对称与对称性破缺性 ppt课件
- 格式:ppt
- 大小:2.05 MB
- 文档页数:35
对称性破缺对称性破缺是一个跨物理学、生物学、社会学与系统论等学科的概念,狭义简单理解为对称元素的丧失;也可理解为原来具有较高对称性的系统,出现不对称因素,其对称程度自发降低的现象。
对称破缺是事物差异性的方式,任何的对称都一定存在对称破缺。
对称性是普遍存在于各个尺度下的系统中,有对称性的存在,就必然存在对称性的破缺。
对称性破缺也是量子场论的重要概念,指理论的对称性为真空所破坏,对探索宇宙的本原有重要意义。
它包含“自发对称性破缺”和“动力学对称性破缺”两种情形。
中文名对称性破缺外文名Symmetry Breaking目录1. 1简介2. 2系统3. 3物理4. ▪超对称5. ▪弱作用规范6. ▪ 11维空间1. 4生物2. ▪手性破缺3. ▪ Salam 假说4. ▪局限性5. 5耗散分岔6. 6反馈机制1. 7举例2. ▪宇称不守恒3. ▪贝纳德对流4. ▪意大利怪钟5. ▪重子与反重子6. ▪生物界应用1. ▪真空不空2. ▪对称性破缺也叫CP破缺3. 8社会简介李政道认为对称性原理均根植于“不可观测量”的理论假设上;不可观测就意味着对称性,任何不对称性的发现必定意味着存在某种可观测量。
李政道说:“这些‘不可观测量’中,有一些只是由于我们目前测量能力的限制。
当我们的实验技术得到改进时,我们的观测范围自然要扩大。
因而,完全有可能到某种时候,我们能够探测到某个假设的‘不可观测量’,而这正是对称破坏的根源。
这和“对称性破缺则是由‘宏观’走向‘微观’而展现事物差异性的方式”哲学观点是一致的。
假如没有对称性破缺,这个世界将会失去活力,也将是单调、黯淡的,也不会有生物。
自然界同样也存在着诸多对性破缺的例子。
比如:弱作用力下的宇称不守恒、粒子与反粒子的不对称、手性分子的对称性破缺等等。
系统耗散理论在解释生命分子手性起源中取得了较大成功,这也是本书所拥护的观点;近些年也得到更多的实验支持。
普利高津(Prigogine)认为,在远离平衡的条件下,一个开放的物理化学体系可以通过分支现象,从原先空间均匀的各向同性状态发展到集中都是稳定的但时空特性可能不同的有序状态,即由无序中产生有序。
4、对称与对称破缺李政道教授说:我先讲一下“对称”与“不对称”。
为什么我们相信对称,而我们生活的世界充满了不对称,这个矛盾怎样理解?有一个理解方法,就是最多的非对称的可能性是与完全的对称一样的,就是完全的对称会产生最多的非对称。
这个提法,看来好像矛盾. (引自《物理学的挑战》)科学哲学是研究怎样证实科学的角度开始的,后来又转入到科学理论的合理性的问题。
科学哲学从罗素与维特根斯坦开始,又经过了波普尔、奎因、库恩、拉卡托斯、夏佩尔、劳丹等人到现在,渐渐地认识到科学理论作为“精神客体”,也像生物世界一样,是不断进化的有内部结构的“有机整体”,科学理论也有其“基因”,也有其进化过程的“继承”与“变异”情况等。
对称性反映不同物质形态在运动中的共性,而对称性的破坏才使得它们显示出各自的特性。
物质世界的有序性,本源于自然能态的无序性。
有序性是相对的、暂时的、从属的;无序是绝对的、永恒的、自在的。
经典物理学是以“守恒律”构建理论,现代物理已发现物理学的“属性”是不守恒的;然而,现代理论的方法论却依然用数学。
在科学中,对称性是指某种操作下的不变性或者守恒性,对称性常与守恒定律相联系。
与空间平移不变性对应的是动量守恒定律;与时间平移不变性对应的是能量守恒定律;与转动变换不变性对应的是角动量守恒;与空间反射(镜像)操作不变性对应的是宇称守恒。
在弱相互作用中,“宇称”不守恒,自然界在C或P下不是对称的,在CP下也不是对称的,但却是CPT对称的。
这里C表示电荷变号操作,相当于反转变换,如由底片洗出照片,电子变正电子,物质变反物质;P表示镜像反射操作,如人照镜子;T表示时间反演操作,如微观可逆过程。
也就是说,当同时把粒子与反粒子互变(C)、左与右互变(P)、过去与未来互变(T),自然界又是对称的。
严格地说“对称破缺”实际应该叫“对称隐藏”,因为不是对称缺失了,而是“隐藏”起来了。
过去电流下的磁针被认为违背左右手对称,但一当磁针的电流环本质被认识到,这个左右手对称性就恢复了。
对称性自发破缺物理体系从高温到低温的过程中,或者从高能级到基态的过程中,从一个对称的体系变得不对称的过程,称为对称性自发破缺最简单的对称性自发破缺将一根火柴棍直立在桌上,这时火柴棍与重力,桌面构成的体系具有以火柴棍为轴的旋转对称性。
火柴棍如果圆头朝下,那肯定是立不稳的,总会倒下,指向某个特定的方向,破坏先前的旋转对称性。
这一过程中,对称性从有到无,自发地消失,因此叫做对称性自发破缺。
顺磁铁磁相变中的对称性自发破缺大家常见的永磁铁通常都是铁磁体。
铁磁体随着温度的升高,磁性会逐渐下降。
直到超过某个特定的温度后,磁性会完全消失。
在这个温度以上,只要没有外界磁场,磁体不能自己产生磁场,这时铁磁体已经变成顺磁体。
这个转变温度称为居里温度。
将居里温度以上的材料逐渐降温,材料会由不能自己保留磁场的顺磁体变回能够自己产生磁场的铁磁体。
只要温度降得足够缓慢,恢复后的铁磁体往往会带有磁场。
考虑材料在居里温度以上到居里温度下这个转变。
在居里温度以上,磁体是往往是各向同性的(某些特殊材料除外)。
物理体系具有很大的对称性。
从宏观上看,这时材料没有磁性,因此也不存在特定的方向。
当温度降低时,磁体恢复磁性。
如果没有外界磁场诱导,恢复的磁场方向将是随机的,这跟之前处在一个没有特殊方向的状态相关。
材料恢复磁场,说明它内部选择了某一个特定的方向作为体系的特定方向。
对称性不再保持。
这一相变,由具有对称性的状态,自动变到了不具有对称性的状态,就是对称性自发破缺粒子物理中的对称性自发破缺我们所处的世界粒子物理学家认为,我们所处的世界相对于理论物理中的某些能标,是一个能量很低的状态。
因此,只要构成我们世界的基本规律允许,我们完全有可能处在一个对称性自发破缺了的世界。
理论物理学家用对称性自发破缺解释弱相互作用和电磁相互作用的分离,其中最重要的机制是希格斯机制。
涉及到的一系列理论被称为粒子物理的标准模型。
在该理论下,电磁相互作用和弱相互作用原本是同一个相互作用,称为电弱相互作用。