函数对称性、周期性和奇偶性的规律总结大全 (1)
- 格式:doc
- 大小:858.00 KB
- 文档页数:14
抽象函数的对称性、奇偶性与周期性常用结论一.概念:抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力1、周期函数的定义:对于定义域内的每一个,都存在非零常数,使得()f x x T ()()f x T f x +=恒成立,则称函数具有周期性,叫做的一个周期,则(()f x T ()f x kT )也是的周期,所有周期中的最小正数叫的最小正周期。
,0k Z k ∈≠()f x ()f x 分段函数的周期:设是周期函数,在任意一个周期内的图像为C:)(x f y =),(x f y =。
把个单位即按向量[]a b T b a x -=∈,,)()(a b K KT x x f y -==轴平移沿在其他周期的图像:)()0,(x f y kT a ==平移,即得。
[]b kT a kT x kT x f y ++∈-=,),(2、奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或①若为奇函数;则称)(),()(x f y x f x f =-=-②若。
为偶函数则称)()()(x f y x f x f ==-分段函数的奇偶性3、函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A --②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-=④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=-⑤成中心对称。
函数的对称性与周期性(归纳总结)一、函数对称性:1.2.3.4.5.6.7.8.f(a+x)=f(a-x)==>f(x)关于x=a对称f(a+x)=f(b-x)==>f(x)关于x=(a+b)/2对称f(a+x)=-f(a-x)==>f(x)关于点(a,0)对称f(a+x)=-f(a-x)+2b==>f(x)关于点(a,b)对称f(a+x)=-f(b-x)+c==>f(x)关于点[(a+b)/2,c/2]对称y=f(x)与y=f(-x)关于x=0对称y=f(x)与y=-f(x)关于y=0对称y=f(x)与y=-f(-x)关于点(0,0)对称例1:证明函数y=f(a+x)与y=f(b-x)关于x=(b-a)/2对称。
【解析】求两个不同函数的对称轴,用设点和对称原理作解。
证明:假设任意一点P(m,n)在函数y=f(a+x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a+m)=f[b(2tm)] ∴b2t=a,==>t=(b-a)/2,即证得对称轴为x=(b-a)/2.例2:证明函数y=f(a-x)与y=f(xb)关于x=(a+b)/2对称。
证明:假设任意一点P(m,n)在函数y=f(a-x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a-m)=f[(2tm)b] ∴2t-b=a,==>t=(a+b)/2,即证得对称轴为x=(a+b)/2.二、函数的周期性令a,b均不为零,若:1、函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|2、函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|3、函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|4、函数y=f(x)存在f(x+a)=1/f(x)==>函数最小正周期T=|2a|5、函数y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函数最小正周期T=|4a|这里只对第2~5点进行解析。
函数奇偶性、对称性与周期性奇偶性、对称性和周期性是函数的重要性质,下面总结关于它们的一些重要结论及运用它们解决抽象型函数的有关习题。
一、几个重要的结论(一)函数)(x f y =图象本身的对称性(自身对称)2、)2()(x a f x f -=⇔)(x f y =的图象关于直线a x =对称。
3、)2()(x a f x f +=-⇔)(x f y =的图象关于直线a x =对称。
4、)()(x b f x a f -=+⇔)(x f y =的图象关于直线22)()(b a x b x a x +=-++=对称。
5、b x a f x a f 2)()(=-++⇔)(x f y =的图象关于点),(b a 对称。
6、b x a f x f 2)2()(=-+⇔)(x f y =的图象关于点),(b a 对称。
7、b x a f x f 2)2()(=++-⇔)(x f y =的图象关于点),(b a 对称。
8、c x b f x a f 2)()(=-++⇔)(x f y =的图象关于点),2(c b a +对称。
(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)1、函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称。
2、函数)(x f y =与)2(x a f y -=图象关于直线a x =对称3、函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称4、函数)(x a f y +=与)(x b f y -=图象关于直线0)()(=--+x b x a 对称 即直线2a b x -=对称 5、函数)(x f y =与)(x f y -=图象关于X 轴对称。
6、函数)(x f y =与)(x f y -=图象关于Y 轴对称。
7、函数)(x f y =与)(x f y --=图象关于原点对称(三)函数的周期性1、)()(x f T x f =+⇔)(x f y =的周期为T2、)()(b x b f a x f ++=+)(b a <⇔)(x f y =的周期为a b T -=3、)()(x f a x f -=+⇔)(x f y =的周期为a T 2=4、)(1)(x f a x f =+⇔)(x f y =的周期为a T 2= 5、)(1)(x f a x f -=+⇔)(x f y =的周期为a T 2= 6、)(1)(1)(x f x f a x f +-=+⇔)(x f y =的周期为a T 3= 7、1)(1)(+-=+x f a x f ⇔)(x f y =的周期为a T 3= 8、)(1)(1)(x f x f a x f -+=+⇔)(x f y =的周期为a T 4= 9、)()()2(x f a x f a x f -+=+⇔)(x f y =的周期为a T 6=10、)(x f y =有两条对称轴a x =和b x =()b a <⇔)(x f y =周期)(2a b T -=11、)(x f y =有两个对称中心)0,(a 和)0,(b ⇔)(x f y =周期)(2a b T -=12、)(x f y =有一条对称轴a x =和一个对称中心)0,(b ⇔)(x f y =周期)(4a b T -=13、奇函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y =周期a T 4=。
函数的奇偶性、对称性与周期性常用结论,史上最全函数是高中数学的重点与难点,在高考数学中占分比重巨大。
高考中对函数的考查灵活,相关的结论众多,有奇偶性,对称性,还有周期性,这些结论及变形能否掌握,都影响着学生的最终成绩。
本篇将函数的奇偶性、对称性与周期性常用的结论进行总结,希望对同学们有帮助。
需要WORD 电子文档的同学,可以入群领取。
1.奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或奇偶函数的定义域关于原点对称。
①若为奇函数;则称)(),()(x f y x f x f =-=-()()()0,1()f x f x f x f x +-==-- ②若为偶函数则称)()()(x f y x f x f ==-。
()()-()0,1()f x f x f x f x -==- 2.周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。
《分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y = []a b T b a x -=∈,,。
把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。
[][]⎩⎨⎧++∈-∈=b kT a,kT x )(b a, x )()(kT x f x f x f/函数周期性的几个重要结论2、()()f x a f x b +=+ ⇔)(x f y =的周期为a b T -=3、)()(x f a x f -=+ ⇔)(x f y =的周期为a T 2=4、)(1)(x f a x f =+⇔)(x f y =的周期为a T 2= 5、)(1)(x f a x f -=+ ⇔)(x f y =的周期为a T 2=6、)(1)(1)(x f x f a x f +-=+ ⇔)(x f y =的周期为a T 3= "7、 1)(1)(+-=+x f a x f ⇔)(x f y =的周期为a T 2=8、)(1)(1)(x f x f a x f -+=+ ⇔)(x f y =的周期为a T 4= 9、)()()2(x f a x f a x f -+=+ ⇔)(x f y =的周期为a T 6=10、若.2 , )2()(,0p T p px f px f p =-=>则推论:偶函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 2=推论:奇函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 4=、函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A --②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-=④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=-⑤成中心对称。
函数的奇偶性、周期性、对称性【知识梳理】一、函数的奇偶性1.函数奇偶性的定义:函数f (x) 的定义域必须关于原点对称,对定义域内的任意一个x 都满足① f ( x) f (x) 函数f (x) 为偶函数;② f( x) f(x) f( x) f(x) 0 函数f(x)为奇函数.2.奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;反过来如果一个函数的图像关于原点对称,则该函数为奇函数,若该函数的图像关于y 轴对称,该函数为偶函数.3.函数奇偶性的性质①既是奇函数又是偶函数的函数只有一种类型,即f(x) 0,x D ,其中定义域D是关于原点对称的非空数集.②奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.即奇函数f(x) 在区间[a,b](0 a b)上单调递增(减) ,则f(x)在区间[ b, a]上也是单调递增(减) ;③偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.即偶函数f(x) 在区间[a,b](0 a b)上单调递增(减) ,则f(x)在区间[ b, a]上也是单调递减(增) ;注意:1)若函数f ( x), g( x)都为奇函数或都为偶函数,则函数F(x) f (x)g(x)为偶函数;2)若函数f (x), g( x)其中一个为奇函数,另一个为偶函数,则函数F(x) f(x)g(x) 为奇函数;3)若函数f (x), g( x)都为奇函数,则函数F(x) f (x) g( x)为奇函数;4)若函数f (x), g(x)都为偶函数,则函数F(x) f(x) g( x)为偶函数.二、函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:1)f a x f a x f x 关于x a 轴对称(当a0时,就是偶函数)2)f a x f b x f x 关于x ab轴对称23)f x a是偶函数,则 f x a f x a ,可得到:fx关于x a 轴对称。
函数奇偶性对称性周期性知识点总结函数的奇偶性、对称性和周期性是数学中经常研究的重要性质。
它们描述了函数的特征和性质,对于理解函数的行为和解决问题都具有重要意义。
下面将分别对这三个概念进行总结。
一、函数的奇偶性1.奇函数:如果对于函数f(x),对任意的x,都有f(-x)=-f(x),那么称该函数为奇函数。
即函数在原点关于y轴对称。
奇函数的特点:-奇函数的图像关于原点(0,0)对称。
-当函数的定义域包括0时,即使x等于0,函数值仍然等于0。
常见的奇函数有:- 正弦函数sin(x)。
-奇数次幂的多项式函数,如x^3、x^5等。
2.偶函数:如果对于函数f(x),对任意的x,都有f(-x)=f(x),那么称该函数为偶函数。
即函数在原点关于x轴对称。
偶函数的特点:-偶函数的图像关于x轴对称。
-当函数的定义域包括0时,对于任意的x,f(0)=f(-x)=f(x)。
常见的偶函数有:- 余弦函数cos(x)。
-偶数次幂的多项式函数,如x^2、x^4等。
3.奇偶性的判断方法:-对于已知函数,可以通过代数运算证明是否满足奇偶性的定义。
-函数图像的轴对称性可以直接判断奇偶性。
-对于周期函数,可以利用周期性的性质判断奇偶性。
二、函数的对称性1.关于y轴对称:如果对于函数f(x),对任意的x,都有f(-x)=f(x),那么称该函数关于y轴对称。
即函数的图像左右对称。
2.关于x轴对称:如果对于函数f(x),对任意的x,都有f(-x)=-f(x),那么称该函数关于x轴对称。
即函数的图像上下对称。
3.关于原点对称:如果对于函数f(x),对任意的x,都有f(-x)=-f(x),那么称该函数关于原点对称。
即函数的图像关于原点对称。
三、函数的周期性1.周期函数:如果存在一个正实数T,对于函数f(x),对于任意的x,都有f(x+T)=f(x),那么称该函数为周期函数,T为函数的周期。
周期函数的特点:-周期函数在一个周期内的函数值是相同的。
课题:函数的周期性、奇偶性、对称性规律总结一、 同一函数的周期性、对称性问题(即函数自身)1、 周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。
如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。
2、 对称性定义(略),请用图形来理解。
3、 对称性:我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =-奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f探讨:(1)函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+)()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=-简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。
得证。
若写成:)()(x b f x a f -=+,函数)(x f y =关于直线22)()(b a x b x a x +=-++= 对称 (2)函数)(x f y =关于点),(b a 对称⇔b x a f x a f 2)()(=-++b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+-简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。
()()()()012...516f f f f ++++× ()()()()()01234f f f f f +++++, 01633=×+=,故选:B.2.(2023·河南郑州·统考一模)已知函数()f x 定义域为R ,()1f x +为偶函数,()2f x +为奇函数,且满足()()122f f +=,则()20231k f k ==∑( ) A .2023− B .0 C .2 D .2023【答案】B【详解】因为(1)f x +为偶函数,所以(1)(1)−+=+f x f x ,所以(2)()f x f x −+=, 因为(2)f x +为奇函数,所以(2)(2)f x f x −+=−+, 所以(2)()f x f x +=−,所以(4)(2)()f x f x f x +=−+=, 所以()f x 是以4为周期的周期函数,由(2)(2)f x f x −+=−+,令0x =,得(2)(2)f f =−,则(2)0f =, 又(1)(2)2f f +=,得(1)2f =, 由(2)(2)f x f x −+=−+,令1x =,得(1)(3)f f =−,则(3)2f =−, 由(2)()f x f x +=−,令2x =,得(4)(2)0f f =−=, 则(1)(2)(3)(4)0f f f f +++=, 所以20213()[(1)(2)(3)(4)]505(1)(2)(3)05052(2)0k f k f f f f f f f ==+++×+++=×++−=∑. 故选:B .3.(2023秋·江西抚州·高三临川一中校考期末)若函数()f x 的定义域为R ,且()1f x +是偶函数,()1f x +关于点()2,0成中心对称,则函数()f x 的一条对称轴为( ) A .2023x = B .2022x =C .2021x =D .2020x =【答案】C【详解】因为()1f x +是偶函数,所以()()11f x f x +=−+,所以()f x 关于1x =对称,即()()2f x f x =−,因为()1f x +关于点()2,0成中心对称,且()f x 向左平移1个单位长度之后得到()1f x +, 所以()f x 关于()3,0对称,所以()()60f x f x +−=, 因为()()2f x f x =−,()()60f x f x +−=, 所以()()62f x f x −−=−,故()()()48f x f x f x =−+=+,故()f x 的周期为8, 因为()f x 关于1x =对称,关于()3,0对称,所以()f x 关于5x =对称,由图象可知,()y f x =与|lg |y x =有10个交点, 所以方程()lg f x x =有10个根. 故答案为:10。
函数的奇偶性、对称性与周期性常用结论,史上最全函数是高中数学的重点与难点,在高考数学中占分比重巨大。
高考中对函数的考查灵活,相关的结论众多,有奇偶性,对称性,还有周期性,这些结论及变形能否掌握,都影响着学生的最终成绩。
本篇将函数的奇偶性、对称性与周期性常用的结论进行总结,希望对同学们有帮助。
需要WORD 电子文档的同学,可以入群领取。
1.奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或奇偶函数的定义域关于原点对称。
①若为奇函数;则称)(),()(x f y x f x f =-=-()()()0,1()f x f x f x f x +-==-- ②若为偶函数则称)()()(x f y x f x f ==-。
()()-()0,1()f x f x f x f x -==- 2.周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。
分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y =[]a b T b a x -=∈,,。
把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT a ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。
[][]⎩⎨⎧++∈-∈=b kT a,kT x )(b a, x)()(kT x f x f x f函数周期性的几个重要结论2、()()f x a f x b +=+ ⇔)(x f y =的周期为a b T -=3、)()(x f a x f -=+ ⇔)(x f y =的周期为a T 2=4、)(1)(x f a x f =+⇔)(x f y =的周期为a T 2= 5、)(1)(x f a x f -=+⇔)(x f y =的周期为a T 2=6、)(1)(1)(x f x f a x f +-=+ ⇔)(x f y =的周期为a T 3=7、 1)(1)(+-=+x f a x f ⇔)(x f y =的周期为a T 2= 8、)(1)(1)(x f x f a x f -+=+ ⇔)(x f y =的周期为a T 4=9、)()()2(x f a x f a x f -+=+ ⇔)(x f y =的周期为a T 6= 10、若.2, )2()(,0p T p px f px f p =-=>则推论:偶函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 2=推论:奇函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 4=函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A -- ②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-= ④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=- ⑤成中心对称。
函数的奇偶性、周期性、对称性一、函数的奇偶性1.函数奇偶性的定义:函数的定义域必须关于原点对称,对定义域内的任意一个()f x x 都满足①函数为偶函数;()()f x f x -=⇔()f x ②函数为奇函数.()()()()0f x f x f x f x -=-⇔-+=⇔()f x 2.奇函数的图像关于原点对称,偶函数的图像关于轴对称;反过来如果一个函数的图像y 关于原点对称,则该函数为奇函数,若该函数的图像关于轴对称,该函数为偶函数.y 3.函数奇偶性的性质①既是奇函数又是偶函数的函数只有一种类型,即,,其中定义域是()0f x =x D ∈D 关于原点对称的非空数集.②奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.即奇函数在()f x 区间上单调递增(减),则在区间上也是单调递增(减); [,](0)a b a b ≤<()f x [,]b a --③偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.即偶函数在()f x 区间上单调递增(减),则在区间上也是单调递减(增); [,](0)a b a b ≤<()f x [,]b a --④任意定义在上的函数都可以唯一地表示成一个奇函数与一个偶函数的和.即R ()f x . ()()()()()22f x f x f x f x f x +---=+二、函数的周期性1.函数的周期性定义:对于函数)(x f ,如果存在一个非零常数T ,使得定义域内的每一个x 值,都满足)()(x f T x f =+,那么函数)(x f 就叫做周期函数,非零常数T 叫做这个函数的周期,应注意(且)也是函数的周期.nT n Z ∈0n ≠2.最小正周期:如果在周期函数)(x f 的所有周期中,存在一个最小的正数,那么这个最小的正数就叫做的最小正周期.并非所有的函数都有最小正周期,如(()f x ()f x c =c 为常数),任意一个实数都是该函数的一个周期,却没有最小正周期.x 三、函数的对称性1.函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴.2.中心对称:如果一个函数的图像沿一个点旋转,所得的图像能与原函数图像完全重180︒合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心.【必记结论】1.奇函数若在处有定义,则必有,但若不能判断奇函数的定义()f x 0x =(0)0f =()f x 域中一定有,则不能使用,求取参数的值.0x =(0)0f =2.函数的定义域关于原点对称,则函数为偶函数,函数()f x ()()()F x f x f x =+-为奇函数.()()()F x f x f x =--3.几类函数的周期(约定)问题:0>a ①若函数满足:或或()f x )()(a x f a x f -=+)()(x f a x f -=+,或,或()(()0,0)()k f x a f x k f x +=≠≠()()k f x a f x +=-(()0,0)f x k ≠≠或等,则的周期; 1()()1()f x f x a f x -+=+()()f x a f x b ++=)(x f a T 2=②若的图象关于直线,对称,则函数是周期为)(x f y =a x =b x =)(b a ≠)(x f y =的周期函数;b a -2③若的图象关于对称,同时关于点对称,(),则函数)(x f y =)0,(a )0,(b a b ≠是周期为;)(x f y =||2a b -④若的图象关于对称,同时关于点对称,(),则函数)(x f y =a x =)0,(b a b ≠是周期为.)(x f y =||4a b -4.函数的图像的对称性()y f x =①函数的图像关于直线对称. ()y f x =x a =()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=②函数的图像关于点对称. )(x f y =)0,(a ⇔)2()(x a f x f --=⇔()()f a x f a x +=--③函数满足,则的图像关于直线对称. )(x f y =)()(x b f x a f -=+)(x f y =2a b x +=④若函数对定义域中任意均有,则函数)(x f y =x 0)()(=+-++c x b f x a f 的图像关于点成中心对称图形. )(x f y =(,)22a b c +-5.高中涉及对称性问题的几个基本函数的对称轴、对称中心的问题①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴.②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴. ③二次函数:是轴对称,不是中心对称,其对称轴方程为2()(0)f x ax bx c a =++≠. 2b x a=-④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,(0)k y k x =≠与均为它的对称轴.推广:函数y x =y x =-,由函数图象的平移知识易知:函数2()a ad b ad cx d b ax b a c c c c y dcx d cx d c x c++--+===++++的对称中心为.(思考:如何快速作出函数的图象?找对称中心,(,)d a c c -225x y x +=+化分母变量的系数为正,并将分母为零点时的自变量的值代入分子,看正负,从而快速画出图形.)⑤函数的图象关于直线对称.||y a x b c =-+x b =⑥函数的对称轴为;||||(0)y ax b ax c a =-+-≠22b c b c a a x a++==的对称中心为. ||||(0)y ax b ax c a =---≠(,0)2b c a+⑦函数是奇函数,图象关于原点对称. (0)a y x a x=+≠(0,0)⑧函数、的图象既是轴对称图形,也是中sin()y A x k ωϕ=++cos()y A x k ωϕ=++心对称图形,它们的对称轴在函数取得最值(最大或最小)时取到,它们的对称中心是“平衡点”.⑨三次函数的图象是中心对称图形,对称中心为32()(0)f x ax bx cx d a =+++≠(二阶导数为零时的自变量的取值为对称中心的横坐标,在该点的函(,(33b b f a a--数值是对称中心的纵坐标).⑩绝对值函数:这里主要说的是和两类.前者显然是偶函数,它会(||)y f x =|()|y f x =关于轴对称;后者是把轴下方的图像对称到轴的上方,是否仍然具备对称性,y x x 这也没有一定的结论,例如就没有对称性,而却仍然是轴对称.ln y x =|sin |y x =6.两个函数图像的对称性①互为反函数的两个函数的图像关于直线对称.如指数函数与对数函数y x =xy a =的图象关于直线对称.log a y x =y x =②函数与函数的图像关于直线对称. )(x a f y +=)(x b f y -=2a b x -=③函数与函数的图像关于直线对称. )(wx a f y +=)(wx b f y -=w a b x 2-=【解题方法】1.定义域关于原点对称,这是函数具有奇偶性的必要不充分条件.2.函数奇偶性的判断方法:①定义法判断,步骤:1)求出函数的定义域;2)判断定义域是否关于原点对称;3)根据定义域化简函数的解析式,并求出;4)判断或()f x -()()f x f x -=-是否对定义域内的每一个恒成立(恒成立要给予证明,否则要举出反()()f x f x -=x 例,若在函数)(x f 的定义域内有)()(m f m f ≠-,则可以断定)(x f 不是偶函数,同样,若在函数)(x f 的定义域内有)()(m f m f -≠-,则可以断定)(x f 不是奇函数);【注意】(1)判断分段函数的奇偶性应分段分别证明与的关系,只有对各段上的()f x -()f x x都满足相同的关系时,才能判断其奇偶性.(2)对于抽象函数奇偶性的判断,应充分利用定义,巧妙赋值,通过合理、灵活地变形配凑来判定.②函数的图像法判断(函数的图像是否关于原点对称;函数的图像是否关于轴对称); y ③函数的公共定义域关于原点对称(),()f x g x 1)若函数都为奇函数或都为偶函数,则函数为偶函数;(),()f x g x ()()()F x f x g x =2)若函数其中一个为奇函数,另一个为偶函数,则函数(),()f x g x ()()()F x f x g x =为奇函数;3)若函数都为奇函数,则函数为奇函数;(),()f x g x ()()()F x f x g x =+4)若函数都为偶函数,则函数为偶函数.(),()f x g x ()()()F x f x g x =+【注意】复合函数的奇偶性原理:内偶则偶,两奇为奇.[()]y f g x =3.已知带有字母参数的函数的表达式及奇偶性求参数:常采用待定系数法,利用产生关于字母的恒等式,由系数的对等性可得知字母的值.()()0f x f x ±=4.如果函数是偶函数,那么,通常在求解与偶函数、单调性有关的不()f x ()(||)f x f x =等式时,利用此公式进行转化所求解的不等式.5.周期性与奇偶性相结合的综合问题中,周期性起到转换自变量值的作用,奇偶性起到调节符号作用.6.对抽象函数的周期性、对称性问题的总结①当括号里面前面的符号一正一负时告诉我们的就是对称性,其中的对称为多少我们x 可以用特殊值代入来猜测,这里并不主张记结论,因为很容易与后面的结论相混淆. ②而当前面的符号相同时告诉我们的是周期性.x ③当前面的符号相同,同时告诉我们奇偶性时我们也可以推出对称性,因为奇偶性有x 制造负号的能力.7.证明一个函数关于直线对称的步骤:①设函数图像上的任意点()y f x =x a =()y f x =;②找到点关于直线的对称点;③设法证明点(,)x y (,)x y x a =(2,)a x y -(2,)a x y -也在函数的图像上;④下结论.()y f x =8.证明一个函数关于点对称的步骤:①设函数图像上的任意点()y f x =(,)a b ()y f x =;②找到点关于点的对称点;③设法证明点(,)x y (,)x y (,)a b (2,2)a x b y --也在函数的图像上;④下结论.(2,2)a x b y --()y f x =9.对于证明两个函数的图像关于直线对称或关于点对称的方法参照一个函数的x a =(,)a b 证明方法进行即可.10.已知定义在上的周期函数,周期为,函数的一个对称中心为或对R ()f x T ()f x (,)a b 称轴为,则点必是函数的对称中心,直线必是函x a =(,)2T k a b ⋅+()f x 2T x k a =⋅+数的对称轴(每相邻两个对称中心之间相差半周期,每相邻两条对称轴之间相差()f x 半周期,只要有有一个对称中心,根据周期就可求出所有的对称中心,只要知道一条对称轴,就可以根据周期找出所有的对称轴,但是由对称中心及周期,却不能找出对称轴,同样由对称轴及周期,也不能找到对称中心).11.若函数有对称中心,则函数的对称中心求解类型有:()y f x =()y f x =①若函数的定义域有对称中心,则对称中心的横坐标就是定义域的对称中心()y f x =的横坐标;②若函数的值域有对称中心,则对称中心的纵坐标就是值域的对称中心的纵()y f x =坐标;③若函数的定义域与值域都是,则设对称中心为,由()y f x =R (,)a b 确定参数的值即可.()()2f a x f a x b ++-=,a b④上些具体函数的对称中心问题:三次函数的对称中心,可通过二阶导数为零求出,对于一些明显可以来奇函数平移得来的函数,可以借用奇函数的性质与平移方法得到函数的对称中心.注:函数的对称中心为. 1111y x x x n =+++++ ,02n ⎛⎫- ⎪⎝⎭【易错提醒】1.判断函数的奇偶性,务必先判断函数的定义域是否关于原点对称.如函数,该函数是没有奇偶性,但如果没有判断函数的定义域,而直接2()(1)f x x x =<,容易得出错误的结论:是偶函数.22()()()f x x x f x -=-==2()(1)f x x x =<2.奇函数在处可以没有定义,如;但如果奇函数在处有()f x 0x =1()f x x=()f x 0x =定义,则. (0)0f =3.周期函数的定义域至少有一边是无界的.如:命题“函数在()f x ()sin f x x =是周期函数”是错误的;命题“函数在是最小正[1000,1000]ππ-()sin f x x =[0,)+∞周期为的周期函数”是正确的,该函数没有负周期;命题“函数在2π()sin f x x =(,0]-∞是周期为的周期函数”是正确的,但该函数却没有最小正周期.2π-4.有对称性(对称轴,对称中心)的一个或两个函数的定义域必须关于x a =(,)a b x a =对称.5.在具体练习中,务必注意一个函数的对称性还是两个函数对称性,这两者是有区别的.如函数满足,则函数的图象关于直线()y f x =(2)(4)f x f x -=+()y f x =对称;函数的图象与函数的图象则关于直线2432x +==(2)y f x =-(4)y f x =+对称. 2412x -==-。
函数奇偶性、对称性与周期性结论汇总奇偶性、对称性和周期性是函数的重要性质,下面总结关于它们的一些重要结论及运用它们解决抽象型函数的有关习题。
一、几个重要的结论(一)函数)(x f y =图象本身的对称性(自身对称)1、)()(x a f x a f -=+ ⇔)(x f y =的图象关于直线a x =对称。
2、)2()(x a f x f -= ⇔)(x f y =的图象关于直线a x =对称。
3、)2()(x a f x f +=- ⇔)(x f y =的图象关于直线a x =对称。
4、)()(x b f x a f -=+ ⇔)(x f y =的图象关于直线22)()(b a x b x a x +=-++=对称。
5、b x a f x a f 2)()(=-++ ⇔)(x f y =的图象关于点),(b a 对称。
6、b x a f x f 2)2()(=-+ ⇔)(x f y =的图象关于点),(b a 对称。
7、b x a f x f 2)2()(=++- ⇔)(x f y =的图象关于点),(b a 对称。
8、c x b f x a f 2)()(=-++ ⇔)(x f y =的图象关于点),2(c b a +对称。
(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)1、函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称。
2、函数)(x f y =与)2(x a f y -=图象关于直线a x =对称3、函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称4、函数)(x a f y +=与)(x b f y -=图象关于直线0)()(=--+x b x a 对称,即直线2a b x -=对称 5、函数)(x f y =与)(x f y -=图象关于X 轴对称。
6、函数)(x f y =与)(x f y -=图象关于Y 轴对称。
函数周期性、对称性与奇偶性的关系一、函数图象的对称性(一)一个函数图象自身的对称性性质1:对于函数,若存在常数使得函数定义域内的任意,都有的图象关于直线对称.【注】: 亦然.【特例】当时,的图象关于直线对称.【注】亦然.性质2:对于函数,若存在常数使得函数定义域内的任意,都有的图象关于点对称.【特例】当时,的图象关于点对称.【注】 亦然.事实上,上述结论是广义奇(偶)函数的性质. 性质3:设函数,如果对于定义域内任意的,都有,则的图象关于直线对称.(这实际上是偶函数的一般情形)广义偶函数.性质4:设函数,如果对于定义域内任意的,都有,则的图象关于点对称.(实际上是奇函数的一般情形)广义奇函数.【小结】函数对称性的充要条件()y f x =,,a b x 2a bx +=()()(0)f a mx f b mx m +=-≠a b =()()()f a x f a x f x +=-⇔x a =()(2)f x f a x =-()y f x =,,a b x ()()f a x f b x +=-()f x ⇔(,0)2a b+a b =()()()f a x f a x f x +=--⇔(,0)a ()(2)f x f a x =--()y f x =x ()()f a mx f b mx +=-(,,,0)a b m R m ∈≠且()y f x =2a bx +=()y f x =x ()()f a mx f b mx +=--(,,,0)a b m R m ∈≠且()y f x =(2a b+,0)【注】:这里代数关系式中两个“”(对应法则)内的“”(变量)前的正负号相异,如果把两个“”放在“”的两边,则“”前的正负号也相异.因为对称性关乎翻转.(二)两个函数图象之间的对称性1.函数与的图象关于直线对称.2.函数与的图象关于直线对称.3.函数与的图象关于原点对称.4.函数与它的反函数的图象关于直线对称.5.函数与的图象关于直线对称. 特别地,函数与的图象关于直线对称.二、几个函数方程的周期 1.若,或,则的周期; f x f =f ()y f x =()y f x =-0y =()y f x =()y f x =-0x =()y f x =()y f x =--(0,0)()y f x =1()y f x -=y x =()y f a mx =+()y f b mx =-,,,0a b m R m ∈≠()2b a x m -=()y f a x =+()y f b x =-2b ax -=()()f x f x a =+()()22a f x f x a +=-()f x T a =2.若,或,或 ,或,或,或,或, 或,或,则的周期;3.若,则的周期;4.若,或,或,或,或,或且,则的周期;5.若,则的周期;6.若,则的周期.【说明】函数满足对定义域内任一实数(其中为常数),都有等式成立.上述结论可以通过反复运用已知条件来证明.三、对称性与周期性的关系定理1:若定义在上的函数的图象关于直线和对称,则是周期函数,且是它的一个周期.推论1:若函数满足及,则是()()0f x f x a ++=1()()1()f x f x a f x -+=+()()22f f a a x x =-+-()()f x a f x a +=-()()1f x a f x +=±(()0)f x ≠()()()f a x f a x f x +=-⎧⎨⎩为偶函数()()()f a x f a x f x +=--⎧⎨⎩为奇函数()()()f a x f a x f x +=-⎧⎨⎩为偶函数[]1(),(()0,1)2f x a f x =+∈()f x 2T a =1()1(()0)()f x f x f x a =-≠+()f x 3T a =()()()f a x f a x f x +=--⎧⎨⎩为偶函数()()()f a x f a x f x +=-⎧⎨⎩为奇函数()()f x a f x a +=--1()()1()f x f x a f x -+=-+1()()1()f x f x a f x ++=-121212()()()1()()f x f x f x x f x f x ++=-⋅1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<()f x 4T a =()()(2)(3)(4)f x f x a f x a f x a f x a ⋅+++++++()()(2)(3)(4)f x f x a f x a f x a f x a ⋅⋅⋅⋅=++++()f x 5T a =()()()f x a f x f x a +=-+()f x 6T a =()y f x =x a R ()f x x a =x b =()a b ≠()f x 2a b -()f x ()()f a x f a x +=-()()f b x f b x +=-()a b ≠()f x以为周期的周期函数.定理2:若定义在上的函数的图象关于点和直线对称,则是周期函数,且是它的一个周期.推论2:若函数满足及,则是以为周期的周期函数.定理3:若定义在上的函数的图象关于点和对称,是周期函数,且是它的一个周期.推论3:若函数满足及,则是以为周期的周期函数.四、函数图象的对称轴和对称中心举例2a b -R ()f x (,0)a x b =()a b ≠()f x 4a b -()f x ()()f a x f a x +=--()()f b x f b x +=--()a b ≠()f x 4a b -R ()f x 0(,)a y 0(,)b y ()a b ≠()f x 2a b -()f x 0()()2f a x f a x y -++=0()()2f b x f b x y -++=()a b ≠()f x 2a b -五、函数周期性、对称性与奇偶性的关系 1、定义在上的函数,若同时关于直线和对称,即对于任意的实数,函数同时满足,,则函数是以为周期的周期函数,且是偶函数.2、定义在上的函数,若同时关于直线和点对称,即对于任意的实数,函数同时满足,,则函数是以为周期的周期函数,且是奇函数.3、定义在上的函数,若同时关于点和直线对称,即对于任意的实数,函数同时满足,,则函数是以为周期的周期函数,且是偶函数.4、定义在上的函数,若同时关于点和点对称,即对于任意的实数,函数同时满足,,则函数是以为周期的周期函数,且是奇函数.5、若偶函数关于直线对称,即对于任意的实数,函数满足,则是以为周期的周期函数.6、若偶函数关于点对称,即对于任意的实数,函数满足,则是以为周期的周期函数.7、若奇函数关于直线对称,即对于任意的实数,函数满足R ()f x x a =2x a =x ()f x ()()f a x f a x -=+(2)(2)f a x f a x -=+()f x 2T a =R ()f x x a =(2,0)a x ()f x ()()f a x f a x -=+(2)(2)f a x f a x -=-+()f x 4T a =R ()f x (,0)a 2x a =x ()f x ()()f a x f a x -=-+(2)(2)f a x f a x -=+()f x 4T a =R ()f x (,0)a (2,0)a x ()f x ()()f a x f a x -=-+(2)(2)f a x f a x -=-+()f x 2T a =()f x x a =x ()f x ()()f a x f a x -=+()f x 2T a =()f x (,0)a x ()f x ()()f a x f a x -=-+()f x 4T a =()f x x a =x ()f x,则是以为周期的周期函数.8、若奇函数关于点对称,即对于任意的实数,函数满足,则是以为周期的周期函数.【拓展】:1、若函数为偶函数,则函数的图象关于直线对称.2、若函数为奇函数,则函数的图象关于点对称.3、定义在上的函数满足,且方程恰有个实根,则这个实根的和为.4、定义在上的函数满足,则函数的图象关于点对称. ()()f a x f a x -=+()f x 4T a =()f x (,0)a x ()f x ()()f a x f a x -=-+()f x 2T a =()y f x a =+)(x f y =x a =()y f x a =+)(x f y =(,0)a R ()f x ()()f a x f a x -=+()0f x =2n 2n 2na R )(x f y =()()(,,)f a x f b x c a b c ++-=为常数)(x f y =(,)22a b c +。
函数对称性、周期性和奇偶性规律一、 同一函数的周期性、对称性问题(即函数自身)1、 周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。
如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。
2、 对称性定义(略),请用图形来理解。
3、 对称性:我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式)()(x f x f =-奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+)()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=-简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。
得证。
若写成:)()(x b f x a f -=+,函数)(x f y =关于直线22)()(ba xb x a x +=-++=对称 (2)函数)(x f y =关于点),(b a 对称⇔b x a f x a f 2)()(=-++b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+-简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。
函数对称性周期性和奇偶性规律总结
一、函数的对称性
1、定义:
函数的对称性是指函数在满足一些特定条件时,其图像在其中一特定
轴对称的特性。
例如:函数y=f(x)当满足f(-x)=f(x)时,则说函数具有
x轴对称性;若满足f(x)=f(-x)时,则说函数具有y轴对称性。
2、简单的函数对称性推理:
(1)当函数只含有常数项时,看其系数即可判断它是否具有对称性,如果系数都为正,则函数具有x轴对称性,即f(-x)=f(x);如果系数都
为负,则函数具有y轴对称性,即f(x)=f(-x)。
(2)当函数含有一项x的乘方因子时,只要满足乘方因子的指数为
偶数,则说明函数具有x轴对称性;当乘方因子的指数为奇数时,则说明
函数具有y轴对称性。
(3)函数中有分母时,我们可以将分母的部分分开考虑,如果分母
部分满足前面所列出的三种情况,且分子与分母都具有同一种对称性,则
说明函数也具有相同的对称性。
3、函数具有的对称性类型:
(1)函数具有特殊的对称性,比如偶函数、奇函数和极坐标函数等,它们在特定的轴上有着特殊的对称性特点。
(2)除此之外,函数还可以具有一般性的对称性,在满足一定条件时,函数会具有一般的对称性。
二、函数的周期性
1、定义:。
函数的奇偶性与周期性知识点总结函数是数学中一个重要的概念,它描述了两个变量之间的关系。
在学习函数的过程中,我们会遇到一些特殊的函数类型,包括奇函数、偶函数和周期函数。
本文将对这些函数类型的特点进行总结,并介绍函数的奇偶性和周期性的相关知识点。
一、奇函数和偶函数1. 奇函数:奇函数是指满足以下性质的函数:对于任意实数x,若f(-x) = -f(x),则函数f(x)为奇函数。
奇函数以原点对称,图像在坐标系的左右两侧关于原点对称。
例如,f(x) = x^3 和 f(x) = sin(x) 都是奇函数。
2. 偶函数:偶函数是指满足以下性质的函数:对于任意实数x,若f(-x) = f(x),则函数f(x)为偶函数。
偶函数以y轴对称,图像在坐标系的左右两侧关于y轴对称。
例如,f(x) = x^2 和 f(x) = cos(x) 都是偶函数。
二、奇偶性的性质1. 奇函数的性质:(1)奇函数的图像关于原点对称,即若点(x, y)在图像上,则点(-x, -y)也在图像上。
(2)奇函数的定义域可以是全体实数,也可以是一部分实数。
(3)奇函数的一个性质是:奇函数与偶函数的乘积仍为奇函数。
2. 偶函数的性质:(1)偶函数的图像关于y轴对称,即若点(x, y)在图像上,则点(-x, y)也在图像上。
(2)偶函数的定义域可以是全体实数,也可以是一部分实数。
(3)偶函数的一个性质是:奇函数与偶函数的乘积仍为偶函数。
三、周期函数周期函数是指在一定范围内,函数值呈现重复的规律性变化。
具体来说,对于函数f(x),存在一个正数T,使得对于任意实数x,有f(x+T) = f(x)。
T称为函数的周期,一个周期内的函数值是相同的。
例如,f(x) = sin(x) 和 f(x) = cos(x) 都是周期函数。
周期函数的性质:1. 周期函数的图像以某个区间为一个完整的重复单位。
2. 周期函数的定义域可以是全体实数,也可以是一部分实数。
3. 周期函数的一个重要性质是:周期函数与周期函数的乘积仍为周期函数。
函数的基本性质Ⅱ-奇偶性、周期性和对称性题型目录一览①函数的奇偶性②函数奇偶性的应用③函数的周期性④函数的对称性⑤函数性质的综合应用一、知识点梳理1.函数的奇偶性奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数关于y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)= -f(x),那么函数f(x)就叫做奇函数关于原点对称注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x,-x也在定义域内(即定义域关于原点对称).2.函数的对称性(1)若函数y=f(x+a)为偶函数,则函数y=f(x)关于x=a对称.(2)若函数y=f(x+a)为奇函数,则函数y=f(x)关于点(a,0)对称.(3)若f(x)=f(2a-x),则函数f(x)关于x=a对称.(4)若f(x)+f(2a-x)=2b,则函数f(x)关于点(a,b)对称.3.函数的周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么称这个最小整数叫做f(x)的最小正周期.1【常用结论】1.奇偶性技巧(1)若奇函数y=f(x)在x=0处有意义,则有f(0)=0;(2)对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇×(÷)奇=偶;奇×(÷)偶=奇;偶×(÷)偶=偶.(3)常见奇偶性函数模型奇函数:①函数f(x)=ma x+1a x-1(x≠0)或函数f(x)=m a x-1a x+1.②函数f(x)=±(a x-a-x).③函数f(x)=log a x+mx-m=log a1+2mx-m或函数f(x)=log a x-mx+m=log a1-2mx+m④函数f(x)=log a(x2+1+x)或函数f(x)=log a(x2+1-x).注意:关于①式,可以写成函数f(x)=m+2ma x-1(x≠0)或函数f(x)=m-2ma x+1(m∈R).偶函数:①函数f(x)=±(a x+a-x).②函数f(x)=log a(a mx+1)-mx2.③函数f(|x|)类型的一切函数.2.周期性技巧3.函数的的对称性与周期性的关系(1)若函数y=f(x)有两条对称轴x=a,x=b(a<b),则函数f(x)是周期函数,且T=2(b-a);(2)若函数y=f(x)的图象有两个对称中心(a,c),(b,c)(a<b),则函数y=f(x)是周期函数,且T=2(b-a);(3)若函数y=f(x)有一条对称轴x=a和一个对称中心(b,0)(a<b),则函数y=f(x)是周期函数,且T=4(b-a).4.对称性技巧(1)若函数y=f(x)关于直线x=a对称,则f(a+x)=f(a-x).(2)若函数y=f(x)关于点(a,b)对称,则f(a+x)+f(a-x)=2b.(3)函数y=f(a+x)与y=f(a-x)关于y轴对称,函数y=f(a+x)与y=-f(a-x)关于原点对称.二、题型分类精讲真题刷刷刷一、单选题1(2021·全国·高考真题)下列函数中是增函数的为()A.f x =-xB.f x =23x C.f x =x2 D.f x =3x 【答案】D【分析】根据基本初等函数的性质逐项判断后可得正确的选项.【详解】对于A,f x =-x为R上的减函数,不合题意,舍.对于B,f x =23x为R上的减函数,不合题意,舍.对于C,f x =x2在-∞,0为减函数,不合题意,舍.对于D,f x =3x为R上的增函数,符合题意,故选:D.2(2021·全国·统考高考真题)设函数f(x)=1-x1+x,则下列函数中为奇函数的是()A.f x-1-1 B.f x-1+1 C.f x+1-1 D.f x+1+1【答案】B【分析】分别求出选项的函数解析式,再利用奇函数的定义即可.【详解】由题意可得f(x)=1-x1+x=-1+21+x,对于A,f x-1-1=2x-2不是奇函数;对于B,f x-1+1=2x是奇函数;对于C,f x+1-1=2x+2-2,定义域不关于原点对称,不是奇函数;对于D,f x+1+1=2x+2,定义域不关于原点对称,不是奇函数.故选:B【点睛】本题主要考查奇函数定义,考查学生对概念的理解,是一道容易题.3(2021·全国·高考真题)设f x 是定义域为R的奇函数,且f1+x=f-x.若f-1 3=13,则f53=()A.-53B.-13C.13D.53【答案】C【分析】由题意利用函数的奇偶性和函数的递推关系即可求得f53的值.【详解】由题意可得:f53=f1+23=f-23=-f23 ,而f23=f1-13=f13 =-f-13=-13,故f53=13.故选:C.【点睛】关键点点睛:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.4(2021·浙江·统考高考真题)已知函数f(x)=x2+14,g(x)=sin x,则图象为如图的函数可能是()A.y=f(x)+g(x)-14B.y=f(x)-g(x)-14C.y =f (x )g (x )D.y =g (x )f (x )【答案】D【分析】由函数的奇偶性可排除A 、B ,结合导数判断函数的单调性可判断C ,即可得解.【详解】对于A ,y =f x +g x -14=x 2+sin x ,该函数为非奇非偶函数,与函数图象不符,排除A ;对于B ,y =f x -g x -14=x 2-sin x ,该函数为非奇非偶函数,与函数图象不符,排除B ;对于C ,y =f x g x =x 2+14sin x ,则y =2x sin x +x 2+14 cos x ,当x =π4时,y =π2×22+π216+14 ×22>0,与图象不符,排除C .故选:D .5(2022·全国·统考高考真题)如图是下列四个函数中的某个函数在区间[-3,3]的大致图像,则该函数是()A.y =-x 3+3xx 2+1 B.y =x 3-xx 2+1C.y =2x cos x x 2+1D.y =2sin x x 2+1【答案】A【分析】由函数图像的特征结合函数的性质逐项排除即可得解.【详解】设f x =x 3-x x 2+1,则f 1 =0,故排除B ;设h x =2x cos x x 2+1,当x ∈0,π2 时,0<cos x <1,所以h x =2x cos x x 2+1<2xx 2+1≤1,故排除C ;设g x =2sin x x 2+1,则g 3 =2sin310>0,故排除D .故选:A.6(2021·全国·统考高考真题)已知函数f x 的定义域为R,f x+2为偶函数,f2x+1为奇函数,则()A.f-12=0 B.f-1 =0 C.f2 =0 D.f4 =0【答案】B【分析】推导出函数f x 是以4为周期的周期函数,由已知条件得出f1 =0,结合已知条件可得出结论.【详解】因为函数f x+2为偶函数,则f2+x=f2-x,可得f x+3=f1-x,因为函数f2x+1为奇函数,则f1-2x=-f2x+1,所以,f1-x=-f x+1,所以,f x+3=-f x+1=f x-1,即f x =f x+4,故函数f x 是以4为周期的周期函数,因为函数F x =f2x+1为奇函数,则F0 =f1 =0,故f-1=-f1 =0,其它三个选项未知.故选:B.7(2022·全国·统考高考真题)已知函数f(x)的定义域为R,且f(x+y)+f(x-y)=f(x)f(y),f(1)=1,则22k=1f(k)=()A.-3B.-2C.0D.1【答案】A【分析】法一:根据题意赋值即可知函数f x 的一个周期为6,求出函数一个周期中的f1 , f2 ,⋯,f6 的值,即可解出.【详解】[方法一]:赋值加性质因为f x+y+f x-y=f x f y ,令x=1,y=0可得,2f1 =f1 f0 ,所以f0 =2,令x=0可得,f y +f-y=2f y ,即f y =f-y,所以函数f x 为偶函数,令y=1得,f x+1+f x-1=f x f1 =f x ,即有f x+2+f x =f x+1,从而可知f x+2=-f x-1,f x-1=-f x-4,故f x+2=f x-4,即f x =f x+6,所以函数f x 的一个周期为6.因为f2 =f1 -f0 =1-2=-1,f3 =f2 -f1 =-1 -1=-2,f4 =f-2=f2 =-1,f5 =f-1=f1 =1,f6 =f0 =2,所以一个周期内的f1 +f2 +⋯+f6 =0.由于22除以6余4,所以22k=1f k=f1 +f2 +f3 +f4 =1-1-2-1=-3.故选:A.[方法二]:【最优解】构造特殊函数由f x+y+f x-y=f x f y ,联想到余弦函数和差化积公式cos x+y+cos x-y=2cos x cos y,可设f x =a cosωx,则由方法一中f0 =2,f1 =1知a=2,a cosω=1,解得cosω=12,取ω=π3,所以f x =2cos π3x,则f x+y+f x-y=2cosπ3x+π3y+2cosπ3x-π3y=4cosπ3x cosπ3y=f x f y ,所以f x =2cos π3x符合条件,因此f(x)的周期T=2ππ3=6,f0 =2,f1 =1,且f2 =-1,f3 =-2,f4 =-1,f5 =1,f6 =2,所以f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0,由于22除以6余4,所以22k=1f k=f1 +f2 +f3 +f4 =1-1-2-1=-3.故选:A.【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法;法二:作为选择题,利用熟悉的函数使抽象问题具体化,简化推理过程,直接使用具体函数的性质解题,简单明了,是该题的最优解.8(2022·全国·统考高考真题)已知函数f(x),g(x)的定义域均为R,且f(x)+g(2-x)=5,g(x)-f(x-4)=7.若y=g(x)的图像关于直线x=2对称,g(2)=4,则22k=1f k =()A.-21B.-22C.-23D.-24【答案】D【分析】根据对称性和已知条件得到f(x)+f(x-2)=-2,从而得到f3 +f5 +⋯+f21=-10,f4 +f6 +⋯+f22=-10,然后根据条件得到f(2)的值,再由题意得到g3 =6从而得到f1 的值即可求解.【详解】因为y=g(x)的图像关于直线x=2对称,所以g2-x=g x+2,因为g(x)-f(x-4)=7,所以g(x+2)-f(x-2)=7,即g(x+2)=7+f(x-2),因为f(x)+g(2-x)=5,所以f(x)+g(x+2)=5,代入得f(x)+7+f(x-2)=5,即f(x)+f(x-2)=-2,所以f 3 +f 5 +⋯+f 21 =-2 ×5=-10,f 4 +f 6 +⋯+f 22 =-2 ×5=-10.因为f (x )+g (2-x )=5,所以f (0)+g (2)=5,即f 0 =1,所以f (2)=-2-f 0 =-3.因为g (x )-f (x -4)=7,所以g (x +4)-f (x )=7,又因为f (x )+g (2-x )=5,联立得,g 2-x +g x +4 =12,所以y =g (x )的图像关于点3,6 中心对称,因为函数g (x )的定义域为R ,所以g 3 =6因为f (x )+g (x +2)=5,所以f 1 =5-g 3 =-1.所以∑22k =1f (k )=f 1 +f 2 +f 3 +f 5 +⋯+f 21 +f 4 +f 6 +⋯+f 22 =-1-3-10-10=-24.故选:D【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.9(2021·全国·统考高考真题)设函数f x 的定义域为R ,f x +1 为奇函数,f x +2 为偶函数,当x ∈1,2 时,f (x )=ax 2+b .若f 0 +f 3 =6,则f 92=()A.-94B.-32C.74D.52【答案】D【分析】通过f x +1 是奇函数和f x +2 是偶函数条件,可以确定出函数解析式f x =-2x 2+2,进而利用定义或周期性结论,即可得到答案.【详解】[方法一]:因为f x +1 是奇函数,所以f -x +1 =-f x +1 ①;因为f x +2 是偶函数,所以f x +2 =f -x +2 ②.令x =1,由①得:f 0 =-f 2 =-4a +b ,由②得:f 3 =f 1 =a +b ,因为f 0 +f 3 =6,所以-4a +b +a +b =6⇒a =-2,令x =0,由①得:f 1 =-f 1 ⇒f 1 =0⇒b =2,所以f x =-2x 2+2.思路一:从定义入手.f 92=f 52+2 =f -52+2 =f -12 f -12=f -32+1 =-f 32+1 =-f 52-f 52=-f 12+2 =-f -12+2 =-f 32所以f 92=-f 32 =52.[方法二]:因为f x +1 是奇函数,所以f -x +1 =-f x +1 ①;因为f x +2 是偶函数,所以f x +2 =f -x +2 ②.令x =1,由①得:f 0 =-f 2 =-4a +b ,由②得:f 3 =f 1 =a +b ,因为f 0 +f 3 =6,所以-4a +b +a +b =6⇒a =-2,令x =0,由①得:f 1 =-f 1 ⇒f 1 =0⇒b =2,所以f x =-2x 2+2.思路二:从周期性入手由两个对称性可知,函数f x 的周期T =4.所以f 92=f 12 =-f 32 =52.故选:D .【点睛】在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果.二、多选题10(2022·全国·统考高考真题)已知函数f (x )及其导函数f (x )的定义域均为R ,记g (x )=f (x ),若f 32-2x,g (2+x )均为偶函数,则()A.f (0)=0B.g -12=0 C.f (-1)=f (4)D.g (-1)=g (2)【答案】BC【分析】方法一:转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【详解】[方法一]:对称性和周期性的关系研究对于f (x ),因为f 32-2x 为偶函数,所以f 32-2x =f 32+2x 即f 32-x =f 32+x①,所以f 3-x =f x ,所以f (x )关于x =32对称,则f (-1)=f (4),故C 正确;对于g (x ),因为g (2+x )为偶函数,g (2+x )=g (2-x ),g (4-x )=g (x ),所以g (x )关于x =2对称,由①求导,和g (x )=f (x ),得f 32-x =f 32+x ⇔-f 32-x =f 32+x ⇔-g 32-x=g 32+x ,所以g 3-x +g x =0,所以g (x )关于32,0 对称,因为其定义域为R,所以g32=0,结合g(x)关于x=2对称,从而周期T=4×2-32=2,所以g-12=g32 =0,g-1 =g1 =-g2 ,故B正确,D错误;若函数f(x)满足题设条件,则函数f(x)+C(C为常数)也满足题设条件,所以无法确定f(x)的函数值,故A错误.故选:BC.[方法二]:【最优解】特殊值,构造函数法.由方法一知g(x)周期为2,关于x=2对称,故可设g x =cosπx,则f x =1πsinπx+c,显然A,D错误,选BC.故选:BC.[方法三]:因为f32-2x,g(2+x)均为偶函数,所以f32-2x=f32+2x即f32-x=f32+x,g(2+x)=g(2-x),所以f3-x=f x ,g(4-x)=g(x),则f(-1)=f(4),故C正确;函数f(x),g(x)的图象分别关于直线x=32,x=2对称,又g(x)=f (x),且函数f(x)可导,所以g32=0,g3-x=-g x ,所以g(4-x)=g(x)=-g3-x,所以g(x+2)=-g(x+1)=g x ,所以g-1 2=g32 =0,g-1 =g1 =-g2 ,故B正确,D错误;若函数f(x)满足题设条件,则函数f(x)+C(C为常数)也满足题设条件,所以无法确定f(x)的函数值,故A错误.故选:BC.【点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.三、填空题11(2021·全国·统考高考真题)写出一个同时具有下列性质①②③的函数f x :.①f x1x2=f x1f x2;②当x∈(0,+∞)时,f (x)>0;③f (x)是奇函数.【答案】f x =x 4(答案不唯一,f x =x 2n n ∈N * 均满足)【分析】根据幂函数的性质可得所求的f x .【详解】取f x =x 4,则f x 1x 2 =x 1x 2 4=x 41x 42=f x 1 f x 2 ,满足①,f x =4x 3,x >0时有f x >0,满足②,f x =4x 3的定义域为R ,又f -x =-4x 3=-f x ,故f x 是奇函数,满足③.故答案为:f x =x 4(答案不唯一,f x =x 2n n ∈N * 均满足)四、双空题12(2022·全国·统考高考真题)若f x =ln a +11-x+b 是奇函数,则a =,b =.【答案】-12;ln2.【分析】根据奇函数的定义即可求出.【详解】[方法一]:奇函数定义域的对称性若a =0,则f (x )的定义域为{x |x ≠1},不关于原点对称∴a ≠0若奇函数的f (x )=ln a +11-x +b 有意义,则x ≠1且a +11-x≠0∴x ≠1且x ≠1+1a,∵函数f (x )为奇函数,定义域关于原点对称,∴1+1a =-1,解得a =-12,由f (0)=0得,ln 12+b =0,∴b =ln2,故答案为:-12;ln2.[方法二]:函数的奇偶性求参f (x )=ln a +11-x +b =ln a -ax +11-x +b =lnax -a -11-x+b f (-x )=ln ax +a +11+x+b∵函数f (x )为奇函数∴f(x)+f(-x)=ln ax-a-11-x +lnax+a+11+x+2b=0∴lna2x2-(a+1)2x2-1+2b=0∴a21=(a+1)21⇒2a+1=0⇒a=-12-2b=ln14=-2ln2⇒b=ln2∴a=-12,b=ln2 [方法三]:因为函数f x =ln a+1 1-x+b为奇函数,所以其定义域关于原点对称.由a+11-x≠0可得,1-xa+1-ax≠0,所以x=a+1a=-1,解得:a=-12,即函数的定义域为-∞,-1∪-1,1∪1,+∞,再由f0 =0可得,b=ln2.即f x =ln-12+1 1-x+ln2=ln1+x1-x,在定义域内满足f-x =-f x ,符合题意.故答案为:-12;ln2.题型一:函数的奇偶性策略方法判断函数奇偶性的方法(1)定义法:(2)图象法:(3)性质法:在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.1判断下列函数的奇偶性:(1)f x =x4-2x2;(2)f x =x5-x;(3)f x =3x1-x2;(4)f x =x +x.【答案】(1)偶函数(2)奇函数(3)奇函数(4)非奇非偶函数【分析】(1)利用偶函数的定义可判断函数的奇偶性;(2)利用奇函数的定义可判断函数的奇偶性;(3)利用奇函数的定义可判断函数的奇偶性;(4)利用反例可判断该函数为非奇非偶函数.【详解】(1)f x 的定义域为R,它关于原点对称.f-x=-x4-2-x2=x4-2x2=f x ,故f x 为偶函数.(2)f x 的定义域为R,它关于原点对称.f-x=-x5--x=-x5+x=-f x ,故f x 为奇函数.(3)f x 的定义域为-∞,-1∪-1,1∪1,+∞,它关于原点对称.f-x=-3x1--x2=-f x ,故f x 为奇函数.(4)f1 =1 +1=2,f-1=0,故f1 ≠f-1,f-1≠-f1 ,故f x 为非奇非偶函数.【题型训练】一、单选题1函数f x =2x-12x+1的奇偶性是()A.是奇函数,不是偶函数B.是偶函数,不是奇函数C.既是奇函数,也是偶函数D.非奇非偶函数【答案】A【分析】由奇偶性定义直接判断即可.【详解】∵f x 的定义域为R,f-x=2-x-12-x+1=12x-112x+1=1-2x1+2x=-f x ,∴f x 是奇函数,不是偶函数.故选:A.2已知奇函数f x ,当x>0时,f x =x2+x,则当x<0时,f x =() A.-x2+x B.-x2-x C.x2+x D.x2-x 【答案】A【分析】由x<0得-x>0,代入得f-x,根据奇函数即可求解.【详解】当x<0,则-x>0,则f-x=(-x)2+-x=x2-x,又f x 为奇函数,所以当x<0时,f x =-f-x=-x2+x.故选:A.3若函数f x =log2-x,x<0g x ,x>0为奇函数,则f g2=()A.2B.1C.0D.-1【答案】C【分析】由f x 为奇函数求得g x ,即可由分段函数求值.【详解】函数f x =log2-x,x<0g x ,x>0为奇函数,设x>0,则-x<0,∴f x =g x =-f-x=-log2x,∴g2 =-1,f g2=f-1=0.故选:C.4函数f x =4cos x2x-2-x的部分图象大致为()A. B.C. D.【答案】C【分析】根据函数的奇偶性排除AB,再由特殊值排除D即可得解.【详解】因为f x =4cos x2x-2-x的定义域为{x|x≠0},关于原点对称,所以f(-x)=4cos(-x)2-x-2x=4cos x2-x-2x=-f(x),即函数为奇函数,排除AB,当x=2时,f(2)=4cos222-2-2<0,排除D.故选:C二、填空题5函数y=f x 为偶函数,当x>0时,f x =ln x+x-1,则x<0时,f x =.【答案】ln-x-x-1【分析】由偶函数的定义求解.【详解】x<0时,-x>0,f(x)是偶函数,∴f(x)=f(-x)=ln(-x)-x-1,故答案为:ln(-x)-x-1.6f x =x5+100x3+x+1,若f m=-2,则f-m=.【答案】4【分析】令f x =g(x)+1,可得g(x)为奇函数,再根据奇函数的性质求解.【详解】令f x =g x +1,g x =x5+100x3+x,x∈R,则g(-x)=-g(x),g(x)为奇函数,由f(m)=g(m)+1=-2,解得g(m)=-3,所以g(-m)=3.所以f-m=g(-m)+1=3+1=4.故答案为:4.7已知函数f x 是定义在R上的奇函数,当x>0时,f x =log2x,则f x ≥-2的解集是.【答案】-4,0∪14,+∞【分析】利用奇偶性求出函数f(x)的解析式f(x)=-log2-x,x<00,x=0log2x,x>0,分类讨论即可求解.【详解】当x<0时,-x>0,所以f(-x)=log2-x,因为函数f(x)是定义在R上的奇函数,所以f(x)=-f(-x)=-log2-x,所以当x<0时,f(x)=-log2-x,所以f (x )=-log 2-x ,x <00,x =0log 2x ,x >0,要解不等式f (x )≥-2,只需x >0log 2x ≥-2 或x <0-log 2-x ≥-2 或x =00≥-2,解得x ≥14或-4≤x <0或x =0,综上,不等式的解集为-4,0∪ 14,+∞.故答案为:-4,0∪ 14,+∞.三、解答题8已知函数f x -1 =lgx 2-x(1)求函数f x 解析式;(2)判断函数f x 的奇偶性并加以证明【答案】(1)f (x )=lgx +11-x(2)奇函数,证明见解析【分析】(1)利用换元法,令t =x -1,得f (t ),从而可得f (x );(2)先求函数定义域,利用奇偶性的定义进行证明.【详解】(1)令t =x -1,则x =t +1,则f (t )=lg t +12-t -1=lg t +11-t,所以f (x )=lg x +11-x.(2)奇函数;证明:定义域为-1,1 ,因为f (-x )=lg 1-x 1+x =-lg x +11-x=-f (x ),所以f (x )为奇函数.9已知函数f x =2x -22x +2.(1)求f -1 +f 3 的值;(2)令g x =f x +1 ,求证:g x 为奇函数;(3)若锐角α满足g 1-sin α +g cos α-1 >0,求α的取值范围.【答案】(1)0(2)证明见解析(3)0,π4【分析】(1)将x =-1和x =3分别代入解析式求解即可;(2)根据奇偶性的定义证明即可;(3)根据奇偶性将不等式化为g 1-sin α >g 1-cos α ,利用单调性定义可证得g x 为R 上的增函数,由此可得sin α<cos α,结合三角函数知识可求得结果.【详解】(1)∵f -1 =12-212+2=-35,f 3 =8-28+2=35,∴f -1 +f 3 =0.(2)g x =f x +1 =2x +1-22x +1+2=2x -12x +1,则g x 的定义域为R ;∵g -x =12x -112x+1=1-2x 1+2x=-g x ,∴g x 为奇函数.(3)由g 1-sin α +g cos α-1 >0得:g 1-sin α >-g cos α-1 =g 1-cos α ;g x =2x -12x +1=2x +1-22x +1=1-22x+1,设x 1<x 2,则g x 2 -g x 1 =1-22x 2+1-1+22x 1+1=22x 2-2x 12x 1+1 2x2+1>0,∴g x 为R 上的增函数,∴1-sin α>1-cos α,即sin α<cos α,又α∈0,π2,∴α∈0,π4 .题型二:函数奇偶性的应用策略方法已知函数奇偶性可以解决的三个问题1若函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-6x ,则f (-1)=()A.-7B.-5C.5D.7【答案】C【分析】求出x <0时的解析式后,代入x =-1可求出结果.【详解】因为f (x )为奇函数,且当x >0时,f (x )=x 2-6x ,所以当x <0时,f (x )=-f (-x )=--x 2-6-x =-x 2-6x ,所以f (-1)=-1+6=5.故选:C2若函数f x =ax 2+bx +3a +b a -1≤x ≤2a 是偶函数,则a 、b 的值是()A.a =0,b =0B.a 不能确定,b =0C.a =0,b 不能确定D.a =13,b =0【答案】D【分析】根据定义域关于原点对称,求得a =13,再根据f -x =f x ,求得b 的值,即可求解.【详解】因为函数f x =ax 2+bx +3a +b a -1≤x ≤2a 是偶函数,可得a -1+2a =0,解得a =13,即f x =13x 2+bx +1+b ,又由f -x =13x 2-bx +1+b ,因为函数f x 为偶函数,则f -x =f x ,即13x 2+bx +1+b =13x 2-bx +1+b ,解得b =0.故选:D .3偶函数f x x ∈R 满足:f -4 =f 1 =0,且在区间0,3 与3,+∞ 上分别递减和递增,使f x <0的取值范围是()A.-∞,-4 ∪4,+∞B.-4,-1 ∪1,4C.-∞,-4 ∪-1,0D.-∞,-4 ∪-1,0 ∪1,4【答案】B【分析】根据题中所给条件,可画出符合全部条件的函数图象辅助做题.【详解】根据题目条件,想象函数图象如下:因为f-4=f1 =0,f x 为偶函数,所以f4 =f-1=0,所以当-4<x<-1和1<x<4时,f x <0,故选:B.【题型训练】一、单选题1(2023·全国·高三专题练习)若函数f x =2x+a2x-a为奇函数,则实数a的值为()A.1B.2C.-1D.±1【答案】D【分析】根据题意可得f-x+f(x)=0,计算可得a=±1,经检验均符合题意,即可得解.【详解】由f(x)为奇函数,所以f-x+f(x)=2-x+a2-x-a+2x+a2x-a=1+a⋅2x1-a⋅2x+2x+a2x-a=0,所以2⋅2x-2a2⋅2x=0,可得a2=1,解得a=±1,当a=-1时,f(x)的定义域为R,符合题意,当a=1时,f(x)的定义域为-∞,0∪0,+∞符合题意,故选:D2(2023·全国·高三专题练习)已知函数f x =x3+1,x>0ax3+b,x<0为偶函数,则2a+b=()A.3B.32C.-12D.-32【答案】B【分析】利用偶函数的性质直接求解即可.【详解】由已知得,当x>0时,则-x<0,即f x =x3+1,f-x=-ax3+b,∵f x 为偶函数,∴f-x=f x ,即x3+1=-ax3+b,∴a=-1,b=1,∴2a+b=2-1+1=32,故选:B.3(2023·安徽·校联考模拟预测)已知函数f(x)为R上的奇函数,当x≥0时,f(x)=e x+x+m,则f(-1)=()A.eB.-eC.e+1D.-e-1【答案】B【分析】由定义在R上的奇函数有f0 =0,求出m的值,再由f(-1)=-f(1)可得出答案.【详解】函数f(x)为R上的奇函数,则f0 =e0+0+m=0,解得m=-1f(-1)=-f(1)=-e+1-1=-e故选:B4(2023·全国·高三专题练习)定义在R上的偶函数f x 在区间0,+∞上单调递增,若f1 < f ln x,则x的取值范围是()A.e,+∞B.1,+∞C.-∞,-e∪e,+∞D.0,1 e∪e,+∞【答案】D【分析】根据偶函数及单调性解不等式即可.【详解】由题意,ln x>1,则x>e或x∈0,1 e.故选:D.5(2023春·贵州黔东南·高三校考阶段练习)已知偶函数f x 在-∞,0上单调递增,则f3-2x>f1 的解集是()A.-1,1B.1,+∞C.-∞,2D.1,2【答案】D【分析】利用偶函数的对称性可得|3-2x|<1,即可求解集.【详解】由偶函数的对称性知:f x 在-∞,0上递增,则在(0,+∞)上递减,所以|3-2x|<1,故-1<3-2x<1,可得1<x<2,所以不等式解集为1,2.故选:D6(2023·湖南长沙·湖南师大附中校考模拟预测)已知函数f(x)是定义在R上的偶函数,f(x)在[0,+∞)上单调递减,且f(3)=0,则不等式(2x-5)f(x-1)<0的解集为()A.(-∞,-2)∪52,4B.(4,+∞)C.-2,52∪(4,+∞) D.(-∞,-2)【答案】C【分析】依题意作函数图像,根据单调性和奇偶性求解.【详解】依题意,函数的大致图像如下图:因为f (x )是定义在R 上的偶函数,在[0,+∞)上单调递减,且f (3)=0,所以f (x )在(-∞,0]上单调递增,且f (-3)=0,则当x >3或x <-3时,f (x )<0;当-3<x <3时,f (x )>0,不等式(2x -5)f (x -1)<0化为2x -5>0f (x -1)<0 或2x -5<0f (x -1)>0 ,所以2x -5>0x -1>3或2x -5>0x -1<-3 或2x -5<0-3<x -1<3 ,解得x >4或x ∈∅或-2<x <52,即-2<x <52或x >4,即原不等式的解集为-2,52∪(4,+∞);故选:C .二、多选题7(2023·全国·高三专题练习)已知函数f x 在区间-5,5 上是偶函数,在区间0,5 上是单调函数,且f 3 <f 1 ,则()A.f (-1)<f (-3)B.f 0 >f (-1)C.f (-1)<f 1D.f (-3)>f 5【答案】BD【分析】根据函数的单调性和奇偶性直接求解.【详解】函数f x 在区间0,5 上是单调函数,又3>1,且f 3 <f 1 ,故此函数在区间0,5 上是减函数.由已知条件及偶函数性质,知函数f x 在区间-5,0 上是增函数.对于A ,-3<-1,故f (-3)<f (-1),故A 错误;对于B ,0>-1,故f 0 >f -1 ,故B 正确;对于C ,f -1 =f 1 ,故C 错误;对于D ,f -3 =f 3 >f 5 ,故D 正确.故选:BD .8(2023·山东菏泽·山东省东明县第一中学校联考模拟预测)已知函数f x 的定义域为R ,f x +1 为奇函数,且对∀x ∈R ,f x +4 =f -x 恒成立,则()A.f x 为奇函数B.f 3 =0C.f 12=-f 52D.f 2023 =0【答案】BCD【分析】根据函数定义换算可得f x 为偶函数,根据偶函数和奇函数性质可知f x 为周期函数,再根据函数周期性和函数特殊值即可得出选项.【详解】因为f x +1 为奇函数,所以f 1-x =-f 1+x ,故f x +2 =-f -x ,f 2-x =-f x ,又f x +4 =f -x ,所以f 2+x =f 2-x ,故f x +2 =-f -x =-f x ,所以f -x =f x ,f x 为偶函数,A 错误;f x +1 为奇函数,所以f 1 =0,f 2+x =f 2-x ,所以f 3 =f 1 =0,B 正确;f 52=f 32 ,又f x 的图象关于点1,0 对称,所以f 32 =-f 12 ,所以f 12=-f 52 ,C 正确;又f x +4 =f -x =f x ,所以f x 是以4为周期的函数,f (2023)=f (505×4+3)=f (3)=0,D 正确.故选:BCD .三、填空题9(2023·广东潮州·统考二模)已知函数f x =lnx +1x -1+m +1(其中e 是自然对数的底数,e ≈2.718⋯)是奇函数,则实数m 的值为.【答案】-1【分析】利用奇函数的性质可得出f -x +f x =0,结合对数运算可得出实数m 的值.【详解】对于函数f x =lnx +1x -1+m +1,x +1x -1>0,解得x <-1或x >1,所以,函数f x 的定义域为-∞,-1 ∪1,+∞ ,因为函数f x 为奇函数,则f -x =-f x ,即f -x +f x =0,即ln -x+1-x-1+ln x+1x-1+2m+2=ln x-1x+1+ln x+1x-1+2m+2=2m+2=0,解得m=-1.故答案为:-1.10(2023·河南周口·统考模拟预测)已知函数f x 是定义在R上的偶函数,f x 在0,+∞上单调递减,且f3 =0,则不等式f x-2x<0的解集为.【答案】-1,0∪5,+∞【分析】由题意和偶函数的性质可知函数f(x)在[0,+∞)上为减函数,在(-∞,0]上为增函数,结合f(3)=f(-3)=0,分类讨论当x<0、x>0时,利用函数的单调性解不等式即可.【详解】因为函数f(x)是定义在R上的偶函数,且在[0,+∞)上单调递减所以f(x)在(-∞,0]上为增函数,由f(3)=0,得f(-3)=0,f(x-2)x<0,当x<0时,f(x-2)>0=f(-3),有x-2<0x-2>-3,解得-1<x<0;当x>0时,f(x-2)<0=f(3),有x-2>0x-2>3,解得x>5,综上,不等式f(x-2)x<0的解集为(-1,0)∪(5,+∞).故答案为:(-1,0)∪(5,+∞).11(2023春·江苏南通·高三海安高级中学校考阶段练习)定义在R上的函数f x ,g x ,满足f2x+3为偶函数,g x+5-1为奇函数,若f1 +g1 =3,则f5 -g9 =.【答案】1【分析】根据f2x+3为偶函数、g x+5-1为奇函数的性质,利用赋值法可得答案.【详解】若f2x+3为偶函数,g x+5-1为奇函数,则f-2x+3=f2x+3,g-x+5-1=-g x+5+1,令x=1,则f-2×1+3=f2×1+3,即f1 =f5 ,令x=4,则g-4+5-1=-g4+5+1,即g1 -1=-g9 +1,又因为f1 +g1 =3,所以f5 -g9 =f1 +g1 -2=1.故答案为:1.12(2023春·福建厦门·高三厦门一中校考期中)已知函数f x 的定义域为R ,若f x +1 -2为奇函数,且f 1-x =f 3+x ,则f 2023 =.【答案】2【分析】推导出函数f x 为周期函数,确定该函数的周期,计算出f 1 的值,结合f 1 +f 3 =4以及周期性可求得f 2023 的值.【详解】因为f x +1 -2为奇函数,则f -x +1 -2=-f x +1 -2 ,所以,f 1+x +f 1-x =4,在等式f 1+x +f 1-x =4中,令x =0,可得2f 1 =4,解得f 1 =2,又因为f 1-x =f 3+x ,则f 1+x +f 3+x =4,①所以,f x +3 +f x +5 =4,②由①②可得f x +5 =f x +1 ,即f x +4 =f x ,所以,函数f x 为周期函数,且该函数的周期为4,所以,f 2023 =f 4×505+3 =f 3 =4-f 1 =2.故答案为:2.题型三:函数的周期性策略方法函数周期性的判断与应用1若函数f (x )满足f (x +2)=f (x ),则f (x )可以是()A.f (x )=(x -1)2B.f (x )=|x -2|C.f (x )=sin π2xD.f (x )=tan π2x【答案】D【分析】根据周期函数的定义,结合特例法进行判断求解即可.【详解】因为f (x +2)=f (x ),所以函数的周期为2.A :因为f (1)=0,f (3)=4,所以f (1)≠f (3),因此函数的周期不可能2,本选项不符合题意;B :因为f (2)=0,f (4)=2,所以f (2)≠f (4),因此函数的周期不可能2,本选项不符合题意;C :该函数的最小正周期为:2ππ2=4,因此函数的周期不可能2,本选项不符合题意;D :该函数的最小正周期为:ππ2=2,因此本选项符合题意,故选:D2若定义域为R 的奇函数f (x )满足f (2-x )=f (x ),且f (3)=2,则f (4)+f (1)=()A.2B.1C.0D.-2【答案】D【分析】根据函数f x 为R 的奇函数和f x 满足f (2-x )=f (x ),得到函数T =4,再结合f 3 =2求解.【详解】因为函数f x 为R 的奇函数,所以f -x =-f x ,又f x 满足f (2-x )=f (x ),所以f 2-x =-f -x ,即f 2+x =-f x ,所以f 4+x =f x ,即T =4,因为f (3)=2,f (0)=0,所以f (4)=0,f 3 =-f 1 =2,所以f (4)+f (1)=-2故选:D3已知定义在R 上的奇函数,f x 满足f (x +2)=-f (x ),当0≤x ≤1时,f x =x 2,则f 2023 =()A.2019B.1C.0D.-1【答案】D【分析】根已知条件求出f x 的周期,根据周期性以及奇函数,结合已知条件即可求解.【详解】因为f x 满足f(x+2)=-f(x),所以f(x+4)=-f(x+2)=f(x),所以f x 是周期为4的函数,当0≤x≤1时,f x =x2,所以f1 =1,又因为f x 是奇函数,f2023=-f1 =-1,=f3 =f-1=f4×505+3故选:D.【题型训练】一、单选题1(2023·内蒙古赤峰·统考模拟预测)函数y=f(x)是定义在R上奇函数,且f(4-x)=f(x),f( -3)=-1,则f(15)=()A.0B.-1C.2D.1【答案】B【分析】通过已知计算得出函数是周期为8的周期函数,则f15=f7 ,根据已知得出f(7) =f(-3)=-1,即可得出答案.【详解】∵函数y=f(x)是定义在R上奇函数,且f(4-x)=f(x),∴f4+x=-f x ,=f-x∴f4+4+x=f x ,=f8+x=-f4+x则函数y=f(x)是周期为8的周期函数,则f15=f7 ,=f15-8令x=-3,则f(4+3)=f(-3)=-1,∴f(15)=-1,故选:B.2(2023·江西南昌·校联考模拟预测)已知定义在R上的函数f x 满足f x+3=-f x ,g x =f x -2为奇函数,则f198=()A.0B.1C.2D.3【答案】C【分析】由题意推出函数f x 的周期以及满足等式f x +f-x=4,赋值求得f0 =2,利用函数的周期性即可求得答案.【详解】因为f x+3=-f x ,所以f x+6=-f x+3=f x ,所以f x 的周期为6,又g x =f x -2为奇函数,所以f x -2+f-x-2=0,所以f x +f-x=4,令x=0,得2f0 =4,所以f0 =2,所以f198=f0+6×33=f0 =2,故选:C.3(2023·全国·高三专题练习)已知定义在R上的函数f(x)的图像关于y轴对称,且周期为3,又f(-1)=1,f(0)=-2,则f(1)+f(2)+f(3)+⋯+f(2023)的值是()A.2023B.2022C.-1D.1【答案】D【分析】利用f x 的周期,根据函数的奇偶性和已知函数值,结合题意,求解即可.【详解】因为f x 的周期为3;又f-1=1,则f2 =f-1+3=f-1=1;f0 =-2,则f3 =f0+3=f0 =-2;因为函数f(x)在R上的图像关于y轴对称所以f x 为偶函数,故f1 =f-1=1,则f1 +f2 +f3 =0;故f(1)+f(2)+f(3)+⋯+f(2023)=674×0+f1 =1.故选:D.4(2023春·贵州·高三校联考期中)已知函数f x 满足f1-x=f5+x,且f x+1是偶函数,当1≤x≤3时,f x =2x+34,则f log236=()A.32B.3 C.398D.394【答案】B【分析】由函数的奇偶性和对称性,得到函数的周期,利用周期和指数式的运算规则求函数值.【详解】由f x+1是偶函数,得f x+1=f-x+1,令x+1=-t,则f-t=f t+2.由f1-x=f5+x,令1-x=-t,则f-t=f t+6,则有f t+2=f t+6,即f x =f x+4,所以函数f x 周期为4.因为5=log232<log236<log264=6,则有1<log236-4<2,所以f log236=f log236-4=f log29 4=2log294+34=94+34=3.故选:B二、多选题5(2023·全国·高三专题练习)已知函数f x 的定义域为R,∀x1,x2∈R,x2-x1=2,都有f x1+f x2=0,且f1 =1,则下列结论正确的是()A.f23=1=1 B.f-23C.f1 +f2 +f3 +f4 +f5 =1D.f x +f x+1+f x+3=0+f x+2【答案】BCD【分析】由∀x1,x2∈R,x2-x1=2,都有f x1=0,得出函数f x 是周期为4的周期函+f x2数,再利用周期性逐一选项分析即可.【详解】由x2-x1=2得x2=x1+2,则f x1=0,+f x1+2故f x1+2+f x1+4=0,所以f x1+4,=f x1所以函数f x 是周期为4的周期函数.对于A,f23=f3 =-f1 =-1,A错误;=f5×4+3对于B,f-23=f1 =1,B正确;=f-6×4+1对于C,f1 +f3 =0,f2 +f4 =0,f5 =f1 =1,所以f1 +f2 +f3 +f4 +f5 =1,C正确;对于D,f x +f x+2+f x+3=0,=0,f x+1所以f x +f x+1=0,D正确.+f x+2+f x+3故选:BCD.6(2023·全国·高三专题练习)已知偶函数f x 满足f x +f2-x=0,下列说法正确的是()A.函数f x 是以2为周期的周期函数B.函数f x 是以4为周期的周期函数C.函数f x+2为偶函数为偶函数 D.函数f x-3【答案】BC【分析】根据函数的奇偶性和周期性确定正确选项.【详解】依题意f x 是偶函数,且f x +f2-x=0,f x =-f2-x,所以A错误.=-f x-2f x =-f x-2=--f x-2-2,所以B正确.=f x-4f x+2,所以函数f x+2为偶函=f-x+2=f-x-2=f x-2+4=f x-2若f x-3是偶函数,则f x-3=f-x-3=f x+3,则函数f x 是周期为6的周期函数,这与上述分析矛盾,所以f x-3不是偶函数.D错误.故选:BC三、填空题7(2023·江西南昌·统考二模)f(x)是以2为周期的函数,若x∈[0,1]时,f(x)=2x,则f(3)=.【答案】2【分析】直接根据函数的周期性求解即可.【详解】因为f(x)是以2为周期的函数,若x∈[0,1]时,f(x)=2x,所以f3 =f1 =2.故答案为:2.8(2023·安徽合肥·二模)若定义域为R的奇函数f(x)满足f(x)=f(x+1)+f(x-1),且f(1)= 2,则f(2024)=.【答案】2【分析】利用赋值法及奇函数的定义,结合函数的周期性即可求解.【详解】由f(x)=f(x+1)+f(x-1),得f(x+1)=f(x+2)+f(x),所以f(x)-f(x-1)=f(x+2)+f(x),即-f(x-1)=f(x+2),于是有-f(x)=f(x+3),所以-f(x+3)=f(x+6),即f x =f(x+6).所以函数f(x)的周期为6.因为f(x)是定义域为R的奇函数,所以f(-0)=-f(0),即f(0)=0.令x=1,则f(1)=f(2)+f(0),解得f(2)=f(1)-f(0)=2,所以f(2024)=f(337×6+2)=f(2)=2.故答案为:2.9(2023秋·江西南昌·高三校联考阶段练习)已知定义在实数集R上的函数f x 满足f6-x=f-x,且当0<x<3时,f x =2a x+b(a>0,b>0),若f2023=3,则1a+2b的最小值为.【答案】8 3【分析】根据题意求出函数f(x)的周期为6,再利用周期得到2a+b=3,最后利用基本不等【详解】因为函数f x 满足f 6-x =f -x ,所以函数f (x )的周期为6,又因为f 2023 =3,所以f (6×337+1)=f (1)=3,因为当0<x <3时,f x =2a x +b (a >0,b >0),则有2a +b =3,所以1a +2b =131a +2b (2a +b )=134+b a +4a b≥134+2b a ⋅4a b =83当且仅当b a =4a b,即a =34,b =32时,取等号.故答案为:83.四、解答题10(2023·全国·高三专题练习)设f (x )是定义在R 上的偶函数,其图象关于直线x =1对称,对任意x 1,x 2∈0,12,都有f (x 1+x 2)=f (x 1)⋅f (x 2),且f (1)=a >0.(1)求f 12,f 14;(2)证明f (x )是周期函数;(3)记a n =f 2n +12n,求a n .【答案】(1)f 12 =a 12,f 14=a14(2)证明见解析(3)a n =a12n【分析】(1)根据题意可得f (1)=f 122、f 12 =f 14 2,结合f (1)=a >0即可求解;(2)根据抽象函数的对称性和奇偶性可得f (x )=f (x +2),x ∈R ,即可得出结果;(3)由(1)可得f 12 =f n ⋅12n =f 12n f 12n ⋅⋯⋅f 12n =f 12n n ,结合f 12=a 12和周期为2,即可求解.【详解】(1)因为对任意的x 1,x 2∈0,12,都有f (x 1+x 2)=f (x 1)f (x 2),所以f (x )=f x 2+x 2 =f x 2 f x2≥0,x ∈[0,1],又f (1)=f 12+12=f 12 f 12=f 12 2,f 12 =f 14+14 =f 14 f 14=f 14 2,f (1)=a >0,∴f 12 =a 12,f 14=a 14.(2)设y =f (x )关于直线x =1对称,故f (x )=f (1+1-x ),即f (x )=f (2-x ),x ∈R ,又f (x )是偶函数,所以f (-x )=f (x ),x ∈R ,∴f (-x )=f (2-x ),x ∈R ,将上式中-x 以x 代换,得f (x )=f (x +2),x ∈R ,则f (x )是R 上的周期函数,且2是它的一个周期.(3)由(1)知f (x )≥0,x ∈[0,1],∵f 12=f n ⋅12n =f 12n +(n -1)⋅12n =f 12n f (n -1)⋅12n=⋯=f 12n f 12n ⋅⋯⋅f 12n =f 12nn ,又f 12 =a 12,∴f 12n=a 12n.∵f (x )的一个周期是2,∴f 2n +12n =f 12n,因此a n =a 12n.题型四:函数的对称性策略方法函数图象的对称性的判断与应用1已知二次函数f x 满足f x +2 =f 2-x ,且f a <f 0 <f 1 ,则实数a 的取值范围是()A.0,2B.-∞,0C.-∞,0 ∪4,+∞D.2,+∞【答案】C【分析】由题意可知,f x 对称轴为x =2,又f x 为二次函数以及已知条件可得f x 的单调性,根据单调性即可求得实数a 的取值范围.【详解】由已知,二次函数f x 对称轴为x=2,所以有f0 =f4 .又f0 <f1 ,所以f x 在-∞,2上单调递增,在2,+∞上单调递减.当a<2时,由f a <f0 ,以及f x 在-∞,2上单调递增,可得a<0;当a≥2时,由f a <f0 =f4 ,可得f a <f4 ,又f x 在2,+∞上单调递减,所以a>4.所以,实数a的取值范围是-∞,0∪4,+∞.故选:C.2函数y=f x 在0,2上是增函数,函数y=f x+2是偶函数,则下列结论正确的是()A.f1 <f52<f72 B.f72 <f1 <f52C.f1 <f72<f52 D.f52 <f1 <f72【答案】B【分析】分析可知函数f x 的图象关于直线x=2对称,可得出f52=f32 ,f72 =f12,利用函数f x 在0,2 上的单调性可得出f12 、f1 、f32 的大小关系,即可得出结果.【详解】因为函数y=f x+2是偶函数,则f2-x=f2+x,所以,函数f x 的图象关于直线x=2对称,因为f52=f32 ,f72 =f12 ,且0<12<1<32<2,因为函数f x 在0,2上为增函数,所以,f12<f1 <f32 ,即f72 <f1 <f52 .故选:B.【题型训练】一、单选题1(2023·全国·高三专题练习)下列函数的图象中,既是轴对称图形又是中心对称的是()A.y=1xB.y=lg xC.y=tan xD.y=x3【答案】A【分析】根据反比例函数、对数函数、正切函数和幂函数图象可得结论.【详解】对于A ,y =1x图象关于y =x 、坐标原点0,0 分别成轴对称和中心对称,A 正确;对于B ,y =lg x 为偶函数,其图象关于y 轴对称,但无对称中心,B 错误;对于C ,y =tan x 关于点k π2,0k ∈Z 成中心对称,但无对称轴,C 错误;对于D ,y =x 3为奇函数,其图象关于坐标原点0,0 成中心对称,但无对称轴,D 错误.故选:A .2(2023·全国·高三专题练习)若f x 的偶函数,其定义域为-∞,+∞ ,且在0,+∞ 上是减函数,则f -2 与f 3 得大小关系是A.f -2 >f 3B.f -2 <f 3C.f -2 =f 3D.不能确定【答案】A【分析】由题意可得f -2 =f 2 ,且f 2 >f 3 ,即可得到所求大小关系.【详解】f (x )是偶函数,其定义域为(-∞,+∞),且在[0,+∞)上是减函数,则f -2 =f 2 ,且f 2 >f 3 ,则f -2 >f 3 ,故选A .【点睛】本题考查函数的奇偶性和单调性的运用:比较大小,考查运算能力,属于基础题.3(2023·四川南充·四川省南部中学校考模拟预测)定义在R 上的函数f x 满足f 2-x =f x ,且f x +2 -1为奇函数,则∑2023k =1f k =()A.-2023 B.-2022C.2022D.2023【答案】D【分析】利用抽象函数的轴对称与中心对称性的性质,得出函数f x 的对称轴和中心对称点及周期,利用相关性质得出具体函数值,即可得出结果.【详解】∵f 2-x =f x ,∴f x 关于x =1对称,∵f x +2 -1为奇函数,∴由平移可得f x 关于2,1 对称,且f 2 =1,∴f (x +2)-1=-f (-x +2)+1,即f (x +2)+f (2-x )=2∵f 2-x =f x ∴f (x +2)+f (x )=2 ∴f (x +4)+f (x +2)=2 上两式比较可得f (x )=f (x +4)。
函数对称性、周期性和奇偶性规律一、 同一函数的周期性、对称性问题(即函数自身)1、 周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。
如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。
2、 对称性定义(略),请用图形来理解。
3、 对称性:我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式)()(x f x f =-奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+)()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=-简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。
得证。
若写成:)()(x b f x a f -=+,函数)(x f y =关于直线22)()(ba xb x a x +=-++=对称 (2)函数)(x f y =关于点),(b a 对称⇔b x a f x a f 2)()(=-++b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+-简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。
得证。
若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2,2(cb a + 对称(3)函数)(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个y值与其对应,显然这不符合函数的定义,故函数自身不可能关于b y =对称。
但在曲线c(x,y)=0,则有可能会出现关于b y =对称,比如圆04),(22=-+=y x y xc 它会关于y=0对称。
4、 周期性: (1)函数)(x f y =满足如下关系系,则Tx f 2)(的周期为A 、)()(x f T x f -=+ B 、)(1)()(1)(x f T x f x f T x f -=+=+或 C 、)(1)(1)2(x f x f T x f -+=+或)(1)(1)2(x f x f T x f +-=+(等式右边加负号亦成立)D 、其他情形 (2)函数)(x f y =满足)()(x a f x a f -=+且)()(x b f x b f -=+,则可推出)](2[)]2([)]2([)2()(a b x f b x a b f b x a b f x a f x f -+=---=--+=-=即可以得到)(x f y =的周期为2(b-a),即可以得到“如果函数在定义域内关于垂直于x 轴两条直线对称,则函数一定是周期函数”(3)如果奇函数满足)()(x f T x f -=+则可以推出其周期是2T ,且可以推出对称轴为kT Tx 22+=)(z k ∈,根据)2()(T x f x f +=可以找出其对称中心为)0(kT ,)(z k ∈(以上0≠T)如果偶函数满足)()(x f T x f -=+则亦可以推出周期是2T ,且可以推出对称中心为)0,22(kT T+)(z k ∈,根据)2()(T x f x f +=可以推出对称轴为kT T x 2+=)(z k ∈ (以上0≠T )(4)如果奇函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以4T 为周期的周期性函数。
如果偶函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以2T 为周期的周期性函数。
定理3:若函数()x f 在R 上满足()x a f x a f -=+)(,且()x b f x b f -=+)((其中b a ≠),则函数()x f y =以()b a -2为周期. 定理4:若函数()x f 在R 上满足()x a f x a f --=+)(,且()x b f x b f --=+)((其中b a ≠),则函数()x f y =以()b a -2为周期. 定理5:若函数()x f 在R 上满足()x a f x a f -=+)(,且()x b f x b f --=+)((其中b a ≠),则函数()x f y =以()b a -4为周期.二、 两个函数的图象对称性1、)(x f y =与)(x f y -=关于X 轴对称。
换种说法:)(x f y =与)(x g y =若满足)()(x g x f -=,即它们关于0=y 对称。
2、)(x f y =与)(x f y -=关于Y 轴对称。
换种说法:)(x f y =与)(x g y =若满足)()(x g x f -=,即它们关于0=x 对称。
3、)(x f y =与)2(x a f y -=关于直线a x =对称。
换种说法:)(x f y =与)(x g y =若满足)2()(x a g x f -=,即它们关于a x =对称。
4、)(x f y =与)(2x f a y -=关于直线a y =对称。
换种说法:)(x f y =与)(x g y =若满足a x g x f 2)()(=+,即它们关于a y =对称。
5、)2(2)(x a f b y x f y --==与关于点(a,b)对称。
换种说法:)(x f y =与)(x g y =若满足b x a g x f 2)2()(=-+,即它们关于点(a,b)对称。
6、)(x a f y -=与)(b x y -=关于直线2ba x +=对称。
7、 函数的轴对称:定理1:如果函数()x f y =满足()()x b f x a f -=+,则函数()x f y =的图象关于直线2b a x +=对称.推论1:如果函数()x f y =满足()()x a f x a f -=+,则函数()x f y =的图象关于直线a x =对称. 推论2:如果函数()x f y =满足()()x f x f -=,则函数()x f y =的图象关于直线0=x (y 轴)对称.特别地,推论2就是偶函数的定义和性质.它是上述定理1的简化.8、 函数的点对称:定理2:如果函数()x f y =满足()()b x a f x a f 2=-++,则函数()x f y =的图象关于点()b a ,对称.推论3:如果函数()x f y =满足()()0=-++x a f x a f ,则函数()x f y =的图象关于点()0,a 对称.推论4:如果函数()x f y =满足()()0=-+x f x f ,则函数()x f y =的图象关于原点()0,0对称.特别地,推论4就是奇函数的定义和性质.它是上述定理2的简化.三、总规律:定义在R上的函数()x f y =,在对称性、周期性和奇偶性这三条性质中,只要有两条存在,则第三条一定存在。
四、试题1.已知定义为R 的函数()x f 满足()()4+-=-x f x f ,且函数()x f 在区间()+∞,2上单调递增.如果212x x <<,且421<+x x ,则()()21x f x f +的值(A ).A .恒小于0B .恒大于0C .可能为0D .可正可负.分析:()()4+-=-x f x f 形似周期函数()()4+=x f x f ,但事实上不是,不过我们可以取特殊值代入,通过适当描点作出它的图象来了解其性质.或者,先用2-x 代替x ,使()()4+-=-x f x f 变形为()()22+-=-x f x f .它的特征就是推论3.因此图象关于点()0,2对称.()x f 在区间()+∞,2上单调递增,在区间()2,∞-上也单调递增.我们可以把该函数想象成是奇函数向右平移了两个单位.1242x x -<< ,且函数在()+∞,2上单调递增,所以 ()()124x f x f -<,又由()()4+-=-x f x f ,有()[]()()1111444)4(x f x f x f x f -=+-=--=-,∴()()<+21x f x f ()()114x f x f -+()()011=-=x f x f .选A.当然,如果已经作出大致图象后,用特殊值代人也可猜想出答案为A.2:在R 上定义的函数()f x 是偶函数,且()f x (2)f x =-.若()f x 在区间[1,2]上是减函数,则()f x ( B )A.在区间[2,1]--上是增函数,在区间[3,4]上是减函数B.在区间[2,1]--上是增函数,在区间[3,4]上是减函数C.在区间[2,1]--上是减函数,在区间[3,4]上是增函数D.在区间[2,1]--上是减函数,在区间[3,4]上是增函数分析:由()(2)f x f x =-可知()f x 图象关于x 1=对称,即推论1的应用.又因为()f x 为偶函数图象关于0x =对称,可得到()f x 为周期函数且最小正周期为2,结合()f x 在区间[1,2]上是减函数,可得如右()f x 草图.故选B3.定义在R 上的函数)(x f 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程0)(=x f 在闭区间][T T ,-上的根的个数记为n ,则n 可能为( D )A.0B.1C.3D.5分析:()()0f T f T =-=,()()()()2222T T T Tf f f T f -=-=-+=,∴()()022T Tf f -==,则n 可能为5,选D.4.已知函数()x f 的图象关于直线2=x 和4=x 都对称,且当10≤≤x 时,()x x f =.求()5.19f 的值.分析:由推论1可知,()x f 的图象关于直线2=x 对称,即()()x f x f -=+22,同样,()x f 满足()()x f x f -=+44,现由上述的定理3知()x f 是以4为周期的函数.()()5.3445.19+⨯=∴f f ()5.3f =()[]()5.05.04-=-+=f f ,同时还知()x f 是偶函数,所以()()5.05.05.0==-f f .5.()()()()39821583214f x f x f x f x =-=-=-,则()0f ,()1f ,()2f ,…,()999f 中最多有( B )个不同的值.A.165B.177C.183D.199分析:由已知()()()()39821583214f x f x f x f x =-=-=-()1056f x =+()()()1760704352f x f x f x =+=+=+.又有()()()()39821583214f x f x f x f x =-=-=-()1056f x =+()21581056f x =-+⎡⎤⎣⎦()()()11021102105646f x f x f x =-=--=-,于是)(x f 有周期352,于是()()(){}0,1,,999f f f 能在()()(){}0,1,,351f f f 中找到.又)(x f 的图像关于直线23x =对称,故这些值可以在()()(){}23,24,,351f f f 中找到.又)(x f 的图像关于直线199x =对称,故这些值可以在()()(){}23,24,,199f f f 中找到.共有177个.选B.6:已知()113xf x x+=-,()()1f x f f x =⎡⎤⎣⎦,()()21f x f f x =⎡⎤⎣⎦,…,()()1n n f x f f x +=⎡⎤⎣⎦,则()20042f -=( A ).A.17-B.17C. 35-D.3分析:由()113x f x x +=-,知()1131x f x x -=+,()2131x f x f x x -⎛⎫== ⎪+⎝⎭,()()3f x f x =.)(x f 为迭代周期函数,故()()3n f x f x =,()()2004f x f x =,()()20041227f f -=-=-. 选A.7:函数)(x f 在R 上有定义,且满足)(x f 是偶函数,且()02005f =,()()1g x f x =-是奇函数,则()2005f 的值为 .解:()()()()11g x f x g x f x -=--=-=--,()()11f x f x --=--,令1y x =+,则()()2f y f y -=--,即有()()20f x f x +-=,令()n a f x =,则20n n a a -+=,其中02005a =,10a =,()20052n n n a i i ⎡⎤=+-⎣⎦,()20052005f a ==()2005200520052i i ⎡⎤+-⎣⎦0=. 或有()()2f x f x =--,得()()()()2005200320011999f f f f =-==-=()10f ==.8.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( c ) A .0B .1C .25 D .5分析:答案为B 。