,从图象解释函数变
化关系。
学习过程:
一、自主学习: 象
1、画出函数2
2
1x y
的图
总结:要画出一个函数的图象,关键是要画出图象上的一些 ,为此,首先要取一些 的值,并求出对应的 值,最后再有 的曲线把这些点 连接起来。
画函数图象的方法,可以概括为 、 、 三步,通常称为 法. 练习:p38练习第1题 二、合作探究:
例1、王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先上,然后追赶爷爷;右图中两条线段分别表示小强和爷爷离开山脚的距离 (米)与爬山所用时间(分)的关系(从小强开始爬山时计时),看图回答下列问题: 1.小强让爷爷先上 米。
2.山顶距离山脚 米, 先爬上山顶。
3.小强通过 分追上爷爷。
例2、如图表示某学校秋游活动时,学生乘坐旅游车所行走的路程与时间的关系的示意图,请根据示意田回答下列问题:
1.学生 时下车参观第一风景区,参观时间
有时。
2.11:00时该车离开学校有千米远。
3.学生时返回学校,返回学校时车的平均速度是千米/时。
三、拓展延伸:
例3、小明早晨从家骑车到学校,先上坡后下坡,行程情况如图,若返回时上、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是()。
(A)37.2分钟(B)48分钟(C)30分钟(D)33分钟
【练习案】
【第一关】1、小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。
车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。
下面是行驶路程s(米)关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是()
A B C D
2、一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水
中的速度为15 km/h,水流速度为5 km/h.轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t(h),航行的路程为s(km),则s与t的函数图象大致是()
【第二关】3画出函数x
y 6
-
=的图象
【第三关】4、某人从甲地出发,骑摩托车去乙地,共用2小时。
已知摩托车行驶的路程s (千米)与行驶的时间t (小时)的关系如
右图所示。
假设这辆摩托车每行驶100千米的耗油量为2升,根据图中提供的信息,这辆摩托车从甲地到乙地共耗油_______升,请你用语言简单描述这辆摩托车行驶的过程:___________________________________________________
X
… -3 -2 -1 1 2
3
… y
…
…
s
O
A
s
O
B
s
O
C
s
O
D。