生物信息学期末考试重点
- 格式:docx
- 大小:21.54 KB
- 文档页数:7
生物信息学期末复习资料(小字)名词解释或辨析。
1.生物信息学:生物信息学是包含生物信息的获取、处理、贮存、分发、分析和解释的所有方面的一门学科,它综合运用数学、计算机科学和生物学的各种工具进行研究,目的在于了解大量的生物学意义。
2.基因芯片:固定有寡核苷酸、基因组DNA或互补DNA 等的生物芯片。
利用这类芯片与标记的生物样品进行杂交,可对样品的基因表达谱生物信息进行快速定性和定量分析。
3.人类基因组计划:HGP,是一项规模宏大,跨国跨学科的科学探索工程。
其宗旨在于测定组成人类染色体(指单倍体)中所包含的30亿个碱基对组成的核苷酸序列,从而描绘人类基因组图谱,并且辨识其载有的基因及其序列,达到破译人类遗传信息的最终目的。
4.中心法则:分子生物学的基本法则,是1958年由克里克(Crick)提出的遗传信息传递的规律,包括由DNA到DNA的复制,由DNA到RNA的转录和由RNA 到蛋白质的翻译等过程。
20世纪70年代逆转录酶的发现,表明还有由RNA逆转录形成DNA的机制,是对中心法则的补充和丰富。
5.相似性和同源性:相似性(similarity)和同源性(homology)是两个完全不同的概念。
同源序列是指从某一共同祖先经过趋异进化而形成的不同序列。
相似性是指序列比对过程中检测序列和目标序列之间相同碱基或氨基酸残基序列所占比例的大小。
当两条序列同源时,他们的氨基酸或核苷酸序列通常有显著的一致性(identity)。
如果两条系列有一个共同进化的祖先,那么他们是同源的。
这里不存在同源性的程度问题,两条序列要么是同源的要么是不同源的。
1.生物信息学:综合计算机科学、信息技术和数学的理论和方法来研究生物信息的交叉学科。
包括生物学数据的研究、存档、显示、处理和模拟,基因组遗传和物理图谱的处理,核苷酸和氨基酸序列分析,新基因的发现和蛋白质结构的预测等。
2.蛋白质组:指由一个基因组,或一个细胞、组织表达的所有蛋白质。
第一讲生物信息学(Bioinformatics)是20世纪80年代末随着人类基因组计划的启动而兴起的一门新型交叉学科,它体现了生物学、计算机科学、数学、物理学等学科间的渗透与融合。
生物信息学通过对生物学实验数据的获取、加工、存储、检索与分析,达到揭示数据所蕴含的生物学意义从而解读生命活动规律的目的。
生物信息学不仅是一门学科,更是一种重要的研究开发平台与工具,是今后进行几乎所有生命科学研究的推手。
生物技术与生物信息学的区别及联系生物信息学的发展历史•人类基因组计划(HGP)•人类基因组计划由美国科学家于1985年提出,1990年启动。
根据该计划,在2015年要把人体约4万个基因的密码全部揭开,同时绘制出人类基因的谱图,也就是说,要揭开组成人体4万个基因的30亿个碱基对的秘密。
HGP与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划,被誉为生命科学的登月计划。
(百度百科)随着基因组计划的不断发展,海量的生物学数据必须通过生物信息学的手段进行收集、分析和整理后,才能成为有用的信息和知识。
换句话说,人类基因组计划为生物信息学提供了兴盛的契机。
上文所说的基因、碱基对、遗传密码子等术语都是生物信息学需要着重研究的地方。
:】第二讲回顾细胞结构细胞是所有生命形式结构和功能的基本单位细胞组成细胞膜主要由脂类和蛋白质组成的环绕在细胞表面的双层膜结构细胞质细胞膜与细胞核之间的区域:包含液体流质,夹杂物存储的营养、分泌物、天然色素和细胞器细胞器细胞内完成特定功能的结构:线粒体、核糖体、高尔基体、溶酶体等细胞核最大的细胞器DNA的结构碱基(腺嘌呤A、鸟嘌呤G、胞嘧啶C、胸腺嘧啶G)。
核苷酸核苷酸是构成DNA分子的重要模块。
每个核苷酸分子由一分子称作脱氧核糖的戊糖(五碳糖)、一分子磷酸和一分子碱基构成。
每种核苷酸都有一个碱基对,也就是A、T、C、G基因是什么基因是遗传物质的基本单位基因就是核苷酸序列。
大部分的基因大约是1000-4000个核苷酸那么长。
Made by Kim 2008级基础医学1 在进行序列局部比对的时候,能不能在同一位置插入双gap?为什么?不能,因为如果能在同一位置插入双gap的话,就能在两条序列的任何位置插入双gap,得出的对比结果都是一样的,没有统计学意义。
2 解释生物信息名词BLAST、CDS(GBFF格式中的特性关键词)、NCBI、UPGMA、EBI。
BLAST:Basic Local Alignment Search Tool基本局部相似性对比搜索工具;CDS:Coding sequence蛋白编码区信息;NCBI:National Center of Biotechnology Information 美国国立生物技术信息中心; UPGMA:unweighted pair group method with arithmetic mean 非加权算术平均组对法; EBI:European Bioinformatics Institute欧洲生物信息学中心。
3 NCBI的BLAST工具有5个基本程序,分别为nucleotide blast,protein blast,blastx,tblastn,tblastx,请分别说明每个程序解决的问题。
Blastn:用核酸序列搜索核算数据库;Blastp:用蛋白质序列搜索蛋白质数据库;Blastx:用核酸序列搜索蛋白质数据可库(先将核酸序列按6个可读框翻译成蛋白质序列); Tblastn:用蛋白质序列搜索核算数据库(先将核酸数据库的序列按6个可读框翻译成蛋白质序列);Tblastx:将查询序列和数据库里的核酸序列都按6个可读框翻译成蛋白质序列再对比,每两条序列进行36次对比。
4 如果我们想知道一个基因组DNA数据库中是否有某个蛋白的直系同源物,该采用什么样的序列分析工具。
采用tblastn序列分析工具。
5 通过BLAST比对,发现两个序列相似度是90%,能不能认定两个序列同源性是90%,为什么。
1、生物信息学(Bioinformatics)是研究生物信息的采集、处理、存储、传播,分析和解释等各方面的学科,也是随着生命科学和计算机科学的迅猛发展,生命科学和计算机科学相结合形成的一门新学科。
它通过综合利用生物学,计算机科学和信息技术而揭示大量而复杂的生物数据所赋有的生物学奥秘。
2、数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它产生于距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后,数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。
数据库有很多种类型,从最简单的存储有各种数据的表格到能够进行海量数据存储的大型数据库系统都在各个方面得到了广泛的应用。
3、表达序列标签从一个随机选择的cDNA 克隆进行5’端和3’端单一次测序获得的短的cDNA 部分序列,代表一个完整基因的一小部分,在数据库中其长度一般从20 到7000bp 不等,平均长度为360 ±120bp。
EST 来源于一定环境下一个组织总mRNA 所构建的cDNA 文库,因此EST也能说明该组织中各基因的表达水平。
4、开放阅读框是基因序列中的一段无终止序列打断的碱基序列,可编码相应的蛋白。
ORF识别包括检测六个阅读框架并决定哪一个包含以启动子和终止子为界限的DNA序列而其内部不包含启动子或终止子,符合这些条件的序列有可能对应一个真正的单一的基因产物。
ORF的识别是证明一个新的DNA序列为特定的蛋白质编码基因的部分或全部的先决条件。
5、蛋白质的一级结构在每种蛋白质中氨基酸按照一定的数目和组成进行排列,并进一步折叠成特定的空间结构前者我们称为蛋白质的一级结构,也叫初级结构或基本结构。
蛋白质一级结构是理解蛋白质结构、作用机制以及与其同源蛋白质生理功能的必要基础。
6、基因识别是生物信息学的一个重要分支,使用生物学实验或计算机等手段识别DNA序列上的具有生物学特征的片段。
⽣物信息学重点⼀、名解1.⽣物信息学:(狭义)专指应⽤信息技术储存和分析基因组测序所产⽣的分⼦序列及其相关数据的学科;(⼴义)指⽣命科学与数学、计算机科学和信息科学等交汇融合所形成的⼀门交叉学科。
2.⼈类基因组测序计划:3基因组学:以基因组分析为⼿段,研究基因组的结构组成、时序表达模式和功能,并提供有关⽣物物种及其细胞功能的进化信息。
p1504基因组:是指⼀个⽣物体、细胞器或病毒的整套基因。
p1505.⽐较基因组学:是指基因组学与⽣物信息学的⼀个重要分⽀。
通过模式⽣物基因组之间或模式⽣物基因组与⼈类基因组之间的⽐较与鉴别,可以为研究⽣物进化和分离⼈类遗传病的候选基因以及预测新的基因功能提供依据。
p1666功能基因组:表达⼀定功能的全部基因所组成的DNA序列,包括编码基因和调控基因。
功能基因组学:利⽤结构基因组学研究所得的各种来源的信息,建⽴与发展各种技术和实验模型来测定基因及基因组⾮编码序列的⽣物学功能。
7蛋⽩质组:是指⼀个基因组中各个基因编码产⽣的蛋⽩质的总体,即⼀个基因组的全部蛋⽩产物及其表达情况。
p1798蛋⽩质组学:指应⽤各种技术⼿段来研究蛋⽩质组的⼀门新兴科学,其⽬的是从整体的⾓度分析细胞内动态变化的蛋⽩质组成成分、表达⽔平与修饰状态,了解蛋⽩质之间的相互作⽤与联系,揭⽰蛋⽩质功能与细胞⽣命活动规律。
9功能蛋⽩质组学:(功能蛋⽩质组,即细胞在⼀定阶段或与某⼀⽣理现象相关的所有蛋⽩)。
10序列对位排列:通过插⼊间隔的⽅法使不同长度的序列对齐,达到长度⼀致。
11 基因组作图:是确定界标或基因在构成基因组的每条染⾊体上的位置,以及同条染⾊体上各个界标或基因之间的相对距离。
p15512 后基因组时代:其标志是⼤规模基因组分析、蛋⽩质组分析以及各种数据的⽐较和整合。
p3⼆填空题1⽣物信息学的发展⼤致经历了3个阶段,分别为前基因组时代、基因组时代、后基因组时代。
p22后基因组时代的标志性⼯作是(基因组分析)(蛋⽩质组分析)以及(各种数据的⽐较和整合)p33前基因组时代的标志性⼯作是⽣物数据库的建⽴、检索⼯具的开发以及DNA和蛋⽩质的序列分析p2 4基因组时代的标志性⼯作是(基因寻找和识别)(⽹络数据库系统的建⽴)以及(交互界⾯的开发)p2 5 ⼈类基因组计划的⽬标是完成四张图,分别是(遗传图谱)(物理图谱)(序列图谱)和(基因图谱)5 HGP由六个国家完成,我国完成了HGP的(1%,即3号染⾊体上3000万个碱基)的测序⼯作。
第一章DNA、RNA和蛋白质序列信息资源生物信息学的概念:专指应用信息技术储存和分析基因组测序所产生的分子序列及其相关数据,也称分子生物信息学。
三大核酸序列数据库GenBank(NCBI)美国国家生物技术信息中心,EMBL欧洲分子生物学实验,DDBJ日本DNA序列资料库序列信息通常用FASTA和GenBank两种格式显示第二章双序列比对数据库查询:指对序列、结构以及各种二次数据库中的注释信息进行关键词匹配。
数据库搜索:通过特定相似性比对算法,找出核酸或蛋白质序列数据库中与检测序列具有一定程度相似性的序列。
区别:数据库搜索专门针对核酸和蛋白质序列数据库而言,其搜索对象不是数据库的注释信息,而是序列信息。
检测序列:新测定的,希望通过数据库搜索确定其性质或功能的序列目标序列:通过数据库搜索得到的和检测序列具有一定相似性的序列同源性的意义:具有共同祖先。
两个物种中有两个性状满足下列任一条件,就可称为同源性状:(1)它们与这些物种的祖先类群中所发现的某个性状相同(2)(2)它们是具有祖先一后裔的不同性状同源(homology)-具有共同的祖先同源序列:共同祖先趋异进化形成垂直同源(ortholog)种系形成过程中起源于一个共同祖先的不同种系中的DNA或蛋白质序列水平同源(paralog)由序列复制事件产生的相似(similarity)用来描述检测和目标序列之间相同DNA/蛋白质序列占比高低。
同源序列一般是相似的,但相似序列不一定是同源的。
相似性:大于50%可认为是同源性序列,小于20%无法确定同源性目的:通过数据库搜索,推测该未知序列可能属于哪个基因家族,具有哪些生物学功能。
可能找到已知三维结构的同源蛋白质而推测其可能的空间结构。
在序列数据库中对查询序列进行同源性比对.整体比对:从全长序列出发(分子系统学)局部比对:序列部分区域相似性(分子结构与功能性研究)数据库搜索的基础是序列的相似性比对,即双序列比对(pairwise alignment)。
一、单选题1、总的来说,位于染色体内超过( )个碱基的DNA,构成了人类基因组。
A.30000000000B.3000000000C.300000000D.30000000正确答案:B2、人类镰刀型红细胞贫血症是由于血红蛋白β链N端第6个氨基酸由谷氨酸突变为( )造成的。
A.苏氨酸B.缬氨酸C.赖氨酸D.谷氨酸正确答案:B3、RefSeq数据库是由哪个组织开发和维护的?( )A.NIGB.NCBIC.EMBLD.SIB正确答案:B4、Long non-coding RNA长链非编码RNA是长度大于( )个核苷酸的非编码RNA。
A.150B.250C.300D.200正确答案:D5、tBLASTx分析是用核酸序列检索核酸序列数据库,下列说法正确的是?()A.核酸序列和核酸序列数据库都不需要翻译成蛋白质序列B.只有核酸序列数据库需要翻译成蛋白质序列C.只有核酸序列需要翻译成蛋白质序列D.核酸序列和核酸序列数据库都需要翻译成蛋白质序列正确答案:D6、要搜索编码蛋白质序列的核酸序列,适宜的分析方法是?()A.BLASTxB.BLASTnC.tBLASTnD.BLASTp正确答案:A7、下列对于PCR引物修饰的说法正确的是?()A.PCR引物的5’末端和3’末端均能进行修饰B.PCR引物的5’末端和3’末端均不能进行修饰C.只有PCR引物的5’末端能进行修饰D.只有PCR引物的3’末端能进行修饰正确答案:C8、下列哪个在线分析工具可以预测DNA的外显子-内含子?()A.AugustusB.PLACEC.ORFfinderD.Entrez正确答案:A9、Smith-Waterman动态规划算法矩阵中的每个单元格有几条路径?()A.1B.2C.3D.4正确答案:D10、下列关于Needleman-Wunsch算法和Smith-Waterman算法提出早晚的论述正确的是?()A.Needleman-Wunsch算法提出时间较早B.不确定C.Smith-Waterman算法提出时间较早D.二者提出时间相当正确答案:A11、当分类单元至少为3时,下列对“有根树与无根树的数目”判断正确的是?()A.有根树的数目要少于无根树的数目B.有根树的数目与无根树的数目一样多C.有根树的数目要多于无根树的数目D.二者数目无法判断正确答案:C12、下列哪种算法建树时,选择代价最小或者枝长最短的树?A.最大似然值法B.最大简约法C.邻接法D.UPGMA法正确答案:B二、多选题1、生物信息学是由( )等学科相互交叉而形成的一门新兴学科。
■一、选择题:1.以下哪一个是mRNA条目序列号:A.J01536■.NM_15392C.NP_52280D.AAB1345062.确定某个基因在哪些组织中表达的最直接获取相关信息方式是:■.UnigeneB.EntrezC.LocusLinkD.PCR3.一个基因可能对应两个Unigene簇吗?■可能B.不可能4.下面哪种数据库源于mRNA信息:■dbESTB.PDBC.OMIMD.HTGS5.下面哪个数据库面向人类疾病构建:A.ESTB.PDB■.OMIMD.HTGS6.Refseq和GenBank有什么区另1J:A.Refseq包括了全世界各个实验室和测序项目提交的DNA序列B.GenBank提供的是非冗余序列■.Refseq源于GenBank,提供非冗余序列信息D.GenBank源于Refseq7.如果你需要查询文献信息,下列哪个数据库是你最佳选择:A.OMIMB.Entrez■PubMedD.PROSITE8.比较从Entrez和ExPASy中提取有关蛋白质序列信息的方法,下列哪种说法正确:A.因为GenBank的数据比EMBL更多,Entrez给出的搜索结果将更多B.搜索结果很可能一样,因为GenBank和EMBL的序列数据实际一样■搜索结果应该相当,但是ExPASy中的SwissProt记录的输出格式不同9.天冬酰胺、色氨酸和酪氨酸的单字母代码分别对应于:■N/W/YB.Q/W/YC.F/W/YD.Q/N/W10.直系同源定义为:■不同物种中具有共同祖先的同源序列B.具有较小的氨基酸一致性但是有较大的结构相似性的同源序列C.同一物种中由基因复制产生的同源序列D.同一物种中具有相似的并且通常是冗余的功能的同源序列11.下列那个氨基酸最不容易突变:A.丙氨酸B.谷氨酰胺C.甲硫氨酸■半胱氨酸12.PAM250矩阵定义的进化距离为两同源序列在给定的时间有多少百分比的氨基酸发生改变:A.1%B.20%■.80%D.250%13.下列哪个句子最好的描述了两个序列全局比对和局部比对的不同:A.全局比对通常用于比对DNA序列,而局部比对通常用于比对蛋白质序列B.全局比对允许间隙,而局部比对不允许C.全局比对寻找全局最大化,而局部比对寻找局部最大化■全局比对比对整体序列,而局部比对寻找最佳匹配子序列14.假设你有两条远源相关蛋白质序列。
2、序列比对的类型①全局序列比对定义:在全局范围内对两条序列进行比对打分的方法。
适合于非常相似且长度近似相等的序列。
②局部序列比对定义:一种寻找匹配子序列的序列比对方法。
适合于一些片段相似而另一些片段相异的序列。
4、ployA:转录终止信号序列,AATAA,称为多聚腺苷酸信号;5、SNP;单核苷酸多态性;6、BLAST:基本局部比对搜索工具,用于相似性搜索的工具,对需要进行检索的序列与数据库中的每个序列做相似性比较。
5、序列相似性比较:将待研究序列与 DNA或蛋白质序列库进行比较,用于确定该序列的生物属性,也就是找出与此序列相似的已知序列是什么。
完成这一工作只需要使用两两序列比较算法。
常用的程序包有 BLAST、FASTA 等;7、空位(gap:在序列比对时,由于序列长度不同,需要插入一个或几个位点以取得最佳比对结果,这样在其中一序列上产生中断现象,这些中断的位点称为空位。
8、空位罚分:空位罚分是为了补偿插入和缺失对序列相似性的影响,序列中的空位的引入不代表真正的进化事件,所以要对其进行罚分,空位罚分的多少直接影响对比的结果。
9、多序列比对:通过序列的相似性检索得到许多相似性序列,将这些序列做一个总体的比对,以观察它们在结构上的异同,来回答大量的生物学问题。
1、分子钟:认为分子进化速率是恒定的或者几乎恒定的假说,从而可以通过分子进化推断出物种起源的时间。
2、系统发育图:用枝长表示进化时间的系统树称为系统发育图,是引入时间概念的支序图。
4、最大似然法(ML:它对每个可能的进化位点分配一个概率,然后综合所有位点,找到概率最大的进化树。
最大似然法允许采用不同的进化模型对变异进行分析评估,并在此基础上构建系统发育树。
5、开放阅读框(ORF:开放阅读框是基因序列的一部分,包含一段可以编码蛋白的碱基序列。
6、.密码子偏好性(codon bias:氨基酸的同义密码子的使用频率与相应的同功 tRNA 的水平相一致,大多数高效表达的基因仅使用那些含量高的同功 tRNA 所对应的密码子,这种效应称为密码子偏好性。
生物信息学就是一门交叉学科, 包含了生物信息得获取、加工、存储、分配、分析、解释等在内得所有方面, 它综合运用数学、计算机科学与生物学等得各种工具来阐明与理解大量数据所包含得生物学意义。
生物信息学宗旨在揭示基因组信息结构得复杂性及遗传语言得根本规律。
从生物分子获得与挖掘深层次生物学知识。
人类基因组计划(HGP):获得遗传图、物理图、序列图、转录图;终极目标:阐明人类基因组全部DNA序列;识别基因;建立储存这些信息得数据库;开发数据分析工具;研究HGP实施所带来得伦理、法律与社会问题。
其中我国承担了人类3号染色体短臂。
记录:一个数据库记录一般由两部分组成:原始序列数据与描述这些数据生物学信息得注释。
冗余:在一个数据库存在着多个相同得项,如两个或者更多得记录中有一个相同序列Fasta格式开始于一个标识符:">",然后就是一行描述。
GenBank格式:每个基因描述可有多个描述行,包含一行以LOUCUS开头描述行,基因序列以ORIGN开头,以//结尾。
EMBL:入口标识符ID,序列开始标识符SQ,结束就是//。
数据库得特点:①数据库就是可以检索得,即具有检索功能;②数据库应该就是定时更新得,即不断有新版内容发布;③数据库就是交叉引用得,特别就是在互联网时代,数据库应该通过超链接与其她数据库相连。
EST序列:表达序列标签对cDNA文库测序得到得,就是转录得DNA序列。
STS序列:序列标签位点染色体上位置已定得、核苷酸序列已知得、且在基因组中只有一份拷贝得DNA短片断,(200bp-500bp)。
STS序列标签位点就是基因组上定位明确、作为界标并能通过PCR扩增被唯一操作得短得、单拷贝DNA 序列,用于产生作图位点。
GSS序列:基因组概览测序基因组DNA克隆得一次性部分测序得到得序列。
HTG序列:高通量基因组序列三大数据库:NCBI(GenBank):美国生物技术中心,建立了一系列生物信息数据与各种服务。
1、生物信息学(Bioinformatics)是研究生物信息的采集、处理、存储、传播,分析和解释等各方面的学科,也是随着生命科学和计算机科学的迅猛发展,生命科学和计算机科学相结合形成的一门新学科.它通过综合利用生物学,计算机科学和信息技术而揭示大量而复杂的生物数据所赋有的生物学奥秘。
2、数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它产生于距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后,数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。
数据库有很多种类型,从最简单的存储有各种数据的表格到能够进行海量数据存储的大型数据库系统都在各个方面得到了广泛的应用。
3、表达序列标签从一个随机选择的cDNA 克隆进行5'端和3’端单一次测序获得的短的cDNA 部分序列,代表一个完整基因的一小部分,在数据库中其长度一般从20 到7000bp 不等,平均长度为360 ±120bp。
EST 来源于一定环境下一个组织总mRNA 所构建的cDNA 文库,因此EST也能说明该组织中各基因的表达水平。
4、开放阅读框是基因序列中的一段无终止序列打断的碱基序列,可编码相应的蛋白.ORF识别包括检测六个阅读框架并决定哪一个包含以启动子和终止子为界限的DNA序列而其内部不包含启动子或终止子,符合这些条件的序列有可能对应一个真正的单一的基因产物。
ORF的识别是证明一个新的DNA序列为特定的蛋白质编码基因的部分或全部的先决条件。
5、蛋白质的一级结构在每种蛋白质中氨基酸按照一定的数目和组成进行排列,并进一步折叠成特定的空间结构前者我们称为蛋白质的一级结构,也叫初级结构或基本结构。
蛋白质一级结构是理解蛋白质结构、作用机制以及与其同源蛋白质生理功能的必要基础.6、基因识别是生物信息学的一个重要分支,使用生物学实验或计算机等手段识别DNA序列上的具有生物学特征的片段。
基因识别的对象主要是蛋白质编码基因,也包括其他具有一定生物学功能的因子,如RNA基因和调控因子。
基因识别是基因组研究的基础.7、单核苷酸多态指在基因组水平上由单个核苷酸的变异所引起的DNA序列多态性。
这种变异可由单个碱基的转换(transition)或颠换(transversion)所引起,也可由碱基的插入或缺失所致,它是人类可遗传的变异中最常见的一种。
占所有已知多态性的90%以上。
8、系统发育进化树Phylogenetic trees用一种类似树状分支的图形来概括各种(类)生物之间的亲缘关系,进化树由结点(node)和进化分支(branch)组成,每一结点表示一个分类学单元(属、种群、个体等),进化分支定义了分类单元(祖先与后代)之间的关系,一个分支只能连接两个相邻的结点。
进化树分支的图像称为进化的拓扑结构,其中分支长度表示该分枝进化过程中变化的程度,标有分枝长度的进化分支叫标度枝(scaled branch)。
9、序列拼接为了保证测序结果的准确性,单基因短片段(700pd左右)测序一般应采用双向测序,然后将双向测序的结果拼接在一起,从而获得一致性序列。
线粒体基因组测序和DNA长片段测序一般是通过分段测序来完成的,最后也需要将测出的短片段拼接成一条完整的序列。
10、分子钟11、直系同源(orthology))在进化上起源于一个始祖基因并垂直传递的同源基因;分布于两种或两种以上物种的基因组;功能高度保守乃至于近乎相同,甚至于其在近缘物种可以相互替换;结构相似;组织特异性与亚细胞分布相似。
12、基因芯片(gene chip)通过微加工技术,将数以万计、乃至百万计的特定序列的DNA片段(基因探针),有规律地排列固定于2cm2的硅片、玻片等支持物上,构成的一个二维DNA探针阵列,与计算机的电子芯片十分相似,所以被称为基因芯片。
基因芯片主要用于基因检测工作。
13、转录组 Transcriptome 广义上指某一生理条件下,细胞内所有转录产物的集合,包括信使RNA、核糖体RNA、转运RNA及非编码RNA;狭义上指所有mRNA的集合.14、人类基因组计划是一项规模宏大,跨国跨学科的科学探索工程。
其宗旨在于测定组成人类染色体(指单倍体)中所包含的30亿个碱基对组成的核苷酸序列,从而绘制人类基因组图谱,并且辨识其载有的基因及其序列,达到破译人类遗传信息的最终目的。
15、中心法则central dogma是指遗传信息从DNA传递给RNA,再从RNA传递给蛋白质,即完成遗传信息的转录和翻译的过程。
也可以从DNA传递给DNA,即完成DNA的复制过程。
这是所有有细胞结构的生物所遵循的法则。
在某些病毒中的RNA自我复制(如烟草花叶病毒等)和在某些病毒中能以RNA为模板逆转录成DNA的过程(某些致癌病毒)是对中心法则的补充。
16、序列比对将两个或多个序列排列在一起,标明其相似之处。
序列中可以插入间隔。
对应的相同或相似的符号(在核酸中是A, T(或U), C, G,在蛋白质中是氨基酸残基的单字母表示)排列在同一列上.这一方法常用于研究由共同祖先进化而来的序列,特别是如蛋白质序列或DNA序列等生物序列。
在比对中,错配与突变相应,而空位与插入或缺失对应。
17、序列拼接为了保证测序结果的准确性,单基因短片段(700pd左右)测序一般应采用双向测序,然后将双向测序的结果拼接在一起,从而获得一致性序列.线粒体基因组测序和DNA长片段测序一般是通过分段测序来完成的,最后也需要将测出的短片段拼接成一条完整的序列.18、基因预测二、简答1、BLAST的五个子程序Blastn (核酸);protein blast ;blastp(蛋白质);tblastn(蛋白质);tblastx(核酸)2、系统发育树构建的方法最大似然法:是一种具有理论性的点估计法,此方法的基本思想是:当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大,而不是像最小二乘估计法旨在得到使得模型能最好地拟合样本数据的参数估计量.简约法:根据离散型性状包括形态学性状和分子序列(DNA,蛋白质等)的变异程度,构建生物的系统发育树,并分析生物物种之间的演化关系。
邻接法:一种快速的聚类方法,不需要关于分子钟的假设,不考虑任何优化标准,基本思想是进行类的合并时,不仅要求待合并的类是相近的,而且要求待合并的类远离其他的类,从而通过对完全没有解析出的星型进化树进行分解,来不断改善星型进化树。
3、序列比对的意义生物信息学的研究重点主要体现在基因组学和蛋白质学两方面,具体地说就是从核酸和蛋白质序列出发, 分析序列中表达结构和功能的生物信息.生物信息学的基本任务是对各种生物分析序列进行分析,也就是研究新的计算机方法,从大量的序列信息中获取基因结构、功能和进化等知识。
而在序列分析中,将未知序列同已知序列进行相似性比较是一种强有力的研究手段,从序列的片段测定,拼接,基因的表达分析, 到RNA和蛋白质的结构功能预测,物种亲缘树的构建都需要进行生物分子序列的相似性比较.生物信息学中的序列比对算法的研究具有非常重要的理论意义和实践意义。
4、预测基因的一般步骤基因预测的方法主要有最长ORF法、利用编码区与非编码区密码子选用频率的差异进行基因预测、ESTs预测基因。
其中最长ORF法是将每条链按6个读码框全部翻译出来,然后找出所有可能的不间断开放阅读框(ORF),只要找出序列中最长的ORF,就能相当准确地预测出基因。
其的基本步骤为:1:获取DNA目标序列;2:查找ORF并将目标序列翻译成蛋白质序列;3:利用BLAST进行ORF核苷酸序列和ORF翻译的蛋白质序列搜索。
4:进行目标序列与搜索得到的相似序列的全局比对;5进行多序列比对,获得比对区段的基因家族信息.6:查找目标序列中的特定模序7:预测目标序列蛋白质结构。
5、散弹法测序原理散弹法又称“鸟枪法”是一种由生物基因组提取目的基因的方法.首先利用物理方法(如剪切力、超声波等)或酶化学方法(如限制性内切核酸酶)将生物细胞染色体DNA切割成为基因水平的许多片段,继而将这些片段与适当的载体结合,将重组DNA转入受体菌扩增,获得无性繁殖的基因文库,再结合筛选方法,从众多的转化子菌株中选出含有某一基因的菌株,从中将重组的DNA分离、回收。
这种方法也就是应用基因工程技术分离目的基因,其特点是绕过直接分离基因的难关,在基因组DNA文库中筛选出目的基因。
可以说这是利用“溜散弹射击”原理去“命中"某个基因。
由于目的基因在整个基因组中太少太小,在相当程度上还得靠“碰运气”,所以人们称这个方法为“鸟枪法”或“散弹枪”实验法。
6、序列分析的任务和目的7、引物设计的方法与原则原则:1、择合适的靶序列:设计引物之前,必须分析待测靶序列的性质,选择高度保守、碱基分布均匀的区域进行引物设计.2、长度:一般来说,寡核苷酸引物长度为 15~30bp。
3、 Tm 值:引物的 Tm 值一般控制在 55~60℃,尽可能保证上下游引物的 Tm 值一致,一般不超过 2℃.若引物中的 G+C 含量相对偏低,则可以使引物长度稍长,而保证一定的退火温度.4、(G+C)含量:有效引物中(G+C)的比例一般为 40~60%.5、碱基的随机分布:引物中四种碱基的分布最好是随机的,不存在聚嘌呤和聚嘧啶,尤其在引物的 3'端不应超过 3 个连续的 G 或 C.6、引物自身:引物自身不存在连续 4 个碱基以上的互补序列,如回文结构,发夹结构等,否则会影响到引物与模板之间的复性结合,尤其避免 3'末端的互补。
8、mRNA—seq建库流程9、真核基因和原核基因的特征10、核酸序列数据库NCBI储存和分析分子生物学、生物化学、遗传学知识创建自动化系统;从事研究基于计算机的信息处理过程的高级方法,用于分析生物学上重要的分子和化合物的结构与功能;促进生物学研究人员和医护人员应用数据库和软件;努力协作以获取世界范围内的生物技术信息.欧洲生物信息学研究所(European Bioinformatics Institute, EBI)创建的一个核酸序列数据库.GenBank数据库:DNA序列数据库TIGR数据库(TDB)包括DNA及蛋白质序列,基因表达,细胞功能以及蛋白质家族信息,并且还收录有人、植物、微生物等的分类信息,是一套大型综合数据库。
特别之处在于,这套数据库包括一个微生物信息库,GSDB收集、管理并且发送完整的DNA序列及其相关信息,以满足主要基因组测序机构的需要。
三、论述1、人类基因组计划与生物信息学的关系人类基因组计划旨在对人类基因组3×109 个脱氧核苷酸对进行作图和测序,进而解读和破译生老病死以及语言、记忆和疾病发生的遗传信息.而生物信息学是集生物学、数学、信息学、计算机科学一体化的一门新的学科.随着人类基因组计划的进展,基因组的数据和信息大量,迅速地增加,信息的收集、储存、分发、分析的管理越来越显得紧迫和重要。