圆锥曲线中轨迹问题
- 格式:doc
- 大小:239.30 KB
- 文档页数:13
圆锥曲线的轨迹方程问题1.抛物线C :y 2=2px (p >0)的焦点为F ,P 在抛物线C 上,O 是坐标原点,当PF 与x 轴垂直时,△OFP 的面积为1.(1)求抛物线C 的方程;(2)若A ,B 都在抛物线C 上,且OA ⋅OB =-4,过坐标原点O 作直线AB 的垂线,垂足是G ,求动点G 的轨迹方程.【答案】(1)y 2=4x ;(2)x 2+y 2-2x =0x ≠0【解析】(1)当PF 与x 轴垂直时,P p 2,p ,故S △OFP =12×p 2×p =1,故p =2,故抛物线的方程为:y 2=4x .(2)设A y 214,y 1 ,B y 224,y 2,直线AB :x =ty +m ,因为OA ⋅OB =-4,故y 21y 2216+y 1y 2=-4,整理得到:y 21y 22+16y 1y 2+64=0,故y 1y 2=-8.由x =ty +my 2=4x可得y 2-4ty -4m =0,故-4m =-8即m =2,故直线AB :x =ty +2,此直线过定点M 2,0 .因为OG ⊥GM ,故G 的轨迹为以OM 为直径的圆,其方程为:x -0 x -2 +y -0 y -0 =0即x 2+y 2-2x =0.因为直线AB :x =ty +2与x 轴不重合,故G 不为原点,故G 的轨迹方程为:x 2+y 2-2x =0x ≠0 .2.已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的离心率e =233,且经过点P 3,1 .(1)求双曲线C 的方程;(2)设A ,B 在C 上,PA ⊥PB ,过P 点向AB 引垂线,垂足为M ,求M 点的轨迹方程.【答案】(1)x 26-y 22=1;(2)x -92 2+y +122=92(去掉点P )【解析】(1)∵双曲线的离心率e =c a =233,∴c 2=43a 2=a 2+b 2,即a 2=3b 2,将P 3,1 代入C :x 23b 2-y 2b 2=1,即93b 2-1b2=1,解得b 2=2,a 2=6,故双曲线C 的方程为x 26-y 22=1;(2)当直线AB 斜率不存在时,不满足PA ⊥PB ,故不满足题意;当直线AB 斜率存在时,设A x 1,y 1 ,B x 2,y 2 ,AB :y =kx +m ,代入双曲线方程整理得:3k 2-1 x 2+6kmx +3m 2+6 =0.Δ>0,则x 1+x 2=-6km 3k 2-1,x 1x 2=3m 2+63k 2-1,∵PA ⊥PB ,∴x 1-3 x 2-3 +y 1-1 y 2-1 =0,即x 1-3 x 2-3 +kx 1+m -1 kx 2+m -1 =0,整理得18k 2+9km +m 2+m -2=0,即3k +m -1 6k +m +2 =0,当3k +m -1=0时,AB 过P 点,不符合题意,故6k +m +2=0,直线AB 化为y +2=k x -6 ,AB 恒过定点Q 6,-2 ,∴M 在以PQ 为直径的圆上且不含P 点,即M 的轨迹方程为x -92 2+y +12 2=92(去掉点P ).3.已知抛物线C :y =x 2,过点M 1,2 的直线交抛物线C 于A ,B 两点,以A ,B 为切点分别作抛物线C 的两条切线交于点P .(1)若线段AB 的中点N 的纵坐标为32,求直线AB 的方程;(2)求动点P 的轨迹.【答案】(1)x -y +1=0;(2)2x -y -2=0【解析】(1)依题意有:直线AB 的斜率必存在,故可设直线AB 的方程为y -2=k (x -1).由y -2=k (x -1),y =x 2, 可得:x 2-kx +k -2=0.设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=k ,x 1x 2=k -2.于是:y 1+y 2=x 21+x 22=(x 1+x 2)2-2x 1x 2=k 2-2k +4=3,解得k =1,故直线AB 的方程为x -y +1=0.(2)设P (x 0,y 0),对于抛物线y =x 2,y =2x ,于是:A 点处切线方程为y -y 1=2x 1(x -x 1),点P 在该切线上,故y 0-x 21=2x 1(x 0-x 1),即x 21-2x 0x 1+y 0=0.同理:P 点坐标也满足x 22-2x 0x 2+y 0=0,于是:x 1,x 2是方程x 2-2x 0x +y 0=0的两根,所以x 1+x 2=2x 0,x 1x 2=y 0.又由(1)可知:x 1+x 2=k ,x 1x 2=k -2,于是x 0=k2,y 0=k -2,消k 得y 0=2x 0-2,于是P 的轨迹方程为2x -y -2=0,点P 的轨迹是一条直线.4.已知圆C 与y 轴相切,圆心C 在直线x -2y =0上且在第一象限内,圆C在直线y =x 上截得的弦长为214.(1)求圆C 的方程;(2)已知线段MN 的端点M 的横坐标为-4,端点N 在(1)中的圆C 上运动,线段MN 与y 轴垂直,求线段MN 的中点H 的轨迹方程.【答案】(1)x -4 2+y -2 2=16;(2)4x 2+y -2 2=16【解析】(1)依题意,设所求圆C 的方程为x -a 2+y -b 2=r 2a >0 .所以圆心a ,b 到直线x -y =0d =a -b2,则有d 2+14 2=r 2,即a -b 2+28=2r 2.①由于圆C 与y 轴相切,所以r 2=a 2.②又因为圆C 的圆心在直线x -2y =0上,所以a -2b =0.③联立①②③,解得a =4,b =2,r =4,故所求圆C 的方程为x -4 2+y -2 2=16.(2)设点H 的坐标为x ,y ,点N 的坐标为x 0,y 0 ,点M 的坐标为-4,y ,因为H 是线段MN 的中点,所以x =x 0-42,y =y 0,于是有x 0=2x +4,y 0=y .①因为点N 在第(1)问中圆C 上运动,所以点N 满足x 0-4 2+y 0-2 2=16.②把①代入②,得2x +4-4 2+y -2 2=16,整理,得4x 2+y -2 2=16.此即为所求点H 的轨迹方程.5.已知圆O :x 2+y 2=4与x 轴交于点A (-2,0),过圆上一动点M 作x 轴的垂线,垂足为H ,N 是MH 的中点,记N 的轨迹为曲线C .(1)求曲线C 的方程;(2)过-65,0 作与x 轴不重合的直线l 交曲线C 于P ,Q 两点,设直线AP ,AS 的斜率分别为k 1,k 2.证明:k 1=4k 2.【答案】(1)x 22+y 2=1;(2)证明见解析.【解析】(1)设N (x 0,y 0),则H (x 0,0),∵N 是MH 的中点,∴M (x 0,2y 0),又∵M 在圆O 上,∴ x 20+(2y 0)2=4,即x 204+y 20=1;∴曲线C 的方程为:x 24+y 2=1;(2)①当直线l 的斜率不存在时,直线l 的方程为:x =-65,若点P 在轴上方,则点Q 在x 轴下方,则P -65,45 ,Q -65,-45,直线OQ 与曲线C 的另一交点为S ,则S 与Q 关于原点对称,∴S 65,45,k 1=k AP =45-0-65+2=1,k 2=k AS =45-065+2=14,∴k 1=4k 2;若点P 在x 轴下方,则点Q 在x 轴上方,同理得:P -65,-45 ,Q -65,45 ,S 65,-45,∴k1=k AP=-45-0-65+2=-1,k2=k AS=-45-065+2=-14,∴k1=4k2;②当直线l的斜率存在时,设直线l的方程为:x=my-6 5,,由x=my-65,与x24+y2=1联立可得(m2+4)y2-12m5y-6425=0,其中Δ=144m225+4×(m2+4)×6425>0,设P(x1,y1),Q(x2,y2),则S(-x2,-y2),则y1+y2=12m5m2+4,y1y2=-6425m2+4,∴k1=k AP=y1-0x1+2=y1x1+2,k2=k AS=-y2-0-x2+2=y2x2-2,则k1k2=y1x1+2⋅x2-2y2=y1my2-165my1+45y2=my1y2-165y1my1y2+45(y1+y2)-45y1=-6425m2+4-165y1-6425mm2+4+45⋅125mm2+4-45y1=-6425m2+4-165y1-1625m2+4-45y1=4,∴k1=4k2.6.已知点E(2,0),F22,0,点A满足|AE|=2|AF|,点A的轨迹为曲线C.(1)求曲线C的方程;(2)若直线l:y=kx+m与双曲线:x24-y29=1交于M,N两点,且∠MON=π2(O为坐标原点),求点A到直线l距离的取值范围.【答案】(1)x2+y2=1;(2)655-1,655+1.【解析】(1)设A(x,y),因为|AE|=2|AF|,所以(x-2)2+(y-0)2=2×x-2 22+(y-0)2,平方化简,得x2+y2=1;(2)直线l:y=kx+m与双曲线:x24-y29=1的方程联立,得y=kx+mx2 4-y29=1⇒(4k2-9)x2+8kmx+4m2+36=0,设M(x1,y1),N(x2,y2),所以有4k2-9≠0(8km)2-4⋅(4k2-9)(4m2+36)>0⇒m2+9>4k2且k≠±32,所以x 1+x 2=-8km 4k 2-9,x 1x 2=4m 2+364k 2-9,因为∠MON =π2,所以OM ⊥ON⇒x 1x 2+y 1y 2=0⇒x 1x 2+(kx 1+m )(kx 2+m )=0,化简,得(k 2+1)x 1x 2+km (x 1+x 2)+m 2=0,把x 1+x 2=-8km 4k 2-9,x 1x 2=4m 2+364k 2-9代入,得(k 2+1)⋅4m 2+364k 2-9+km ⋅-8km 4k 2-9 +m 2=0,化简,得m 2=36(k 2+1)5,因为m 2+9>4k 2且k ≠±32,所以有36(k 2+1)5+9>4k 2且k ≠±32,解得k ≠±32,圆x 2+y 2=1的圆心为(0,0),半径为1,圆心(0,0)到直线l :y =kx +m 的距离为d =mk 2+1=65k 2+1k 2+1=655>1,所以点A 到直线距离的最大值为655+1,最小值为655-1,所以点A 到直线距离的取值范围为655-1,655+1 ,7.在平面直角坐标系xOy 中,点D ,E 的坐标分别为-2,0 ,2,0 ,P 是动点,且直线DP 与EP 的斜率之积等于-14.(1)求动点P 的轨迹C 的方程;(2)已知直线y =kx +m 与椭圆:x 24+y 2=1相交于A ,B 两点,与y 轴交于点M ,若存在m 使得OA +3OB =4OM,求m 的取值范围.【答案】(1)x 24+y 2=1x ≠±2 ;(2)-1,-12 ∪12,1 【解析】(1)设P x ,y ,则k EP ⋅k DP =y x -2⋅y x +2=-14x ≠±2 ,所以可得动点P 的轨迹C 的方程为x 24+y 2=1x ≠±2 .(2)设A x 1,y 1 ,B x 2,y 2 ,又M 0,m ,由OA +3OB =4OM得x 1+3x 2,y 1+3y 2 =0,4m ,x 1=-3x 2联立y =kx +m x 24+y 2=1可得4k 2+1 x 2+8kmx +4m 2-4=0∵Δ=(8km )2-4×(4k 2+1)×(4m 2-4)>0,即64k 2-16m 2+16>0∴4k 2-m 2+1>0,且x 1+x 2=-8km4k 2+1x 1x 2=4m 2-44k 2+1,又x 1=-3x 2∴x 2=4km 4k 2+1,则x 1⋅x 2=-3x 22=4km 4k 2+1 2=4m 2-44k 2+1,∴16k 2m 2-4k 2+m 2-1=0,∴k 2=m 2-14-16m 2代入4k 2-m 2+1>0得m 2-11-4m2+1-m 2>0,14<m 2<1,解得m ∈-1,-12 ∪12,1 .∴m 的取值范围是-1,-12 ∪12,1 8.如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求P 的轨迹方程;(2)设点P 的轨迹为C ,点M 、N 是轨迹为C 上不同于A ,B 的两点,且满足AP ∥OM ,BP ∥ON ,求△MON 的面积.【答案】(1)x 23+y 22=1x ≠±3 ;(2)62【解析】(1)由已知设点P 的坐标为x ,y ,由题意知k AP ⋅k BP =y x +3⋅y x -3=-23x ≠±3 ,化简得P 的轨迹方程为x 23+y 22=1x ≠±3(2)证明:由题意M 、N 是椭圆C 上非顶点的两点,且AP ⎳OM ,BP ⎳ON ,则直线AP ,BP 斜率必存在且不为0,又由已知k AP ⋅k BP =-23.因为AP ⎳OM ,BP ⎳ON ,所以k OM k ON =-23设直线MN 的方程为x =my +t ,代入椭圆方程x 23+y 22=1,得3+2m 2 y 2+4mty +2t 2-6=0....①,设M ,N 的坐标分别为x 1,y 1 ,x 2,y 2 ,则y 1+y 2=-4mt 3+2m 2,y 1y 2=2t 2-63+2m 2又k OM ⋅k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt y 1+y 2 +t 2=2t 2-63t 2-6m 2,所以2t 2-63t 2-6m2=-23,得2t 2=2m 2+3又S △MON =12t y 1-y 2 =12t -24t 2+48m 2+723+2m 2,所以S △MON =26t t 24t 2=62,即△MON 的面积为定值62.9.在平面直角坐标系xOy 中,已知直线l :x =1,点F 4,0 ,动点P 到点F 的距离是它到直线l 的距离的2倍,记P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点F 且斜率大于3的直线交C 于两点,点Q -2,0 ,连接QA 、QB 交直线l 于M 、N 两点,证明:点F 在以MN 为直径的圆上.【答案】(1)x 24-y 212=1;(2)证明见解析【解析】(1)设P x ,y ,由题意得x -4 2+y 2=2x -1 化简得x 24-y 212=1,所以曲线C 的方程为x 24-y 212=1.(2)证明:设A x 1,y 1 、B x 2,y 2 、M 1,m 、N 1,n ,设直线AB 的方程为y =k x -4 且k >3,联立y =k x -4 x 24-y 212=1得3-k 2 x 2+8k 2x -16k 2-12=0,3-k 2≠0,Δ=64k 4+43-k 2 16k 2+12 =144k 2+1 >0,由韦达定理可得x 1+x 2=8k 2k 2-3,x 1x 2=16k 2+12k 2-3,因为点M 在直线QA 上,则k QM =k QA ,即m3=y 1x 1+2,可得m =3y 1x 1+2=3k x 1-4x 1+2,同理可得n =3k x 2-4 x 2+2,FM=-3,m ,FN =-3,n ,所以,FM ⋅FN =9+mn =9+9k 2x 1x 2-4x 1+x 2 +16x 1x 2+2x 1+x 2 +4=9+9k 216k 2+12-32k 2+16k 2-4816k 2+12+16k 2+4k 2-12=0,故点F 在以MN 为直径的圆上.10.已知圆C :x 2+y 2-2x -2y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,设切点为M .(1)若点P 运动到(2,3)处,求此时切线l 的方程;(2)求满足条件PM =PO 的点P 的轨迹方程.【答案】(1)x =2或3x -4y +6=0;(2)2x +2y -1=0.【解析】(1)把圆C 的方程化为标准方程为(x -1)2+(y -1)2=1,∴圆心为C (1,1),半径r =1.当l 的斜率不存在时,此时l 的方程为x =2,C 到l 的距离d =1=r ,满足条件.当l 的斜率存在时,设斜率为k ,得l 的方程为y -3=k (x -2),即kx -y +3-2k =0,则k -1+3-2k1+k 2=1,解得k =34.∴l 的方程为y -3=34(x -2),即3x -4y +6=0.综上,满足条件的切线l 的方程为x =2或3x -4y +6=0.(2)设P (x ,y ),则|PM |2=|PC |2-|MC |2=(x -1)2+(y -1)2-1,|PO |2=x 2+y 2,∵|PM |=|PO |.∴(x -1)2+(y -1)2-1=x 2+y 2,整理,得2x +2y -1=0,∴点P 的轨迹方程为2x +2y -1=0.11.已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1、l 2分别交C 于A 、B 两点,交C 的准线于P 、Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ .(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.【答案】(1)证明见解析;(2)y 2=x -1.【解析】(1)由题意可知F 12,0 ,设l 1:y =a ,l 2:y =b 且ab ≠0,A a 22,a ,B b 22,b ,P -12,a ,Q -12,b ,R -12,a +b 2 ,直线AB 方程为2x -(a +b )y +ab =0,∵点F 在线段AB 上,∴ab +1=0,记直线AR 的斜率为k 1,直线FQ 的斜率为k 2,∴k 1=a -b 1+a 2,k 2=b-12-12=-b ,又∵ab +1=0,∴k 1=a -b 1+a 2=a -b a 2-ab =1a =-aba =-b =k 2,∴AR ∥FQ ;(2)设l 1:y =a ,l 2:y =b ,A a 22,a ,B b 22,b ,设直线AB 与x 轴的交点为D x 1,0 ,∴S △ABF =12a -b FD =12a -b x 1-12,又S△PQF=a-b2,∴由题意可得S△PQF=2S△ABF,即a-b2=2×12·a-b⋅x1-12,解得x1=0(舍)或x1=1.设满足条件的AB的中点为E(x,y),则x=a2+b24y=a+b2,当AB与x轴不垂直时,由k AB=k DE可得a-ba22-b22=yx-1,即2a+b=yx-1(x≠1),∴y2=x-1x≠1.当AB与x轴垂直时,E与D重合,也满足y2=x-1.∴AB中点的轨迹方程为y2=x-1.12.已知椭圆C:x2a2+y2b2=1a>b>0的长轴长为4,左顶点A到上顶点B的距离为5,F为右焦点.(1)求椭圆C的方程和离心率;(2)设直线l与椭圆C交于不同的两点M,N(不同于A,B两点),且直线BM ⊥BN时,求F在l上的射影H的轨迹方程.【答案】(1)x24+y2=1,离心率为32;(2)x-322+y+3102=2125【解析】(1)由题意可得:2a=4,a2+b2=5,a2=b2+c2,可得a=2,c=3,b=1,所以椭圆C的方程为x24+y2=1,离心率为e=ca=32.(2)当直线斜率存在时,可设l:y=kx+m代入椭圆方程x24+y2=1,得:4k2+1x2+8kmx+4m2-1=0.设M x 1,y 1 ,N x 2,y 2 ,则x 1+x 2=-8km4k 2+1x 1x 2=4m 2-1 4k 2+1.因为直线BM ,BN 垂直,斜率之积为-1,所以k BM ⋅k BN =-1,所以k BM ⋅k BN =k 2x 1x 2+k m -1 x 1+x 2 +m -1 2x 1x 2=-1.将x 1+x 2=-8km 4k 2+1x 1x 2=4m 2-1 4k 2+1代入,整理化简得:m -1 5m +3 =0,所以m =1或m =-35.由直线l :y =kx +m ,当m =1时,直线l 经过0,1 ,与B 点重合,舍去,当m =-35时,直线l 经过定点E 0,-35,当直线斜率不存在时,可设l :x =t ,则M t ,1-t 24 ,N t ,-1-t 24,因为k BM ⋅k BN =-1,所以1-t 24-1t ×-1-t 24+1t=-1,解得t =0,舍去.综上所述,直线l 经过定点E 0,-35,而F 在l 上的射影H 的轨迹为以EF 为直径的圆,其E 0,-35 ,F 3,0 ,所以圆心32,-310 ,半径r =215,所以圆的方程为x -32 2+y +310 2=2125,即为点H 的轨迹方程.13.在平面直角坐标系xOy 中,A (-3,0),B (3,0),C 是满足∠ACB =π3的一个动点.(1)求△ABC 垂心H 的轨迹方程;(2)记△ABC 垂心H 的轨迹为Γ,若直线l :y =kx +m (km ≠0)与Γ交于D ,E 两点,与椭圆T :2x 2+y 2=1交于P ,Q 两点,且|DE |=2|PQ |,求证:|k |>2.【答案】(1)x 2+(y +1)2=4(y ≠-2);(2)证明见解析.【解析】设△ABC 的外心为O 1,半径为R ,则有R =AB 2sin ∠ACB=2,又∠OO 1B =∠OO 1C =π3,所以OO 1=R cos π3=1,即O 1(0,1),或O 1(0,-1),当O 1坐标为(0,1)时.设C (x ,y ),H x 0,y 0 ,有O 1C =R ,即有x 2+(y -1)2=4(y >0),由CH ⊥AB ,则有x 0=x ,由AH ⊥BC ,则有AH ⋅BC=x 0+3 (x -3)+y 0y =0,所以有y 0=-x 0+3 (x -3)y =3-x 2y =(y -1)2-1y=y -2,y >0,则y 0=y -2>-2,则有x 20+y 0+1 2=4(y 0>-2),所以△ABC 垂心H 的轨迹方程为x 2+(y +1)2=4(y >-2).同理当O 1坐标为(0,-1)时.H 的轨迹方程为x 2+(y -1)2=4(y <2).综上H 的轨迹方程为x 2+(y +1)2=4(y >-2)或x 2+(y -1)2=4(y <2).(2)若取x 2+(y +1)2=4(y >-2),记点(0,-1)到直线l 的距离为d ,则有d =|m +1|1+k 2,所以|DE |=24-d 2=24-(m +1)21+k 2,设P x 1,y 1 ,Q x 2,y 2 ,联立y =kx +m 2x 2+y 2=1,有2+k 2 x 2+2kmx +m 2-1=0,所以Δ=4k 2+2-2m 2 >0,|PQ |=1+k 2⋅Δ2+k 2=21+k 2 k 2+2-2m 2 2+k 2,由|DE |=2|PQ |,可得4-(m +1)21+k 2=4k 2+1 k 2+2-8m 2k 2+1 2+k 2 2≤4k 2+1 k 2+2-8m 2k 2+22,所以4k 2+2+8m 22+k 22≤(m +1)2k 2+1,即有4k 2+1 k 2+2+8k 2+1 m 22+k 22≤(m +1)2,所以2+2m 2-4k 2+1 k 2+2-8k 2+1 m 2k 2+22≥(m -1)2,即2k 2k 2+2k 2m 2k 2+2-1 =(m -1)2⇒k 2m 2k 2+2-1≥0⇒m 2≥1+2k2又Δ>0,可得m 2<1+k 22,所以1+2k2<1+k 22,解得k 2>2,故|k |>2.同理,若取x 2+(y -1)2=4(y <2),由对称性,同理可得|k |> 2.综上,可得|k |> 2.14.在平面直角坐标系中,△ABC 的两个顶点A ,B 的坐标分别为-1,0 ,1,0 ,平面内两点G ,M 同时满足以下3个条件:①G 是△ABC 三条边中线的交点;②M 是△ABC 的外心;③GM ⎳AB .(1)求△ABC 的顶点C 的轨迹方程;(2)若点P 2,0 与(Ⅰ)中轨迹上的点E ,F 三点共线,求PE ⋅PF 的取值范围.【答案】(1)x 2+y 23=1(y ≠0);(2)3,92.【解析】(1)设C x ,y ,G x 0,y 0 ,M x M ,y M ,圆锥曲线的轨迹方程问题第11页因为M 是△ABC 的外心,所以MA =MB ,所以M 在线段AB 的中垂线上,所以x M =-1+12=0.因为GM ⎳AB ,所以y M =y 0.又G 是△ABC 三条边中线的交点,所以G 是△ABC 的重心,所以x 0=-1+1+x 3=x 3,y 0=0+0+y 3=y 3,所以y M =y 0=y 3.又MA =MC ,所以0+1 2+y 3-0 2=0-x 2+y 3-y 2,化简得x 2+y 23=1(y ≠0),所以顶点C 的轨迹方程为x 2+y 23=1(y ≠0).(2)因为P ,E ,F 三点共线,所以P ,E ,F 三点所在直线斜率存在且不为0,设所在直线的方程为y =k x -2 ,联立y =k x -2 ,x 2+y 23=1,得k 2+3 x 2-4k 2x +4k 2-3=0.由Δ=4k 2 2-4k 2+3 4k 2-3 >0,得k 2<1.设E x 1,y 1 ,F x 2,y 2 ,则x 1+x 2=4k 2k 2+3,x 1⋅x 2=4k 2-3k 2+3.所以PE ⋅PF =1+k 22-x 1 ⋅1+k 22-x 2 =1+k 2 ⋅4-2x 1+x 2 +x 1⋅x 2=1+k 2 ⋅4k 2+3 -8k 2+4k 2-3 k 2+3=91+k 2 k 2+3=9-18k 2+3.又0<k 2<1,所以3<k 2+3<4,所以3<PE ⋅PF <92.故PE ⋅PF 的取值范围为3,92 .15.已知A x 1,y 1 ,B x 2,y 2 是抛物线C :y 2=4x 上两个不同的点,C 的焦点为F .(1)若直线AB 过焦点F ,且y 21+y 22=32,求AB 的值;(2)已知点P -2,2 ,记直线PA ,PB 的斜率分别为k PA ,k PB ,且k PA +k PB =-1,当直线AB 过定点,且定点在x 轴上时,点D 在直线AB 上,满足PD ⋅AB =0,求点D 的轨迹方程.【答案】(1)AB =10;(2)x 2+y -1 2=5(除掉点-2,0 ).【解析】(1)由抛物线方程知:F 1,0 ,准线方程为:x =-1.圆锥曲线的轨迹方程问题第12页∵AF =x 1+1=y 214+1,BF =x 2+1=y 224+1,∴AB =AF +BF =y 21+y 224+2=10.(2)依题意可设直线AB :x =ty +m ,由y 2=4x x =ty +m得:y 2-4ty -4m =0,则Δ=16t 2+16m >0,∴y 1+y 2=4t y 1y 2=-4m ⋯①∵k PA +k PB =y 1-2x 1+2+y 2-2x 2+2=y 1-2ty 1+m +2+y 2-2ty 2+m +2=-1,∴2ty 1y 2+m +2 y 1+y 2 -2t y 1+y 2 -4m +2 t 2y 1y 2+t m +2 y 1+y 2 +m +2 2=-1⋯②由①②化简整理可得:8t -4m +m 2-4=0,则有m +2-4t m -2 =0,解得:m =2或m =4t -2.当m =4t -2时,Δ=16t 2+64t -32=16t +2 2-96>0,解得:t >-2+6或t <-2-6,此时AB :x =ty +4t -2=t y +4 -2过定点-2,-4 ,不符合题意;当m =2时,Δ=16t 2+32>0对于∀t ∈R 恒成立,直线AB :x =ty +2过定点E 2,0 ,∴m =2.∵PD ⋅AB =0,∴PD ⊥AB ,且A ,B ,D ,E 四点共线,∴PD ⊥DE ,则点D 的轨迹是以PE 为直径的圆.设D x ,y ,PE 的中点坐标为0,1 ,PE =25,则D 点的轨迹方程为x 2+y -1 2=5.当D 的坐标为-2,0 时,AB 的方程为y =0,不符合题意,∴D 的轨迹方程为x 2+y -1 2=5(除掉点-2,0 ).圆锥曲线的轨迹方程问题第13页。
第四讲 有关圆锥曲线轨迹问题(教师版)根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。
该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。
求轨迹方程的的基本步骤:建设现代化(检验)建(坐标系)设(动点坐标)限(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”)求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。
1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法; 例1、已知直角坐标系,点Q (2,0),圆C 方程为122=+y x ,动点M 到圆C 的切线长与MQ的比等于常数)0(>λλ,求动点M 的轨迹。
【解析】设MN 切圆C 于N ,则222ONMO MN -=。
),(y x M ,则2222)2(1y x y x +-=-+λ化简得0)41(4))(1(22222=++-+-λλλx y x 当1=λ时,方程为54x =,表示一条直线。
当1≠λ时,方程化为2222222)1(31)12(-+=+--λλλλy x 表示一个圆。
【练习】如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点),使得2PM PN =. 试建立适当的坐标系,并求动点P 的轨迹方程.【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则1(20)O -,,2(20)O ,. 由已知2PM PN =,得222PM PN =. 因为两圆半径均为1,所以221212(1)PO PO -=-.设()P x y ,,则2222(2)12[(2)1]x y x y ++-=-+-, 即22(6)33x y -+=.(或221230x y x +-+=)y xQMNO证明可以省略,但要注意“挖”与“补”。
圆锥曲线技巧——轨迹方程一、直接翻译法题型:动点M 满足。
条件,可由M 坐标直接翻译为等式关系。
即设M (x ,y ),f(x,y)=01、已知点A(-2,0),B(2,0),动点M 满足直接AM 与 直线BM 的斜率之积为-21,记M 的轨迹为曲线C ,求C 的轨迹方程。
(*:斜率要注意存在问题;本题答案:x 2/4+y 2/2=1(x ≠±2))2、已知点A (0,-1),点B 在直线y=-3上,动点M 满足MB ∥OA 且AB MA •=BA MB •,求动点M 轨迹方程。
(本题答案:0842=--y x )3、已知圆O :0222=-+y x ,圆O ':010822=+-+x y x ,由点P 向两圆引切线长相等,求点P 的轨迹方程。
二、四大定义法如果吻合曲线四大定义,则直接写出曲线方程即可。
例题1:已知点)0,2(),0,2(21F F -,动点P 满足421=+PF PF ,则P 点的轨迹为() 答案:线段例题2:已知点)0,2(),0,2(21F F -,动点P 满足221=-PF PF ,则P 点的轨迹为() 答案:双曲线的一支例题3:已知动点M 到点)1,2(F 的距离和到直线01043:=-+y x l 的距离相等,则M 点的轨迹为()答案:直线1、已知动圆P 过定点A (-3,0),且与圆64)3(:22=+-y x B 相切,求动圆圆心P 的轨迹方程。
2、已知圆25)1(:22=++y x C ,Q 为圆C 上任意一点,点A (1,0),线段AQ 的垂直平分线与CQ 的连接线相交于点M ,求点M 的轨迹方程。
(提示:垂直平分线的性质定理,即垂直平分线上的点到线段两边的距离相等)3、已知动圆P 与圆1)3(:221=++y x O 外切,与圆1)3(:222=+-y x O 内切,求动圆圆心P 的轨迹方程。
4、已知动圆P 与定圆1)2(:22=++y x C 外切,又与定直线1:=x l 相切,求动圆圆心P 的轨迹方程。
圆锥曲线轨迹方程题型一、引言圆锥曲线是高中数学中的一个重要部分,涉及到的内容包括圆、椭圆、双曲线和抛物线等。
其中,求解圆锥曲线轨迹方程是一个常见的题型。
本文将从以下几个方面详细介绍圆锥曲线轨迹方程题型。
二、基本概念1. 圆锥曲线圆锥曲线是由一个平面截过一个双曲面或抛物面得到的图形。
根据截面与轴的位置不同,可以分为四种类型:圆、椭圆、双曲线和抛物线。
2. 坐标系在解决圆锥曲线问题时,通常会使用笛卡尔坐标系或极坐标系。
笛卡尔坐标系是平面直角坐标系,在二维平面上用两个垂直于彼此的轴来确定点的位置。
极坐标系则是以原点为中心,以极径和极角来表示点在平面上的位置。
3. 曲线方程在笛卡尔坐标系下,通常使用一般式或标准式来表示圆锥曲线的方程。
一般式为Ax²+Bxy+Cy²+Dx+Ey+F=0,标准式则是将一般式进行化简后得到的形式。
在极坐标系下,通常使用参数方程或极坐标方程来表示圆锥曲线的方程。
三、圆锥曲线轨迹方程题型1. 求解椭圆轨迹方程椭圆是指平面上到两个定点F1和F2距离之和为常数2a的所有点P的集合。
求解椭圆轨迹方程的方法是先确定坐标系,然后根据定义列出方程,并进行化简。
例如,已知椭圆的焦点为F1(-3,0)和F2(3,0),离心率为1/2,求解该椭圆的轨迹方程。
解法如下:(1)确定坐标系:以焦点连线所在直线为x轴正半轴,以中心点O(0,0)为原点建立坐标系。
(2)列出方程:由于离心率为e=1/2,则有a=3/2。
根据椭圆定义可得:PF1+PF2=2a即√[(x+3)²+y²]+√[(x-3)²+y²]=3将上式平方并移项可得:(x+3)²+y²+(x-3)²+y²+2√[(x+3)²+y²]√[(x-3)²+y²]=9化简得到:x²/9+y²/4=1这就是所求的椭圆轨迹方程。
圆 锥 曲 线 中 的 轨 迹 问 题【复习目标】掌握求曲线方程的几种常用方法。
【课前预习】1、一动圆与两圆:221x y +=和228120x y x +-+=都外切,则动圆圆心的轨迹为 ( )(A )抛物线 (B )圆 (C )双曲线的一支 (D )椭圆2、动点P 到直线40x +=的距离减去它到点(2,0)M 的距离之差等于2,则点P 的轨迹是( )(A )直线 (B )椭圆 (C )双曲线 (D )抛物线3、与圆22(2)1x y -+=外切,且与y 轴相切的动圆圆心P 的轨迹方程为 。
4、过抛物线22y x =的焦点的直线交抛物线于A 、B 两点,则线段AB 中点的轨迹方程是 。
【典型例题】1、设动直线l 垂直于x 轴,且与椭圆2224x y +=交于A 、B 两点,点P 在直线l 上,且满足||||1PA PB ⋅=,求点P 的轨迹方程。
2、求与两定点(1,0),(1,0)A B -的连线的斜率之积为常数k 的点的轨迹方程,并说明轨迹是什么图形?3、求曲线2244x y +=关于点(3,5)M 对称的曲线方程。
4、已知ABC ∆中,|BC|=2,顶点A 在平行于底边且距离底边为1的直线上运动,求ABC ∆的垂心H 的轨迹方程。
【巩固练习】1、已知点P 是直线230x y -+=上的一个动点,定点(1,2)M -,Q 是线段PM 延长线上的一个动点,且|PM|=|MQ|,则点Q 的轨迹方程是 ( )()210 ()250 ()210 ()250A x y B x y C x y D x y ++=--=--=-+=2、动点P 到直线x=6的距离与它到点(2,1)P 的轨迹方程是 ( )22222222(1)(1)()+=1 ()=1 5454(1)(1)(1)(1)()=1 ()=1 5454x y x y A B x y x y C D -----+-++ 3、倾斜角为4π的直线交椭圆2214x y +=于A 、B 两点,则线段AB 的中点M 的轨迹方程是 。
圆 锥 曲 线 之 轨 迹 问 题一、临阵磨枪1.直接法(五部法):如果动点满足的几何条件本身就是一些几何量的等量关系,或这些几何条件简单明了且易于表达,我们只须把这种关系“翻译”成含,x y 的等式就得到曲线的轨迹方程。
这种求轨迹的方法称之为直接法。
2.定义法:若动点轨迹的条件符合某一基本轨迹的定义(如圆、椭圆、双曲线、抛物线的定义),则可根据定义直接求出动点的轨迹方程。
3.坐标转移法(代入法):有些问题中,其动点满足的条件不便于等式列出,但动点是随着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法坐标转移法,也称相关点法或代入法。
4.参数法:有时求动点应满足的几何条件不易求出,也无明显的相关点,但却较易发现(或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间等)的制约,即动点坐标(,)x y 中的,x y 分别随另一变量的变化而变化,我们可以把这个变量设为参数,建立轨迹的参数方程,这种方法叫做参数法,如果需要得到轨迹的普通方程,只要消去参变量即可。
5.交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题常可通过解方程组得出交点含参数的坐标,再消去参数得出所求轨迹方程,此种方法称为交轨法。
二、小试牛刀1.已知M (-3,0),N (3,0)6=-PN PM ,则动点P 的轨迹方程为 析:MN PM PN =-Q ∴点P 的轨迹一定是线段MN 的延长线。
故所求轨迹方程是 0(3)y x =≥2.已知圆O 的方程为222=+y x ,圆O '的方程为010822=+-+x y x ,由动点P 向两圆所引的切线长相等,则动点P 的轨迹方程为析:∵圆O 与圆O '外切于点M(2,0) ∴两圆的内公切线上的点向两圆所引的切线长都相等, 故动点P 的轨迹就是两圆的内公切线,其方程为2x =3.已知椭圆)0(12222>>=+b a by a x ,M 是椭圆上一动点,1F 为椭圆的左焦点,则线段1MF 的中点P 的轨迹方程为析:设P (,)x y 00(,)M x y 又1(,0)F c - 由中点坐标公式可得:00002222x c x x x c y y y y -⎧=⎪=+⎧⎪⇒⎨⎨=⎩⎪=⎪⎩ 又点00(,)M x y 在椭圆)0(12222>>=+b a b y a x 上 ∴2200221(0)x y a b a b +=>> 因此中点P 的轨迹方程为2222(2)41x c y a b++= 4.已知A 、B 、C 是不在同一直线上的三点,O 是平面ABC 内的一定点,P 是动点,若[)+∞∈+=-,0),21(λλBC AB OA OP ,则点P 的轨迹一定过三角形ABC 的 重 心。
假期专题辅导系列八-------圆锥曲线的常见的轨迹问题江苏省海安高级中学------罗湘军有关动点的轨迹问题是解析几何中的一类重要的问题,求动点的轨迹和圆锥曲线的定义、性质有着密切的关系.且此类问题的求解常有定义法、代入法、参数法、交轨法、直接法等.那么圆锥曲线中的轨迹问题有哪几种常见的类型呢,我们结合几个例子来分析.一. 典例分析 1.判定曲线的形状例1已知椭圆的一个焦点和一条准线与抛物线)2(8+=x y 点焦点和准线分别重合,求椭圆短轴端点的轨迹方程。
解析:由抛物线)2(8+=x y 知,其顶点为(2,0),焦点为(0,0),准线为4-=x (如图).设椭圆短轴端点为B (x ,y ),由第二定义知:acBN BO =||||,即2222|||)4(|yx x x y x +=--+ ,化简,得,)4(||22+=+x x y x ,当0≥x 时为x y 42=的一部分;当0≤x 时,轨迹为椭圆.12)1(22=++y x 的一部分. 例2 一动圆与两圆:012812222=+-+=+x y x y x 和都外切,则动圆的圆心 的轨迹方程是什么?解析:结合图形,知与两圆相外切的圆的圆心M 到两定点1O O 和的距离之差恰为一个定值:112=-=-r R 即有||||||11OO MO MO O =-<,根据双曲线的定义可知动圆的圆心的轨迹方程应是双曲线的一支。
点评:以上两个例题可以看到:对于有些轨迹问题可以直接利用定义,问题便会迎刃而解,如果我们用常规的方法,则难度加大.定义是分析、解决问题的重要依据,巧妙简捷的 解题常常来源于定义的恰当合理应用,只有熟练掌握每一个定义的本质属性,把握其 内涵与外延,才能灵活地用定义解题。
2.向量为背景的类型例3 设椭圆方程为1422=+y x ,过点M (0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足)(21+=,当l 绕点M 旋转时,求动点P 的轨迹方程. 解析:直线l 过点M (0,1)设其斜率为k ,则l 的方程为.1+=kx y记),(11y x A 、),,(22y x B 由题设可得点A 、B 的坐标),(11y x 、),(22y x是方程组221(1)1(2)4y kx y x =+⎧⎪⎨+=⎪⎩…………的解.将(1)代入(2)并化简得,032)4(22=-++kx x k ,所以⎪⎪⎩⎪⎪⎨⎧+=++-=+.48,42221221k y y k k x x于是).44,4()2,2()(21222121kk k y y x x OB OA OP ++-=++=+=设点P 的坐标为),,(y x 则⎪⎪⎩⎪⎪⎨⎧+=+-=.44,422k y k k x 消去参数k 得0422=-+y y x ③当k 不存在时,A 、B 中点为坐标原点(0,0),也满足方程③,所以点P 的轨迹方程为.0422=-+y y x点评:本题主要考察平面向量的概念、直线方程的求法、椭圆方程和性质等基础知识,将向量语言进行合理转化,要求在解题中注意知识之间的横向联系. 3. 条件受限制型例4已知双曲线的中心在原点,右顶点为A (1,0)点P 、Q 在双曲线的右支上,支M (m,0)到直线AP 的距离为1.当12+=m 时,ΔAPQ 的内心恰好是点M ,求此双曲线的方程.解析:可设双曲线方程为),0(1222≠=-b by x由),0,1(),0,12(A M +得2=AM .又因为M 是ΔAPQ 的内心,M 到AP 的距离为1,所以∠MAP=45º,直线AM 是∠PAQ 的角平分线,且M 到AQ 、PQ 的距离均为1.因此,1,1-==AQ AP k k (不妨设P 在第一象限),直线PQ 方程为22+=x .直线AP 的方程y=x-1,∴解得P 的坐标是(2+2,1+2),将P 点坐标代入1222=-by x ,得32122++=b ,所以所求双曲线方程为,112)32(22=++-y x即.1)122(22=--y x点评:本题主要考察直线、双曲线方程和性质等基础知识,考察解析几何的基本思想方法.. 二.变式训练1.点M (x ,y )与定点F (1,0)的距离和它到直线x =4的距离的比为2, 则动点M 的轨迹方程为 (3x 2-y 2-30x +63=0)2 . P 是椭圆191622=+y x 上的动点, 作PD ⊥y 轴, D 为垂足, 则PD 中点的轨迹方程为 . (19422=+y x ) 3. 已知双曲线12222=-by a x ,(a>0,b>0), A 1、A 2是实轴的两个端点, MN 是垂直于实轴所在直线的弦的两个端点, 则A 1M 与A 2N 交点的轨迹方程是 (12222=+by a x )4. 抛物线的准线l 的方程是y =1, 且抛物线恒过点P (1,-1), 则抛物线焦点弦的另一个端点Q 的轨迹方程是 (x -1)2=-8(y -1) (x ≠1)5. △ABC 中, A (0,-2), B (0,2), 且CB AB CA ,,成等差数列, 则C 点的轨迹方程是 . ()0(1121622≠=+x x y。
圆锥曲线中轨迹问题曲线轨迹方程的探求一直是高考中的重点和热点,涉及面广,综合性强。
曲线轨迹方程的探求有两种类型,第一种类型是几何关系已知,轨迹未知;第二种类型是曲线形状已知,求方程。
类型一常用的方法有直接法、相关点法和参数法。
类型二常用的方法有定义法和待定系数法。
(1)直接法:如果题目中的条件有明显的等量关系,或者可以利用平面几何的基本知识推出等量关系,求方程时便可利用直接法。
(2)定义法:如果所给几何条件能够确定符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用曲线定义写出方程,这种方法称为定义法。
(3)相关点法:如果动点P(x,y)依赖于另一动点Q(a,b),而Q(a,b)又在某一已知曲线上运动,则可先列出关于x,y,a,b的方程组,利用x,y表示出a,b,把a,b代入已知曲线方程便可得出动点P的轨迹方程,又称为代入法。
(4)参数法:求轨迹方程有时很难直接找出动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然后再从所求式子中消去参数,得出动点的轨迹方程。
(5)交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,如求两动直线的交点时常用这种方法,也可以引入参数来建立这些动曲线的联系,然后消去参数得到轨迹方程。
(6)几何法:利用平面几何或解析几何的有关基础知识去分析图形性质,发现动点运动规律和动点满足的条件,然后求出动点的轨迹方程。
热点透析题型1:直接法【例1】已知定点A、B,且AB=2a。
如果动点P到点A的距离和到点B的距离之比为2:1,求点P的轨迹方程,并说明它表示什么曲线?【解】本题首先要建立坐标系,建立坐标系的要求是保持对称性,以使所求方程简单,容易看出方程表示什么曲线。
如图,取AB所在的直线为x轴,从A到B为正方向,以AB的中点O为原点,以AB的中垂线为y轴,建立直角坐标系,则A(-a,0)、B(a,0)。
设P(x,y)。
∵即化简整理,得,即。
这就是动点P的轨迹方程。
它表示以为圆心,为半径的圆。
热身训练1已知A、B为两定点,动点M到A与到B的距离比为常数λ,求点M的轨迹方程,并注明轨迹是什么曲线.解:建立坐标系如图所示,设|AB|=2a,则A(-a,0),B(a,0).设M(x,y)是轨迹上任意一点.则由题设,得=λ,坐标代入,得=λ,化简得(1-λ2)x2+(1-λ2)y2+2a(1+λ2)x+(1-λ2)a2=0(1)当λ=1时,即|M A|=|M B|时,点M的轨迹方程是x=0,点M的轨迹是直线(y轴).(2)当λ≠1时,点M的轨迹方程是x2+y2+x+a2=0.点M的轨迹是以(-,0)为圆心,为半径的圆.热身训练2、给定抛物线y2=8(x+2),其焦点和准线分别是椭圆的一个焦点和一条准线,求椭圆的短轴端点的轨迹方程。
解:抛物线y2=8(x+2)的焦点为(0,0),准线为x= -4,由题意知,x= -4必为椭圆的左准线,设椭圆短轴端点为B(x,y)(1)若(0,0)点为椭圆左焦点,则c=x,b=,e=,由定义得(2)若(0,0)点为椭圆右焦点,则c= -x,b=,e=,而左焦点为(2x,0),由定义得题型2:定义法【例2】已知方程为,定点A(4,0)。
求过点A且和相切的动圆圆心P 的轨迹。
【分析】由于动圆过A点,所以|PA|是动圆的半径。
当动圆P与圆O外切时,|PO|=|PA|+2,即|PO|-|PA|=2;当动圆P与圆O内切时,有|PO|=|PA|-2,所以有||PO|-|PA||=2。
可以看出动点P的运动满足双曲线的定义,因此可将问题转化为用定义法求轨迹方程。
【解】设动圆圆心为P(x,y),因为动圆过定点A,所以|PA|是动圆半径。
当动圆P与外切时,|PO|-|PA|=2;当动圆P与内切时,|PA|-|PO|=2;∴有||PO|-|PA||=2。
∴P点的轨迹是以O、A为焦点,2为实轴长的双曲线,中心在OA的中点(2,0),实半轴长为a=1,半焦距c=2,虚半轴长。
∴所求点P的轨迹方程为。
【例3】已知双曲线的虚轴长、实轴长、焦距成等差数列,且以y轴为右准线,并过定点R(1,2)。
(1)求此双曲线右焦点F的轨迹;(2)过R与F的弦与右支交于Q点,求Q点的轨迹方程。
【解】(1),又,∴,设右焦点F(x,y),由双曲线定义,得,∴。
∴双曲线的右焦点F的轨迹是以(1,2)为圆心,为半径的圆。
(2)设Q(x,y),由双曲线的定义得,∴,∴,即。
热身训练1 如图,某建筑工地要挖一个横截面为半圆的柱形土坑,挖出的土只能沿AP、BP 运到P处,其中AP=100m,BP=150m,∠APB=600,问怎能样运才能最省工?解:半圆上的点可分为三类:一是沿AP到P较近,二是沿BP到P较近,三是沿AP或BP一样近。
其中第三类的点位于前两类的分界线上,设M为分界线上的任一点,则有,即,故M在以A,B为焦点的双曲线的右支上。
建立如图直角坐标系,得边界的方程为,故运土时为了省工,在双曲线弧左侧的土沿AP运到P处,右侧的土沿BP运到P处,在曲线上面的土两边都可运。
说明:利用双曲线的定义可直接写出双曲线方程。
热身训练2、已知圆O的方程为 x2+y2=100,点A的坐标为(-6,0),M为圆O上任一点,AM 的垂直平分线交OM于点P,求点P的方程。
解:由中垂线知,故,即P点的轨迹为以A、O为焦点的椭圆,中心为(-3,0),故P点的方程为热身训练3某检验员通常用一个直径为2.cm和一个直径为1.cm的标准圆柱,检测一个直径为3.cm的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?解:设直径为3,2,1的三圆圆心分别为O、A、B,问题转化为求两等圆P、Q,使它们与⊙O相内切,与⊙A、⊙B相外切.建立如图所示的坐标系,并设⊙P的半径为r, 则|PA|+|PO|=(1+r)+(1.5-r)=2.5∴点P在以A、O为焦点,长轴长2.5的椭圆上,其方程为=1①同理P也在以O、B为焦点,长轴长为2的椭圆上,其方程为(x-)2+y2=1 ②由①、②可解得,∴r=故所求圆柱的直径为cm.题型3:相关点法【例4】如图所示,从双曲线上一点Q引直线x+y=2的垂线,垂足为N,求线段QN的中点P的轨迹方程。
【分析】因动点P随动点Q的运动而运动,而动点Q在已知双曲线上,故可用相关点法求解。
从寻求Q点的坐标与P点坐标之间的关系入手。
【解】设动点P的坐标为(x,y),点Q的坐标为,则N点的坐标为。
因为点N在直线x+y=2上,所以。
①又因为PQ垂直于直线x+y=2,所以,即。
②由①、②两式联立解得③又点Q在双曲线上,所以。
④将③式代入④式,得动点P的轨迹方程是。
【评析】利用相关点法求动点轨迹方程的关键是能用所求动点的坐标x、y表示出已知曲线上动点Q的坐标、。
热身训练1已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.解:设AB的中点为R,坐标为(x,y),则在Rt△ABP中,|AR|=|PR|.又因为R是弦AB的中点,依垂径定理:在Rt△OAR中,|AR|2=|AO|2-|OR|2=36-(x2+y2) 又|AR|=|PR|=所以有(x-4)2+y2=36-(x2+y2),即x2+y2-4x-10=0因此点R在一个圆上,而当R在此圆上运动时,Q点即在所求的轨迹上运动.设Q(x,y),R(x1,y1),因为R是PQ的中点,所以x1=,代入方程x2+y2-4x-10=0,得-10=0整理得:x2+y2=56,这就是所求的轨迹方程.[错解分析]:欲求Q的轨迹方程,应先求R的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题.[技巧与方法]:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程.题型4:参数法【例5】如图3所示,过双曲线C:的左焦点F作直线l与双曲线交于P、Q,以OP、OQ为邻边作平行四边形OPMQ,求点M的轨迹方程。
【解】设所求点M的坐标为(x,y),则平行四边形中心N的坐标为。
而双曲线左焦点F为(-2,0),当直线l不垂直x轴时,斜率存在,设l:y=k(x+2)。
与双曲线方程联立消去y,得。
又设P、Q的坐标分别为,由韦达定理知。
∵N为PQ的中点,∴即消去参数k得,这就是点M的轨迹。
当直线l垂直于x轴时,此时M为(-4,0)仍满足上述方程。
故点M的轨迹方程为。
热身训练1设点A和B为抛物线.y2=4px(p>0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB,求点M的轨迹方程,并说明它表示什么曲线.解法一:设A(x1,y1),B(x2,y2),M(x,y).(x≠0)直线AB的方程为x=my+a由OM⊥AB,得m=-由y2=4px及x=my+a,消去x,得y2-4p my-4pa=0所以y1y2=-4pa,.x1x2=所以,由OA⊥OB,得x1x2=-y1y2所以故x=my+4p,用m=-代入,得x2+y2-4px=0(x≠0)故动点M的轨迹方程为x2+y2-4px=0(x≠0),它表示以(2p,0)为圆心,以2p为半径的圆,去掉坐标原点.解法二:设OA的方程为,代入y2=4px得则OB的方程为,代入y2=4px得∴AB的方程为,过定点,由OM⊥AB,得M在以ON为直径的圆上(O点除外)故动点M的轨迹方程为x2+y2-4px=0(x≠0),它表示以(2p,0)为圆心,以2p为半径的圆,去掉坐标原点.解法三:设M(x,y).(x≠0),OA的方程为,代入y2=4px得则OB的方程为,代入y2=4px得由OM⊥AB,得M既在以OA为直径的圆:……①上,又在以OB为直径的圆:……②上(O点除外),①+②得.x2+y2-4px=0(x≠0)故动点M的轨迹方程为x2+y2-4px=0(x≠0),它表示以(2p,0)为圆心,以2p为半径的圆,去掉坐标原点.[错解分析]:当设A、B两点的坐标分别为(x1,y1),(x2,y2)时,注意对“x1=x2”的讨论.[技巧与方法]:将动点的坐标x、y用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x、y的关系.热身训练2 经过抛物线y2=2p(x+2p)(p>0)的顶点A作互相垂直的两直线分别交抛物线于B、C两点,求线段BC的中点M轨迹方程。
解:A(- 2p,0),设直线AB的方程为y=k(x+2p)(k0).与抛物线方程联立方程组可解得B点的坐标为,由于AC与AB垂直,则AC的方程为,与抛物线方程联立方程组可解得C点的坐标为,又M为BC中点,设M(x,y),则,消去k得y2=px,即点M的轨迹是抛物线。