由数与字母的乘积组成的代数式叫做单项式.
- 格式:ppt
- 大小:319.50 KB
- 文档页数:16
单项式、系数、次数由数与字母的乘积组成的代数式叫做单项式(monomial).单独一个数或一个字母也是单项式.单项式中的数字因数叫做这个单项式的系数(coefficient).例:单项式x 、-a 2b 和mn 8 的系数分别是1、-1和18 . 一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree ).例:单项式-k 、2xy 2和0.7a 2b 3c 的次数分别是1、3和6.2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )A .B .C .D .2.如图,菱形ABCD 中,E. F 分别是AB 、AC 的中点,若EF=3,则菱形ABCD 的周长是( )A .12B .16C .20D .243.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。
那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )A .()222a b a b -=-B .()2222a b a ab b +=++C .()2222a b a ab b -=-+D .()()22a b a b a b -=+- 4.一次函数满足,且随的增大而减小,则此函数的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限 5.在同一坐标系中,反比例函数y =k x与二次函数y =kx 2+k(k≠0)的图象可能为( ) A . B .C.D.6.﹣3的绝对值是()A.﹣3 B.3 C.-13D.137.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD=1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB 与CD1交于点O,则线段AD1的长度为()A13B5C.2D.48.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A.(﹣5,3)B.(1,﹣3)C.(2,2)D.(5,﹣1)9.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-310.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=-2时,y取最大值;③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c> ax2+bx +c时,x的取值范围是-4<x<0;其中推断正确的是()A.①②B.①③C.①③④D.②③④11.如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为( )A.2R B.3R C.2R D.3R12.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2等_________.14.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于__________.CD=,15.如图,小阳发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得8 BC=米,CD与地面成30°角,且此时测得1米的影长为2米,则电线杆的高度为20=__________米.16.如图,AG∥BC,如果AF:FB=3:5,BC:CD=3:2,那么AE:EC=_____.17.已知点A(4,y1),B(,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是 .18.已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.求每件A种商品和每件B 种商品售出后所得利润分别为多少元?由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?20.(6分)兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.第一批该款式T恤衫每件进价是多少元?老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出45时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)21.(6分)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?22.(8分)计算532224mmm m-⎛⎫+-÷⎪--⎝⎭.23.(8分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;在图中画出以线段AB为一腰,底边长为22的等腰三角形ABE,点E 在小正方形的顶点上,连接CE,请直接写出线段CE的长.24.(10分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;抽查C厂家的合格零件为件,并将图1补充完整;通过计算说明合格率排在前两名的是哪两个厂家;若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.25.(10分)如图,在△ABC中,∠C=90°.作∠BAC的平分线AD,交BC于D;若AB=10cm,CD=4cm,求△ABD的面积.26.(12分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.求证:DP是⊙O的切线;若⊙O的半径为3cm,求图中阴影部分的面积.27.(12分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是,故选C.2.D【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出AD,再根据菱形的周长公式列式计算即可得解.【详解】Q E、F分别是AC、DC的中点,∴EF是ADCV的中位线,∴2236==⨯=,AD EF∴菱形ABCD的周长44624==⨯=.AD故选:D.【点睛】本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.3.D【解析】【分析】分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式.阴影部分的面积相等,即甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).故选:D.【点睛】考点:等腰梯形的性质;平方差公式的几何背景;平行四边形的性质.4.A【解析】试题分析:根据y随x的增大而减小得:k<0,又kb>0,则b<0,故此函数的图象经过第二、三、四象限,即不经过第一象限.故选A.考点:一次函数图象与系数的关系.5.D【解析】【分析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k<0时,反比例函数y=kx,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;②当k>0时,反比例函数y=kx,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D.故选D.【点睛】本题主要考查二次函数、反比例函数的图象特点.6.B【解析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 7.A【解析】试题分析:由题意易知:∠CAB=41°,∠ACD=30°.若旋转角度为11°,则∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,则AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1故选A.考点: 1.旋转;2.勾股定理.8.C【解析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣45<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=32>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.9.B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.10.B【解析】【分析】结合函数图象,利用二次函数的对称性,恰当使用排除法,以及根据函数图象与不等式的关系可以得出正确答案.【详解】解:①由图象可知,抛物线开口向下,所以①正确;②若当x=-2时,y取最大值,则由于点A和点B到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A和点B的纵坐标显然不相等,所以②错误,从而排除掉A和D;剩下的选项中都有③,所以③是正确的;易知直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是x<-4或x>0,从而④错误.故选:B.【点睛】本题考查二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题.11.D【解析】【分析】延长BO 交圆于D ,连接CD ,则∠BCD=90°,∠D=∠A=60°;又BD=2R ,根据锐角三角函数的定义得BC=3R.【详解】解:延长BO 交⊙O 于D ,连接CD ,则∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,3,故选D.【点睛】此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.12.C【解析】根据旋转的性质得,∠ABD=∠CBE=60°, ∠E=∠C,则△ABD 为等边三角形,即 AD =AB=BD,得∠ADB=60°因为∠ABD=∠CBE=60°,则∠CBD=60°,所以,∠ADB=∠CBD,得AD∥BC.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2π【解析】试题解析:2222121111ππππ228228AC BC S AC S BC ⎛⎫⎛⎫=⋅==⋅= ⎪ ⎪⎝⎭⎝⎭,, 所以()22212111πππ162π888S S AC BC AB +=+==⨯=.故答案为2π.14.1 2【解析】【分析】根据同弧或等弧所对的圆周角相等来求解.【详解】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD=ACAB=12.故选D.【点睛】本题利用了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念求解.15.()米【解析】【分析】过D作DE⊥BC的延长线于E,连接AD并延长交BC的延长线于F,根据直角三角形30°角所对的直角边等于斜边的一半求出DE,再根据勾股定理求出CE,然后根据同时同地物高与影长成正比列式求出EF,再求出BF,再次利用同时同地物高与影长成正比列式求解即可.【详解】如图,过D作DE⊥BC的延长线于E,连接AD并延长交BC的延长线于F.∵CD=8,CD与地面成30°角,∴DE=12CD=12×8=4,根据勾股定理得:.∵1m杆的影长为2m,∴DEEF=12,∴EF=2DE=2×4=8,().∵ABBF=12,∴AB=12(28+43)=14+23.故答案为(14+23).【点睛】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比的性质,作辅助线求出AB的影长若全在水平地面上的长BF是解题的关键.16.3:2;【解析】【分析】由AG//BC可得△AFG与△BFD相似,△AEG与△CED相似,根据相似比求解.【详解】假设:AF=3x,BF=5x ,∵△AFG与△BFD相似∴AG=3y,BD=5y由题意BC:CD=3:2则CD=2y∵△AEG与△CED相似∴AE:EC= AG:DC=3:2.【点睛】本题考查的是相似三角形,熟练掌握相似三角形的性质是解题的关键.17.y3>y1>y2.【解析】试题分析:将A,B,C三点坐标分别代入解析式,得:y1=3,y2=5-4,y3=15,∴y3>y1>y2. 考点:二次函数的函数值比较大小.18.2,0≤x≤2或43≤x≤2.【解析】【分析】(2)由图象直接可得答案;(2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答【详解】(2)由函数图象可知,乙比甲晚出发2小时.故答案为2.(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:一是甲出发,乙还未出发时:此时0≤x≤2;二是乙追上甲后,直至乙到达终点时:设甲的函数解析式为:y=kx,由图象可知,(4,20)在函数图象上,代入得:20=4k,∴k=5,∴甲的函数解析式为:y=5x①设乙的函数解析式为:y=k′x+b,将坐标(2,0),(2,20)代入得:202k bk b=+⎧⎨=+⎩,解得2020kb=⎧⎨=-⎩,∴乙的函数解析式为:y=20x﹣20 ②由①②得52020y xy x=⎧⎨=-⎩,∴43203xy⎧=⎪⎪⎨⎪=⎪⎩,故43≤x≤2符合题意.故答案为0≤x≤2或43≤x≤2.【点睛】此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)200元和100元(2)至少6件【解析】【分析】(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由售出1件A 种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A 种商品a 件,则购进B 种商品(34﹣a )件.根据获得的利润不低于4000元,建立不等式求出其解即可.【详解】解:(1)设A 种商品售出后所得利润为x 元,B 种商品售出后所得利润为y 元.由题意, 得4600351100x y x y +=⎧⎨+=⎩,解得:200100x y =⎧⎨=⎩, 答:A 种商品售出后所得利润为200元,B 种商品售出后所得利润为100元.(2)设购进A 种商品a 件,则购进B 种商品(34﹣a )件.由题意,得200a+100(34﹣a )≥4000,解得:a≥6答:威丽商场至少需购进6件A 种商品.20.(1)第一批T 恤衫每件的进价是90元;(2)剩余的T 恤衫每件售价至少要80元.【解析】【分析】(1)设第一批T 恤衫每件进价是x 元,则第二批每件进价是(x+9)元,再根据等量关系:第二批进的件数=第一批进的件数可得方程;(2)设剩余的T 恤衫每件售价y 元,由利润=售价﹣进价,根据第二批的销售利润不低于650元,可列不等式求解.【详解】解:(1)设第一批T 恤衫每件进价是x 元,由题意,得45004950x x 9=+, 解得x=90经检验x=90是分式方程的解,符合题意.答:第一批T 恤衫每件的进价是90元.(2)设剩余的T 恤衫每件售价y 元.由(1)知,第二批购进495099=50件. 由题意,得120×50×45+y×50×15﹣4950≥650, 解得y≥80.答:剩余的T 恤衫每件售价至少要80元.21.(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.【解析】【分析】(1)设年平均增长率为x ,根据“2015年投入资金×(1+增长率)2=2017年投入资金”列出方程,解方程即可;(2)设今年该地有a 户享受到优先搬迁租房奖励,根据“前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万”列不等式求解即可.【详解】(1)设该地投入异地安置资金的年平均增长率为x ,根据题意,得:1280(1+x )2=1280+1600,解得:x=0.5或x=﹣2.25(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a 户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a ﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.考点:一元二次方程的应用;一元一次不等式的应用.22.26m +【解析】 分析:先计算522m m +--,再做除法,结果化为整式或最简分式. 详解: 532224m m m m -⎛⎫+-÷ ⎪--⎝⎭()()()2252423m m m m m +---=⋅-- ()222923m m m m --=⋅-- ()()()332223m m m m m -+-=⋅--26m=+.点睛:本题考查了分式的混合运算.解题过程中注意运算顺序.解决本题亦可先把除法转化成乘法,利用乘法对加法的分配律后再求和.23.作图见解析;CE=4.【解析】分析:利用数形结合的思想解决问题即可.详解:如图所示,矩形ABCD和△ABE即为所求;CE=4.点睛:本题考查作图-应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题.24.(1)500,90°;(2)380;(3)合格率排在前两名的是C、D两个厂家;(4)P(选中C、D)=16.【解析】试题分析:(1)计算出D厂的零件比例,则D厂的零件数=总数×所占比例,D厂家对应的圆心角为360°×所占比例;(2)C厂的零件数=总数×所占比例;(3)计算出各厂的合格率后,进一步比较得出答案即可;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.试题解析:(1)D厂的零件比例=1-20%-20%-35%=25%,D厂的零件数=2000×25%=500件;D厂家对应的圆心角为360°×25%=90°;(2)C厂的零件数=2000×20%=400件,C厂的合格零件数=400×95%=380件,如图:(3)A厂家合格率=630÷(2000×35%)=90%,B厂家合格率=370÷(2000×20%)=92.5%,C厂家合格率=95%,D厂家合格率470÷500=94%,合格率排在前两名的是C、D两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C、D的有2种,则P(选中C、D)=212=16.考点:1.条形统计图;2.扇形统计图;3. 树状图法.25.(1)答案见解析;(2)220cm【解析】【分析】(1)根据三角形角平分线的定义,即可得到AD;(2)过D作于DE⊥ABE,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.【详解】解:(1)如图所示,AD即为所求;(2)如图,过D 作DE⊥AB 于E,∵AD 平分∠BAC,∴DE=CD=4,∴S △ABD =12AB·DE=20cm 2. 【点睛】掌握画角平分线的方法和角平分线的相关定义知识是解答本题的关键.26.(1)证明见解析;(2)2933()22cm p -. 【解析】【分析】(1)连接OD ,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可.(2)求出OP 、DP 长,分别求出扇形DOB 和△ODP 面积,即可求出答案.【详解】解:(1)证明:连接OD ,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°.∴∠DOP=180°﹣120°=60°.∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°.∴OD⊥DP.∵OD 为半径,∴DP 是⊙O 切线.(2)∵∠ODP=90°,∠P=30°,OD=3cm ,∴OP=6cm,由勾股定理得:3.∴图中阴影部分的面积22160333()23602ODP DOB S S S cm p p 创=-=创=V 扇形 27.(1)购进A 种树苗1棵,B 种树苗2棵(2)购进A 种树苗9棵,B 种树苗8棵,这时所需费用为1200元【解析】【分析】(1)设购进A 种树苗x 棵,则购进B 种树苗(12﹣x )棵,利用购进A 、B 两种树苗刚好用去1220元,结合单价,得出等式方程求出即可;(2)结合(1)的解和购买B 种树苗的数量少于A 种树苗的数量,可找出方案.【详解】解:(1)设购进A 种树苗x 棵,则购进B 种树苗(12﹣x )棵,根据题意得: 80x+60(12﹣x )=1220,解得:x=1.∴12﹣x=2.答:购进A 种树苗1棵,B 种树苗2棵.(2)设购进A 种树苗x 棵,则购进B 种树苗(12﹣x )棵,根据题意得:12﹣x <x ,解得:x >8.3.∵购进A 、B 两种树苗所需费用为80x+60(12﹣x )=20x+120,是x 的增函数,∴费用最省需x 取最小整数9,此时12﹣x=8,所需费用为20×9+120=1200(元). 答:费用最省方案为:购进A 种树苗9棵,B 种树苗8棵,这时所需费用为1200元.。
单项式的概念及例子
单项式是一种特殊的代数式,它由数字与字母的乘积组成,并且不包含加、减、乘除等运算符号。
单项式在数学中有着广泛的应用,如多项式、方程、函数等。
一、定义
单项式是指由数字与字母的乘积组成的代数式,其中字母的指数不超过0。
例如,$2x$、$3y$、$4z^{2}$等都是单项式,而$2x + 3y$、$4z^{2} - 5w$等都不是单项式。
二、例子
以下是一些单项式的例子:
1.$2x$:这是一个一次单项式,其中数字2是系数,字母x是底数,指数为
1。
2.$3y$:这是一个一次单项式,其中数字3是系数,字母y是底数,指数为
1。
3.$4z^{2}$:这是一个二次单项式,其中数字4是系数,字母z是底数,指
数为2。
4.$- 5w^{3}$:这是一个三次单项式,其中数字-5是系数,字母w是底数,
指数为3。
5.$6(x + y)^{2}$:这是一个四次单项式,其中数字6是系数,$(x + y)$是
底数,指数为2。
需要注意的是,单项式的系数可以是正数、负数或0,字母的指数可以是0、1、2、3等正整数,但不可以是负数。
第三讲 整式与分式及其运算班级 姓名一、基本知识点:1. 整式:(1)单项式:由数与字母的乘积组成的代数式叫做单项式(单独一个数或字母也是单项式).单项式中的数字因数叫做这个单项式的系数;单项式中的所有字母的指数和 叫做这个单项式的次数.(2) 多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项,其中次数最高的项的次数叫做这个多项式的次数.不含字母的项叫做常数项.2. 同类项:所含 相同并且相同字母的 也分别相等的项叫做同类项.3. 幂的运算性质: m n a a ⋅= ; ()m n a = ;m na a ÷=_____; ()n ab = .4. 乘法公式:(1) =++))((d c b a ; (2)()()a b a b +-= ;(3)2()a b += ; (4) 2()a b -= .5. 分式:整式A 除以整式B ,可以表示成 A B的形式, 如果除式B 中含有 ,那么称 A B 为分式.若 ,则 A B有意义; 若 ,则 A B 无意义;若 ,则 A B=0. 6.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的 .用式子表示为 .7. 约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.8.通分:根据分式基本性质,把异分母的分式化为同分母的分式,这一过程称为分式的通分.9.分式的运算: 二、基础练习: 1. 213x y -的系数是 ,次数是 . 2.计算:⎪⎭⎫ ⎝⎛-⋅23913x x =________;24(2)a --=________. 3.x =______时,分式11x x +-有意义;当x =______时,分式2x x x-的值为0. 4.填写出未知的分子或分母:(1)2223()11,(2)21()x y x y x y y y +==+-++.5.计算:x x y ++y y x+=________. 6. 下列计算正确的是( ).A .235a a a +=B .623a a a ÷=C .()326aa = D .236a a a ⨯=7. 化简:322)3(x x -的结果是( ) A .56x - B .53x - C .52x D .56x8. 化简11y x x y ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .y x - B . x y - C . x y D .y x9.代数式21,,,13x x a x x x π+中,分式的个数是( ) A .1 B .2 C .3 D .4三、精讲点拨:例1 若0a >且2x a =,3y a =,则x y a -的值为( )A .1-B .1C .23D .32例2 用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖 __________块,第n 个图形中需要黑色瓷砖__________块(用含n 的代数式表示).例3(1) 当x 时,分式x-13无意义; (2)当x 时,分式392--x x 的值为零. 例4 ⑴ 已知 31=-x x ,则221xx + =. (1) (2) (3)⑵已知113x y -=,则代数式21422x xy y x xy y----的值为 .例5 先化简,再求值:(1)22(3)(2)(2)2x x x x +++--,其中13x =-.(2) 先化简211()1122x x x x -÷-+-,,1-中选取一个你认为合适..的数作为x 的值代入求值.(3)33)225(423-=---÷--a a a a a ,其中四、课堂练习:1.下列运算中,结果正确的是( )A.633·x x x = B.422523x x x =+ C.532)(x x = D .222()x y x y +=+ 2.已知代数式2346x x -+的值为9,则2463x x -+的值为( ) A .18 B .12 C .9 D .73.把分式)0,0(≠≠+y x yx x 中的分子、分母的x 、y 同时扩大2倍,那么分式的值( ) A. 扩大2倍 B. 缩小2倍 C. 改变原来的41 D. 不改变 4.如果x y =3,则x y y +=( ) A .43 B .xy C .4 D .x y5.若220x x --=2)A .3B .3CD 3 6. 若523m x y +与3n x y 的和是单项式,则m n = .7.化简分式:22544______,202ab x x a b x -+=-=________. 8.分式223111,,342x y xy x-的最简公分母是_______. 9. 先化简,再求值:⑴ 3(2)(2)()a b a b ab ab -++÷-,其中a =1b =-;⑵ )(2)(2y x y y x -+- ,其中2,1==y x .10. 已知两个分式:A =442-x ,B =x x -++2121,其中x ≠±2.下面有三个结论: ①A =B ; ②A 、B 互为倒数; ③A 、B 互为相反数.请问哪个正确?为什么?11.已知20092010x y ==,,求代数式22x y xy y x x x ⎛⎫--÷- ⎪⎝⎭的值.。
人教版七年级上册数学知识1整式的加减一、代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。
二、整式1、单项式:(1)由数和字母的乘积组成的代数式叫做单项式。
(2)单项式中的数字因数叫做这个单项式的系数。
(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2、多项式(1)几个单项式的和,叫做多项式。
(2)每个单项式叫做多项式的项。
(3)不含字母的项叫做常数项。
3、升幂排列与降幂排列(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。
(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。
三、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。
2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
合并同类项:(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。
(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
(3)合并同类项步骤:a.准确的找出同类项。
b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
c.写出合并后的结果。
(4)在掌握合并同类项时注意:a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.b.不要漏掉不能合并的项。
c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
说明:合并同类项的关键是正确判断同类项。
3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:(1)代数式化简(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
2020年杭州七下期末复习之整式与分式【知识点】单项式由数与字母的积或字母与字母的积所组成的代数式叫做单项式(monomial)。
单独一个数或一个字母也是单项式,如Q,-1,a,β等。
系数:(1)单项式中的常数因数叫做单项式的系数(coefficient).如3x的系数是3。
(2)如果一个单项式只含有字母因数,是正数的单项式系数为1,是负数的单项式系数为-1,(3)如果只是一个数字,系数是本身。
如5的系数还是5。
次数:一个单项式中,所有字母指数的和叫做这个单项式的次数(degree of a monomial)多项式由有限个单项式的代数和组成的代数式叫做多项式(polynomial)。
(化为最简式,(常数)(指数不为负数))项:在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
一个多项式合并同类项后有几项就叫做几项式。
多项式中的符号,看作各项的性质符号.一元N次多项式最多N+1项。
次数:多项式中,次数最高的项的次数,就是这个多项式的次数同底数幂的乘法底数是相同的幂即为同底数幂。
同底数幂相乘,底数不变,指数相加。
幂的乘方幂的乘方,底数不变,指数相乘。
积的乘方积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘。
同底数幂的除法同底数幂相除,底数不变,指数相减单项式除以单项式单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式中含有的字母,则连同它的指数一起作为商的一个因式。
多项式除以单项式多项式除以单项式,先把多项式的每一项分别除以这个单项式,再把所得的商相加常用公式复习:完全平方公式:(a ±b )2=a 2±2ab +b 2三数和平方公式:(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc 平方差公式:(a +b )(a −b )=a 2−b 2立方和公式:(a +b )(a 2−ab +b 2)=a 3+b 3 立方差公式:(a −b )(a 2+ab +b 2)=a 3−b 3 完全立方公式:(a ±b )3=a 2±3a 2b +3ab 2±b 3因式分解常用方法:提公因式法,公式法,十字相乘法,分组分解法,拆添项法,配方法,换元法等各区期末试卷题目汇总【选择题】1.化解11+x -x+1,得( )【A 】-12+x x 【B 】-122++x x x 【C 】2-x 2【D 】1-22+x x2、若s +t =4,则s 2﹣t 2+8t 的值是( ).【A 】8 【B 】12 【C 】16 【D 】323.如图,大正方形的边长为m ,小正方形的边长为n ,若用x 、y 表示四个长方形的两边长(x >y ),观察图案,指出以下关系式:①x ﹣y =n ;②xy =;③x 2﹣y 2=mn ;④x 2+y 2=.其中正确的是( )【A 】①②③ 【B 】①②④ 【C 】①③④ 【D 】①②③④4.下列计算正确的是()【A 】(a+b )2=a 2+b 2 【B 】2a 3·3a 2=6a 6【C 】(-x 3)4=x 12 【D 】(a+m)(b+n)=ab+mn5.如果把3x 2x+y 中的x 与y 都扩大3倍,那么这个代数式的值() 【A 】扩大9倍 【B 】扩大3倍【C 】不变 【D 】缩小到原来的136.已知a 、b 为实数且满足a ≠-1,b ≠-1,设M=a a+1+b b+1, N=1a+1+1b+1 ,则下列两个结论() ①ab =1时,M=N; ab >1时,M >N; ab <1时,M <N. ②若a+b=0, 则M ·N ≤0. 【A 】①②都对 【B 】①对②错 【C 】①错②对 【D 】①②都错7.(3分)下列计算正确的是( ) A .(a 3)2=a 5 B .a 5•a 2=a 10 C .(﹣a 2)5=﹣a 10 D .2a 3+a 2•a 3=3a 108.用四个长和宽是a ,b (a >b )的长方形拼成面积64的大正方形,中间小正方形的面积是S ,( )【A 】若S =4,则ab =8 【B 】若S =16,则ab =10 【C 】若ab =12,则S =16 【D 】若ab =14,则S =49.多项式(2a +1)x 2+bx ,其中a,b 为常数( )【A 】若公因式为3x ,则a =1 【B 】若公因式为5x ,则a =2 【C 】若公因式为3x ,则a =3k +1(k 为整数) 【D 】若公因式为5x ,则a =5k +1(k 为整数)10.(3分)下列计算正确的是()A.a3+a3=a6B.a4•a=a4C.a6÷a3=a2D.(﹣a3)2=a611.(3分)下列多项式可以用平方差公式分解因式的是()A.4x2+y2B.﹣4x2+y2C.﹣4x2﹣y2D.4x3﹣y212.(3分)将公式v=v0+at(a≠0)变形成已知v,v0,a,求t的形式.下列变形正确的是()A.B.C.t=a(v﹣v0) D.t=a(v0﹣v)13.(3分)已知a,b是常数,若化简(﹣x+a)(2x2+bx﹣3)的结果不含x的二次项,则36a﹣18b﹣1的值为()A.﹣1 B.0 C.17 D.3514.下列各式计算正确的是()【A】(a2)3=a5【B】a6 ÷a2 = a3【C】a3 +a2 = a5【D】a2 ∙ a3 = a515.下列计算或变形正确的是()【A】(a+3b)(a−3b)=a2−6b2【B】(−a−2b)2=a2−4ab+4b2【C】0.2a+0.5b0.7a−b =2a+5b7a−b【D】−a−13b13a−2b=3a+b6a−b16. 下列命题:①若x+2x+1∙|x|=x+2x+1,则x的值是1;②弱关于x的方程1x−2−1=mxx−2无解,则m的值是-1;③若(2019−a)(2018−a)=2017,则(2019-x)2+(2018-x)2=4034;④若aba+b =15,bcb+c=16,aca+c=17,且abc≠0,则abcab+bc+ac的值是19【A】1 【B】2 【C】3 【D】4【填空题】1.已知实数a.b ,定义运算:a ※b={a b (a >b ,且a ≠0)a−b(a ≤b ,且a ≠0).若a ※(a-3)=1,则a=( )2.约分:=2921-x x. 3.计算:()3-021--3⎪⎭⎫⎝⎛= .4.已知实数a 、b 满足a-b =3,a ·b =2,则a+b = .5.课本上把多项式“222b ab a +±”叫做完全平方式.完全平方式具有非负性,因此可以把一个多项式变形成“完全平方式+数字”的形式,以此来求代数式的最小值(或最大值).例如:()()2121232222++=+++=++x x x x x ,因为()012≥+x ,所以,当x=1时,代数式322++x x 有最小值2.那么,对于代数式3442--x x ,当x= 时,有最小值为 .6.记a ❈b =(a +b )2-(a -b )2,若A ❈22y 1641-x =y2y2+-x x ,则A =____(用含有x ,y 的代数式表示)7.计算:.___________331-=÷8.(4分)某商品的买入价为a ,售出价为b ,则毛利率.把这个公式变形成已知p ,b ,求a 的公式,则a = .9.(4分)若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是 .10.(4分)下列有四个结论:①若(1﹣x)x+1=1,则x=0;②若a2+b2=3,a﹣b=1,则(2﹣a)(2﹣b)的值为5﹣2;③若(x+1)(x2﹣ax+1)的运算结果中不含x项,则a=1;④若4x=a,8y=b,则24x﹣3y可表示为其中正确的是(填序号)是:.11.(4分)计算:=;=.12.(4分)若多项式9x2﹣mx+1(m是常数)是一个关于x的完全平方式,则m的值为13.已知x>y>0,x2+y2-3xy=0,则x+yy−x的值是。