初二数学几何试题含答案
- 格式:docx
- 大小:72.57 KB
- 文档页数:5
八年级数学几何现象测试题及答案1. 问题:已知直线AB与直线CD平行,角∠ABC = 35°,求∠CDA的度数。
答案:∠CDA = 35°。
2. 问题:已知直线EF垂直于直线GH,角∠EFH = 75°,求∠GHE的度数。
答案:∠GHE = 75°。
3. 问题:平行四边形ABCD中,角∠ADC = 120°,求∠ABD 的度数。
答案:∠ABD = 60°。
4. 问题:平行四边形PQRS中,角∠PQR = 70°,求∠RQS的度数。
答案:∠RQS = 70°。
5. 问题:直角三角形XYZ中,∠X = 90°,∠Y = 37°,求∠Z的度数。
答案:∠Z = 90° - 37° = 53°。
6. 问题:等腰直角三角形ABC中,∠B = 90°,∠C = 45°,求∠A的度数。
答案:∠A = 180° - 90° - 45° = 45°。
7. 问题:等边三角形DEF中,∠D = 60°,求∠E和∠F的度数。
答案:∠E = ∠F = (180° - 60°) / 2 = 60°。
8. 问题:正方形IJKL中,角∠JKL = 90°,求∠ILJ的度数。
答案:∠ILJ = 90°。
9. 问题:长方形MNOP中,角∠MNO = 90°,求∠OMN的度数。
答案:∠OMN = 90°。
10. 问题:菱形QRSTUV中,角∠R = 75°,求∠S的度数。
答案:∠S = 75°。
11. 问题:梯形WXYZ中,∠W = 60°,∠Y = 120°,求∠X和∠Z的度数。
答案:∠X = 180° - 60° - 120° = 0°(不存在);∠Z = 0°。
初二数学空间几何练习题及答案1. 问题描述:一辆汽车从A地出发,以每小时60千米的速度向东行驶3小时后,在B地停留一小时,然后以每小时80千米的速度向南行驶4小时。
求汽车最后所在的位置离出发点的距离和方向角。
解答:首先,根据题目可知,汽车向东行驶的距离为60千米/小时× 3小时 = 180千米。
然后,在B地停留一小时后,汽车向南行驶的距离为80千米/小时 × 4小时 = 320千米。
由此可得出汽车最后所在位置的坐标为(180, -320)。
根据坐标计算公式,最后所在位置离出发点的距离可以使用勾股定理计算:√[(180)^2 + (-320)^2] ≈ 363.66千米。
根据反正切函数,最后所在位置相对于东方向的方向角可以计算为:tan^(-1)(-320/180) ≈ -59.04°。
因此,汽车最后所在的位置离出发点的距离约为363.66千米,方向角为-59.04°。
2. 问题描述:一个长方体的长、宽、高分别为5厘米、3厘米和2厘米。
求该长方体的表面积和体积。
解答:首先,根据长方体的定义,它有6个面,包括上下底面、前后面和左右侧面。
上下底面的面积为5厘米 × 3厘米 = 15平方厘米。
前后面的面积为5厘米 × 2厘米 = 10平方厘米。
左右侧面的面积为3厘米 × 2厘米 = 6平方厘米。
因此,长方体的表面积为15平方厘米 + 15平方厘米 + 10平方厘米 + 10平方厘米 + 6平方厘米 + 6平方厘米 = 62平方厘米。
其次,长方体的体积可以通过计算长、宽、高的乘积得到:5厘米 × 3厘米 × 2厘米 = 30立方厘米。
因此,该长方体的表面积为62平方厘米,体积为30立方厘米。
3. 问题描述:一根铁丝长12米,将它围绕一个底面为直径2米的圆柱体卷了一圈,并围成一个长方体。
求该长方体的体积。
解答:首先,根据题目可知,铁丝的长度等于长方体的周长,也就是2πr,其中r为圆柱体的半径。
试题试题(1)已知:如图RT RT△△ABC 中,∠中,∠ACB=90ACB=90ACB=90°,°,°,ED ED 垂直平分AC 交AB 与D ,求证:,求证:DA=DB=DC DA=DB=DC DA=DB=DC..(2)利用上面小题的结论,继续研究:如图,点P 是△是△FHG FHG 的边HG 上的一个动点,上的一个动点,PM PM PM⊥⊥FH 于M ,PN PN⊥⊥FG 于N ,FP 与MN 交于点K .当P 运动到某处时,运动到某处时,MN MN 与FP 正好互相垂直,请问此时FP 平分∠平分∠HFG HFG 吗?请说明理由.吗?请说明理由.分析::(1)首先根据线段的垂直平分线的性质可以得到AD=CD AD=CD,再利用等腰三角形的性,再利用等腰三角形的性质得到∠质得到∠A=A=A=∠∠ACD ACD,,而∠而∠A+A+A+∠∠B=B=∠∠ACD+ACD+∠∠BCD=90BCD=90°,°,由此即可得到∠由此即可得到∠B=B=B=∠∠BCD BCD,,再利用等腰三角形的性质即可证明题目结论;角形的性质即可证明题目结论;(2)如图,作线段MF 的垂直平分线交FP 于点O ,作线段FN 的垂直平分线也必与FP 交于点O ,根据(,根据(11)的结论可以得到OM=OP=OF=ON OM=OP=OF=ON,然后由此可以证明,然后由此可以证明Rt Rt△△OKM OKM≌≌Rt Rt△△OKN OKN,然,然后利用线段性质得到MK=NK MK=NK,由此可以证明△,由此可以证明△,由此可以证明△FKM FKM FKM≌△≌△≌△FKN FKN FKN,然后即可证明题目结论.,然后即可证明题目结论.,然后即可证明题目结论. 解答:解:(解:(11)∵)∵ED ED 垂直平分AC AC,∴,∴,∴AD=CD AD=CD AD=CD,,∴∠∴∠A=A=A=∠∠ACD ACD,∵∠,∵∠,∵∠ACB=90ACB=90ACB=90°,∴∠°,∴∠°,∴∠A+A+A+∠∠B=B=∠∠ACD+ACD+∠∠BCD=90BCD=90°,°,°,∴∠∴∠B=B=B=∠∠BCD BCD,∴,∴,∴BD=CD BD=CD BD=CD,∴,∴,∴DA=DB=DC DA=DB=DC DA=DB=DC;;(2)如图,作线段MF 的垂直平分线交FP 于点O ,∵PM PM⊥⊥FH FH,,PN PN⊥⊥FG FG,∴△,∴△,∴△MPF MPF 和△和△NPF NPF 都是直角三角形;都是直角三角形;作线段MF 的垂直平分线交FP 于点O ,由(由(11)中所证可知OF=OP=OM OF=OP=OM;;作线段FN 的垂直平分线也必与FP 交于点O ;∴OM=OP=OF=ON OM=OP=OF=ON,,又∵又∵MN MN MN⊥⊥FP FP,∴∠,∴∠,∴∠OKM=OKM=OKM=∠∠OKN=90OKN=90°,°,°,∵OK=OK OK=OK;∴;∴;∴Rt Rt Rt△△OKM OKM≌≌Rt Rt△△OKN OKN;;∴MK=NK MK=NK;∴△;∴△;∴△FKM FKM FKM≌△≌△≌△FKN FKN FKN;;∴∠∴∠MFK=MFK=MFK=∠∠NFK NFK,,即FP 平分∠平分∠HFG HFG HFG..。
初二数学几何题50道,要带答案带过程选择题:1. 若两角互为补角,则它们的差是()。
A.0°B.45°C.60°D.90°2. 在图中,如点S、T分别在边AB的延长线上,且∠ASP=60°,∠BAT=20°,则∠AST为()。
A.40°B.50°C.80°D.110°3. 已知正方形ABCD的边长为5cm,点E、F分别在边AD、AB上,且AE=BF,则三角形CEF的面积为()。
A.(5/8) cm²B.(9/8) cm²C.(13/8) cm²D.(15/8) cm²4. 如果一个圆心角的度数为30°,则它所对的弧度数是()。
A.π/6B.π/3C.π/4D.π/2填空题:1.如图,已知BC平分∠ABD,设∠BAC=a°,∠BCA=b°,则∠CBD=\_\_\_\_°。
2.如图,点A、B、C在同一条直线上,则对于ΔABC来说,以下说法正确的是:①AB=AC;②\angleBAC是钝角;③\angleABC+\angleACB =180^\circ,所以\angleABC=\_\_\_\_°,\angleACB=\_\_\_\_°。
3. 已知直角三角形ABC,其中\angleC=90°,BC=3,AC=4,则AB=\_\_\_\_。
4.如图,长方形ABCD中,点E、F分别为BC、CD上的点,若∠BAE=∠EFD,AB=10cm,则DF=\_\_\_\_cm。
解答题:1.如图,在\triangleABC中,垂足分别为D、E、F。
若AC=6,BD=8,DE=5,EF=9,则BC=()。
2.如图,已知\angleBAC=60°,AD平分\angleBAC,且BD=AD,点E为AD的延长线上的点,且\angleBEC=140°,则\angleACD=\_\_\_\_\_\_°。
初二数学几何难题训练题及答案1.已知⊙O的直径AB=10cm,点C、D、E、F分别在弧AB 上,若AC=3cm,BE=2cm,CF=4cm,求DE+FA的长度。
解:∠ABC=90°,∠AOC=180°,所以∠AFC=90°。
同理,∠ADE=90°。
又因为△ABC与△AED相似,所以$\frac{DE}{AC}=\frac{AB}{BC} \RightarrowDE=\frac{AB\times AC}{BC}$同理,因为△ABE与△AFC相似,所以$\frac{FA}{BE}=\frac{AB}{BC} \RightarrowFA=\frac{AB\times BE}{BC}$代入已知数据得到$DE=\frac{10\times 3}{7},FA=\frac{10\times 2}{7}$ 所以 DE+FA=4cm。
答案:4cm。
2.在△ABC中,D、E分别在AB、AC上,DE//BC,已知AB=6cm,AC=9cm,BD:DA=1:2,CE:EA=2:3,求BC的长。
解:因为DE//BC,所以$\frac{BD}{DA}=\frac{CE}{EA}=\frac{DB+BC}{DA+AC}$ 代入已知数据得到$\frac{1}{2}=\frac{2P+BC}{3P+9} \RightarrowBC=\frac{9}{2}$所以BC的长为4.5cm。
答案:4.5cm。
3.在四棱锥ABCD-P中,AB=BC=CD=l,PA=2l,PB=3l,PC=4l,且四棱锥的底面ABCD是个正方形,求四棱锥的体积V。
解:设△PAB与底面平行,交底面为E,△PAD与底面平行,交底面为F。
则有$PE=2l,PF=3l$由于ABCD是个正方形,所以$AE=BF=CF=DF=l$又因为連接PC与數直BD平行,所以$\frac{BD}{PC}=\frac{AE}{AF}$带入已知数据得到$\frac{BD}{4l}=\frac{l}{PF} \RightarrowBD=\frac{l^2}{PF}\times 4l=\frac{16l^3}{9}$所以四棱锥的高为$h=\sqrt{(PA-BD/3)^2-PF^2}=\sqrt{(2l-\frac{16l^3}{3\times 9l^2})^2-9l^2}=(8\sqrt{3}-9)l$ 最后利用公式$V=\frac{1}{3}S\times h$求出四棱锥的体积V,其中S为底面积,S=AB×BC=l²。
初二数学几何试题一、选择题(每题2分,共20分)1. 在下列图形中,哪一个不是平面图形?A. 三角形B. 四边形C. 球体D. 圆形2. 下列哪个图形的周长等于其直径的两倍?A. 正方形B. 长方形C. 圆形D. 等边三角形3. 下列哪个角度不是锐角?A. 45度B. 60度C. 90度D. 120度4. 下列哪个图形不是轴对称图形?A. 矩形B. 梯形C. 正方形D. 圆形5. 下列哪个图形不是中心对称图形?A. 正方形B. 长方形C. 等边三角形D. 矩形6. 下列哪个图形不是旋转对称图形?A. 正方形B. 矩形C. 等边三角形D. 圆形7. 下列哪个图形的面积不是边长的平方?A. 正方形B. 长方形C. 矩形D. 圆形8. 下列哪个图形的周长不是边长的两倍?A. 正方形B. 长方形C. 矩形D. 圆形9. 下列哪个图形的内角和不是360度?A. 四边形B. 五边形C. 六边形D. 七边形10. 下列哪个图形的对角线长度不等于边长的平方根的两倍?A. 正方形B. 长方形C. 矩形D. 圆形二、填空题(每题2分,共20分)1. 一个正方形的边长是5厘米,那么它的周长是______厘米,面积是______平方厘米。
2. 一个长方形的长是8厘米,宽是4厘米,那么它的周长是______厘米,面积是______平方厘米。
3. 一个圆的半径是3厘米,那么它的周长是______厘米,面积是______平方厘米。
4. 一个等边三角形的边长是6厘米,那么它的周长是______厘米,面积是______平方厘米。
5. 一个直角三角形的两个直角边分别是3厘米和4厘米,那么它的斜边长度是______厘米,面积是______平方厘米。
6. 一个梯形的上底是5厘米,下底是10厘米,高是4厘米,那么它的面积是______平方厘米。
7. 一个平行四边形的底是6厘米,高是8厘米,那么它的面积是______平方厘米。
8. 一个正六边形的边长是4厘米,那么它的周长是______厘米,面积是______平方厘米。
上海数学初二几何试题及答案一、选择题(每题3分,共15分)1. 下列几何图形中,属于二次图形的是:A. 圆B. 正方形C. 三角形D. 直线答案:A2. 在直角三角形中,如果一个锐角为30°,那么另一个锐角为:A. 45°B. 60°C. 30°D. 90°答案:B3. 已知一个矩形的长为6cm,宽为4cm,其面积为:A. 20cm²B. 24cm²C. 18cm²D. 12cm²答案:B4. 一个正六边形的内角和为:A. 720°B. 360°C. 540°D. 900°答案:A5. 一个圆的半径为3cm,那么它的周长为:A. 6π cmB. 12π cmC. 18π cmD. 24π cm答案:B二、填空题(每题2分,共10分)1. 在直角三角形中,如果两条直角边分别为3cm和4cm,那么斜边的长度为_______cm。
答案:52. 一个正五边形的外接圆半径为r,则其边长为_______cm。
答案:r√5/23. 如果一个平行四边形的对角线互相平分,那么这个平行四边形是______。
答案:矩形4. 已知一个圆的直径为10cm,那么它的面积为_______cm²。
答案:25π5. 一个三角形的三边长分别为3cm,4cm,5cm,这是一个______三角形。
答案:直角三、解答题(共75分)1. (15分)已知一个等腰三角形的底边长为6cm,两腰边长为5cm,求这个三角形的面积。
解:设等腰三角形的底边为AB,两腰边为AC和BC。
根据勾股定理,我们可以求出高CD的长度:CD² = AC² - AD² = 5² - (6/2)² = 25 - 9 = 16 CD = √16 = 4cm三角形ABC的面积= (1/2) × AB × CD = (1/2) × 6 × 4 =12cm²2. (15分)在一个正方形内,画一个最大的圆,已知正方形的边长为10cm,求这个圆的面积。
初二数学几何试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项不是三角形的内角和?A. 180°B. 360°C. 540°D. 720°2. 如果一个三角形的两条边长分别为3和4,第三边的长度可能为:A. 1B. 5C. 7D. 93. 一个圆的半径为5厘米,那么它的周长是:A. 10π cmB. 20π cmC. 30π cmD. 40π cm4. 一个正方形的对角线长度为10厘米,那么它的边长是:A. 5 cmB. 7.07 cmC. 10 cmD. 14.14 cm5. 一个长方形的长和宽分别是8厘米和6厘米,那么它的面积是:A. 48 cm²B. 36 cm²C. 24 cm²D. 12 cm²二、填空题(每题2分,共10分)6. 一个等腰三角形的底角是45°,那么它的顶角是________度。
7. 如果一个正多边形的每个内角都是120°,那么它是________边形。
8. 一个圆的直径是14厘米,那么它的半径是________厘米。
9. 一个直角三角形的两条直角边分别是3厘米和4厘米,那么它的斜边长是________厘米。
10. 如果一个平行四边形的对角线互相平分,那么它是一个________。
三、计算题(每题10分,共20分)11. 一个正六边形的边长为2厘米,求它的周长和面积。
12. 已知一个圆的半径为7厘米,求它的面积和周长。
四、解答题(每题15分,共30分)13. 在一个等边三角形ABC中,点D是边AB上的一点,且AD=2,BD=1。
求∠ADC的度数。
14. 一个圆的半径为10厘米,圆心到一个点P的距离为8厘米,求点P到圆上任意一点的距离的最大值和最小值。
答案:一、选择题1. B2. B3. B4. B5. A二、填空题6. 907. 68. 79. 510. 矩形三、计算题11. 周长:2×6=12厘米;面积:(3√3)×2²=12√3平方厘米。
初二数学几何难题练习题含答案1. 题目:已知直角三角形ABC中,AB = 6cm,BC = 8cm。
求AC 的长度。
解析:根据直角三角形的勾股定理,可得AC^2 = AB^2 + BC^2。
代入数值计算可得AC = √(6^2 + 8^2) = √(36 + 64) = √100 = 10cm。
答案:AC的长度为10cm。
2. 题目:四边形ABCD是一个矩形,AB = 5cm,BC = 8cm。
如果∠CBD = 90°,求AD的长度。
解析:由于ABCD是一个矩形,所以AD = BC = 8cm。
答案:AD的长度为8cm。
3. 题目:在平面直角坐标系中,点A(3, 4)和点B(7, 2)分别为直角三角形ABC的两个顶点,求直角三角形ABC的斜边长。
解析:利用两点间距离公式,设A(x1, y1)和B(x2, y2),则AB的长度为√[(x2 - x1)^2 + (y2 - y1)^2]。
代入数值计算可得AB = √[(7 - 3)^2 + (2 - 4)^2] = √[16 + 4] = √20 ≈ 4.47。
答案:直角三角形ABC的斜边长约为4.47。
4. 题目:已知平行四边形ABCD的边长分别为AB = 6cm,BC =8cm。
如果∠BCD = 120°,求对角线AC的长度。
解析:根据平行四边形的性质,对角线互相平分。
因此,对角线AC的长度等于边长DC的长度。
由已知信息可得DC = BC = 8cm。
答案:对角线AC的长度为8cm。
5. 题目:已知等腰梯形ABCD,AB || CD,AB = 6cm,CD = 10cm,AD = 5cm。
求BD的长度。
解析:由等腰梯形的性质可知,AB和CD的中点M处于同一条水平线上。
连接AM和CM,得到直角三角形AMC。
利用勾股定理可得AC的长度为√[(AD + CD)^2 - (2AB)^2] = √[(5 + 10)^2 - (2 * 6)^2] = √225 - 144 = √81 = 9。
初二数学几何试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是直角三角形的判定条件?A. 两角之和为90°B. 两边之和大于第三边C. 斜边的平方等于两直角边的平方和D. 任意两边之和大于第三边2. 一个圆的半径是5厘米,那么它的直径是:A. 10厘米B. 15厘米C. 20厘米D. 25厘米3. 如果一个三角形的三个内角分别为40°、60°和80°,那么这个三角形是:A. 直角三角形B. 钝角三角形C. 锐角三角形D. 不能确定4. 一个矩形的长是10厘米,宽是6厘米,那么它的面积是:A. 60平方厘米B. 100平方厘米C. 120平方厘米D. 150平方厘米5. 一个等腰三角形的底边长为8厘米,腰长为5厘米,那么它的高是:A. 3厘米B. 4厘米C. 6厘米D. 8厘米6. 一个正方形的对角线长度为10厘米,那么它的边长是:A. 5厘米B. 7.07厘米C. 8厘米D. 10厘米7. 一个梯形的上底是4厘米,下底是8厘米,高是6厘米,那么它的面积是:A. 12平方厘米B. 24平方厘米C. 30平方厘米D. 40平方厘米8. 一个平行四边形的对角线互相垂直,那么这个平行四边形是:A. 矩形B. 菱形C. 正方形D. 梯形9. 一个正五边形的内角和是:A. 540°B. 720°C. 900°D. 1080°10. 一个圆的周长是62.8厘米,那么它的半径是:A. 10厘米B. 11厘米C. 12厘米D. 13厘米二、填空题(每题4分,共20分)1. 如果一个三角形的两个内角分别为30°和60°,那么第三个内角是______°。
2. 一个圆的周长是31.4厘米,那么它的直径是______厘米。
3. 一个直角三角形的两条直角边长分别为3厘米和4厘米,那么它的斜边长是______厘米。
一、细心填一填3.在数轴上与表示3的点距离最近的整数点所表示的数是 . 4.如图,△ABC 中,∠ABC =38?,BC =6cm ,E 为BC 的中点,△ABC 平移得到△DEF ,则∠DEF = ?,平移距离为 cm.5.正九边形绕它的旋转中心至少旋转 ?后才能与原图形重合.6.如图,若□ABCD 与□EBCF 关于BC 所在直线对称,且∠ABE =90°,则∠F = °.7.如图,在正方形ABCD 中,以BC 为边在正方形外部作等边三角形BCE ,连结DE ,则∠CDE 的度数为 .8.如图,在□ABCD 中,∠ABC 的平分线交AD 于点E ,且AE =DE =1,则□ABCD 的周长等于 .9.在梯形ABCD 中,AD ∥BC ,∠的度数为°.10.如图,在△ABC 中,AB =AC =AD两点,则图中阴影部分的面积是11.直角三角形三边长分别为2,3,m ,则m = .12.矩形ABCD 的周长为24,面积为32,则其四条边的平方和为.13.在四边形ABCD 中,对角线AC 、BD 相交于点O ,其中AC +BD =28,CD =10. (1)若四边形ABCD 是平行四边形,则△OCD 的周长为 ; (2)若四边形ABCD 是菱形,则菱形的面积为 ; (3)若四边形ABCD 是矩形,则AD 的长为 .二、精心选一选(本大题共有7小题,每小题2分,共14分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.) 16.下列图形中既是轴对称图形又是中心对称图形的是( )A . D .18.给出下列长度的四组线段:①1,2,2;②5,12,13;③6,7,8;④3m ,4m ,5m (m >0).其中能组成直角三角形的有( )A .①②B .②④C .②③D .③④19.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现 一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可 以进行以下哪项操作( )第19题A BDCE F第4题A B CD E 第6题C 第7题第10题A .先逆时针旋转90?,再向左平移B .先顺时针旋转90?,再向左平移C .先逆时针旋转90?,再向右平移D .先顺时针旋转90?,再向右平移20.下列判断中错误..的是( )A .平行四边形的对边平行且相等.B .四条边都相等且四个角也都相等的四边形是正方形.C .对角线互相垂直的四边形是菱形.D .对角线相等的平行四边形是矩形.三、认真答一答(本大题共有8小题,共46分.解答需写出必要的文字说明或演算步骤.) 23.(本题满分4分)如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式ab a b a a +=+2)(成立.(1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式 ; (2)试写出一个与(1)中代数恒等式类似的等式,并用上述拼图的方法说明它的正确性.24.(本题满分5分) 在如图的方格纸中(每个小方格的边长都是1个单位)有一个格点△ABC ,(1)求出△ABC 的边长,并判断△ABC 是否为直角三角形;(2)画出△ABC 关于点O 的中心对称图形△A 1B 1C 1; (3)画出△ABC 绕点O 按顺时针方向旋转90°后得到的图形△A 2B 2C 2;(4)△A 1B 1C 1可能由△A 2B 2C 2怎样变换得到? (写出你认为正确的一种即可).25.(本题满分5分)在□ABCD 中,E 、F 分别为对角线BD 上的两点,且BE =DF . (1)试说明四边形AECF 的平行四边形; (2)试说明∠DAF 与∠BCE 相等.26.(本题满分5分)如图,在△ABC 中,AB =BC ,若将△ABC 沿AB 方向平移线段AB 的长得到△BDE .第24题aba ab b 第23题a b a a b b乙甲a b ABCDEF第25题(1)试判断四边形BDEC 的形状,并说明理由; (2)试说明AC 与CD 垂直. 27.(本小题满分5分)如图,ABCD 是矩形纸片,翻折∠B 、∠D ,使BC 、AD 恰好落在AC 上.设F 、H 分别是B 、D 落在AC 上的点,E 、G 分别是折痕CE 与AB 、AG 与CD 的交点. (1)试说明四边形AECG 是平行四边形;(2)若矩形的一边AB 的长为3cm ,当BC 的长为多少时,四边形AECG 是菱形?28.(本题满分6分)如图,在直角梯形ABCD 中,∠B =90°,AD ∥BC ,且AD =4cm ,AB =6cm ,DC =10cm .若动点P 从A 点出发,以每秒4cm 的速度沿线段AD 、DC 向C 点运动;动点Q 从C 点出发以每秒5cm 的速度沿CB 向B 点运动. 当Q 点到达B 点时,动点P 、Q 同时停止运动. 设点P 、Q 同时出发,并运动了t 秒,(1)直角梯形ABCD 的面积为 cm 2.(2)当t = 秒时,四边形PQCD 成为平行四边形? (3)当t = 秒时,AQ =DC ;(4)是否存在t ,使得P 点在线段DC 上且PQ ⊥DC ?若存在,求出此时t 的值,若不存在,说明理由.八年级数学期终试卷参考答案及评分标准2008.1一、细心填一填 1.2± ;32;-8 2.8a ;224n m -;8- 3.2 4.38,3 5.40 6.135 7.15 8.6 9.150 10.6 11.5或13 12.160 13.(1)24 (2)96 (3)96(或填64) 二、精心选一选14.B 15.D 16.D 17.D 18.B 19.A 20.C 三、认真答一答 21.(1)原式=243-+-π(2分)=π-1(3分)(2) 原式=224643ab c a ab ÷⋅-(2分)=242c a -(3分)(3)原式=)94()44(2222y x xy y x --++(2分)=2104y xy +(3分)当21=x ,y =-3时,原式=-6+90=84(4分)22.(1)原式=)12(2+--a a a (2分)=2)1(--a a (3分)(2)原式=)232)(232(b a b a b a b a +-+-++(1分)=b b a 4)24(⨯+(2分)=)2(8b a b +(3分)ABCDEFG H第27题第26题ABCDP Q第28题23.(1)2223))(2(b ab a b a b a ++=++(2分) (2)略(4分) 24.(1)AB =23,AC =24,BC =25(1分,不化简也对)∴222BC AC AB =+∴△ABC 是Rt △(2分)(2)图略(3分) (3)图略(4分)(写出等式与画图各1分,图上不标线段长不得分) (4)先将△A 2B 2C 2绕A 2点按顺时针方向旋转90°,再将所得图形向右平移6个单位即得到△A 1B 1C 1(5分,变换可以不同,只要正确即可) 25.证明:(1)连结AC 交BD 于O .(1分)∵ABCD 是平行四边形,∴OA =OC ,OB =OD ,(2分) ∵BE =DF ∴OE =OF ∴四边形AECF 的平行四边形(3分)(2)∵四边形AECF 的平行四边形 ∴AF ∥EC ∴∠FAC =∠ECA (4分) ∵ABCD 是平行四边形 AD ∥BC ∴∠DAC =∠BCA ∴∠DAF =∠BCE (5分)26.(1)解:∵△ABC 沿AB 方向平移AB 长得到△BDE ∴AB =CE =BD ,BC =DE ,(1分) ∵AB =BC ∴BD =DE =CE =BC ,(2分)∴四边形BDEC 为菱形.(3分)(2)证明:∵四边形BDEC 为菱形 ∴BE ⊥CD (4分) ∵△ABC 沿AB 方向平移AB 长得到△BDE∴AC ∥BE ∴AC ⊥CD .(5分) 27.(1)由题意,得∠GAH =21∠DAC , ∠ECF =21∠BCA (1分) ∵四边形ABCD 为矩形 ∴AD ∥BC ∴∠DAC =∠BCA ∴∠GAH =∠ECF ∴AG ∥CE (2分) 又∵AE ∥CG ∴四边形AECG 是平行四边形(3分) (2)∵四边形AECG 是菱形 ∴F 、H 重合∴AC =2BC (4分)在Rt △ABC 中,设BC =x ,则AC =2x 在Rt △ABC 中222BC AB AC += 即2223)2(x x +=,解得x =3,即线段BC 的长为3 cm.(5分) 28.解:(1)48(1分) (2)94秒(2分) (3)0.8秒(3分) (4)如图,设QC =5t ,则DP =4t -4,∵CD =10 ∴PC =14-4t ,连结DQ , ∵ AB =6,∴t t AB QC S DQC15652121=⨯⨯=⨯=∆ 若PQ ⊥CD ,则PQ PQ PQ DC S DQC5102121=⨯⨯=⨯=∆ ∴5PQ =15t , 即PQ =3t (4分)∵PQ ⊥CD 则QC 2=PQ 2+PC 2 ∴222)414()3()5(t t t -+=ACDPQ第28题解得t =47(5分) 当t =47时, 4<4t <14,此时点P 在线段DC 上,又5t =435<12 点Q 在线段CB 上. ∴当P 点运动到DC 上时,存在t =47秒,使得PQ ⊥CD.(6分)。