有理数的加减法_合并同类项
- 格式:ppt
- 大小:844.50 KB
- 文档页数:12
《青岛版初一数学知识点全解析》数学,作为一门基础学科,在我们的学习和生活中起着至关重要的作用。
初一数学是初中数学学习的开端,为后续的学习奠定了坚实的基础。
本文将对青岛版初一数学的知识点进行全面解析。
一、有理数1. 有理数的概念有理数包括正整数、负整数、零、正分数和负分数。
可以用分数形式表示的数都是有理数。
2. 有理数的分类(1)按正负性分类:有理数可分为正有理数、零和负有理数。
(2)按整数和分数分类:有理数可分为整数和分数。
3. 数轴规定了原点、正方向和单位长度的直线叫做数轴。
数轴上的点与有理数一一对应。
4. 相反数只有符号不同的两个数叫做互为相反数。
零的相反数是零。
5. 绝对值数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值。
正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零。
6. 有理数的大小比较(1)正数大于零,零大于负数,正数大于负数。
(2)两个负数,绝对值大的反而小。
7. 有理数的加减法(1)有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为零,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同零相加,仍得这个数。
(2)有理数减法法则:减去一个数,等于加上这个数的相反数。
8. 有理数的乘除法(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘都得零。
(2)有理数除法法则:除以一个不等于零的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除;零除以任何一个不等于零的数都得零。
9. 有理数的乘方求 n 个相同因数 a 的积的运算叫做乘方,记作\(a^n\),其中a 叫做底数,n 叫做指数。
正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数,零的任何正整数次幂都是零。
二、整式的加减1. 整式的概念单项式和多项式统称为整式。
2. 单项式由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。
有理数加减法的解题步骤
一、确定符号
首先确定有理数的符号,根据有理数的分类,正有理数和负有理数。
在计算之前,要明确运算符号,即加减乘除等符号。
二、计算绝对值
对于有理数的加减法,我们首先要计算绝对值。
绝对值是指一个数到原点的距离,正数的绝对值是正数,负数的绝对值是它的相反数。
三、化简
在计算绝对值之后,我们需要进行化简。
化简的目的是使我们的计算更加简单。
我们可以将数字拆分为更小的部分,然后将这些部分相加或相减。
四、合并同类项
在化简之后,我们需要合并同类项。
同类项是指具有相同指数的项。
例如,2x和3x是同类项,因为它们都有x这个指数。
我们可以通过合并同类项来简化我们的表达式。
五、转化为整数
在进行有理数加减法时,我们通常会遇到分数或小数。
为了使我们的计算更加简单,我们可以将分数或小数转化为整数。
这可以通过乘以或除以一个适当的数来实现。
六、得出结论
经过以上步骤后,我们可以得出结论。
结论是我们通过计算得出的最终结果。
七、检验
最后一步是检验我们的答案。
我们可以重新检查我们的计算步骤,以确保我们没有犯任何错误。
如果我们发现任何错误,我们可以回到前面的步骤并重新计算。
八、总结
在完成以上步骤后,我们可以总结我们的经验。
我们可以回顾我们在计算过程中遇到的困难和挑战,并思考如何改进我们的方法。
通过这种方式,我们可以不断提高我们的数学技能。
初一数学上册第一次月考重要知识点精编第一章:有理数一、有理数基本概念1.正数与负数我们把以前学过的数大于零叫做正数。
有时在正数前面也加上“+”(正)号。
如+0.5、+3、+1/2……“+”号可以省略。
我们把在以前学过的数(0除外)前面加上负号“-”的数叫做负数。
如-3、-0.5、-2/3……0既不是正数也不是负数,0是正负数的分界。
正数与负数可以用来表示具有相反意义的量。
相反意义的量包含两个要素:一是它们的意义要相反;二是它们都具有数量。
与一个量成相反意义的量不止一个。
2.有理数正整数、0统称自然数;正整数、0、负整数统称整数;正分数和负分数统称分数。
整数和分数统称有理数整数可以看做分母为1的分数。
正整数、0、负整数、正分数、负分数都可以写成分数的形式。
可以这样说:有理数都能写成分数的形式;能写成分数(分子分母互质)形式的数是有理数.有理数的分类(两种)3.数轴规定了原点、正方向、单位长度的直线叫做数轴。
数轴的三要素:原点、正方向、单位长度任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。
数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数.4.相反数一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,他们分别在原点的左右,表示-a和a,我们说这两点关于原点对称.只有符号不同的两个数叫做互为相反数.(绝对值相等,符号不同的两个数叫做互为相反数)正数的相反数是负数,负数的相反数是正数,0的相反数是0.在一个数前面添上“-”号,表示这个数的相反数.正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
(互为相反数的两个数的绝对值相等。
)6.比较大小(1)数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
(2)方法总结:两个正数比较大小,与小学一致;正数与零比较,正数大于零;正数与负数比较,正数大于负数;负数与零比较,负数小于零;两个负数比较,绝对值大的反而小。
人教版新课标七年级上册数学教材目录第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)——合并同类项与移项3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程第四章几何图形初步4.1 几何图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状的包装纸盒第一章有理数1.1 正数与负数①正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。
2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3.4 合并同类项【提升训练】一、单选题1.某药厂计划对售价为m元的药品进行降价销售,现在有三种方案.方案一:第一次降价10%,第二次降价30%;方案二;第一次降价20%,第二次降价15%﹔方案三:第一、二次降价均为20%.三种方案哪种降价最多( )A.方案一B.方案二C.方案三D.不能确定【答案】A【分析】根据题意分别表示出降价后的售价,然后用原售价﹣降价后的售价,再比较大小即可.【详解】解:方案一:m﹣(1﹣10%)(1﹣30%)m=m﹣63%m=37%m,方案二:m﹣(1﹣20%)(1﹣15%)m=m﹣68%m=32%m,方案三:m﹣(1﹣20%)(1﹣20%)m=m﹣64%m=36%m,∵m>0,∵37%m>36%m>32%m,∵方案一降价最多,故选:A.【点睛】此题主要考查了列代数式和合并同类项,关键是正确理解题意,列出代数式.2.下列说法正确的个数有()∵﹣0.5x2y3与5y2x3是同类项∵单项式2323x yπ-的次数是5次,系数是23-∵倒数等于它本身的数有1,相反数是本身的数是0∵2223a b a-+是四次三项式A.1个B.2个C.3个D.4个【答案】A【分析】根据同类项的定义、单项式的次数与系数的定义、倒数与相反数的定义、多项式的定义逐个判断即可得.【详解】∵230.5x y -与235y x 中的x 和y 的次数都不相同,不是同类项,说法错误;∵单项式2323x y π-的次数是5次,系数是23π-,说法错误; ∵倒数等于它本身的数有±1,相反数是本身的数是0,说法错误;∵2223a b a -+是四次三项式,说法正确;综上,说法正确的个数有1个,故选:A .【点睛】本题考查了同类项、单项式的次数与系数、倒数与相反数、多项式,熟记各定义是解题关键.3.若13x y a b -+-与452y a b 是同类项,则xy =( ) A .6B .18C .3D .12 【答案】B【分析】根据同类项所含字母相同,并且相同字母的指数也相同,可得出x 、y 的值,代入即可得出代数式的值.【详解】∵13x y a b -+-与452y a b 是同类项, ∵14x y -+=,3y =,解得:6x =,3y =,∵6318xy =⨯=,故选:B .【点睛】本题考查了同类项,掌握同类项所含字母相同,并且相同字母的指数也相同,是解答此类题目的关键. 4.已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .6【答案】C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩,故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细.5.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2B .3C .4D .5 【答案】B【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值.【详解】解:∵132n x y +与4313x y 是同类项, ∵n+1=4,解得,n=3,故选:B.【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.6.下列各式中运算正确的是( )A .43m m -=B .220a b ab -=C .33323a a a -=D .2xy xy xy -=- 【答案】D【分析】根据合并同类项得到4m -m=3m ,2a 3-3a 3=-a 3,xy -2xy=-xy ,于是可对A 、C 、D 进行判断;由于a 2b 与ab 2不是同类项,不能合并,则可对B 进行判断.【详解】解:A 、4m -m=3m ,所以A 选项错误;B 、a 2b 与ab 2不能合并,所以B 选项错误;C 、2a 3-3a 3=-a 3,所以C 选项错误;D 、xy -2xy=-xy ,所以D 选项正确.故选:D .【点睛】本题考查了合并同类项:把同类项的系数相加减,字母和字母的指数不变.7.下列运算正确的是( ).A .459a b ab +=B .66xy xy xy -=C .3366410a a a +=D .22880a b ba -= 【答案】D【分析】根据合并同类项的法则结合选项进行求解,注意只有同类项才能合并,然后选出正确选项.【详解】解:A 、4a 和5b 不是同类项,不能合并,故本选项计算错误;B 、65xy xy xy -=,故本选项计算错误;C 、3336410a a a +=,故本选项计算错误;D 、222288880a b ba a b a b -=-=,故本选项正确.故选:D .【点睛】本题考查了合并同类项的知识,解答本题的关键是掌握合并同类项的法则.8.如果2313a x y +与3213b x y --是同类项,那么a ,b 的值分别是( ). A .1,2B .0,2C .2,1D .1,1 【答案】A【分析】根据同类项定义可知:所含字母相同,相同字母的指数也相同,即两单项式中x 的指数相同,y 的指数也相同,列出关于a 与b 的两个方程,求出方程的解即可得到a 与b 的值.【详解】∵2313a x y +与−3x 3y 2b−1是同类项, ∵a+2=3,2b -1=3,解得:a=1,b=2,则a ,b 的值分别为1,2.故选:A .【点睛】此题考查了同类项的定义,弄清同类项必须满足两个条件:1、所含字母相同;2、相同字母的指数分别相同,同类项与系数无关,与字母的排列顺序无关,所有的常数项都是同类项.另外注意利用方程的思想来解决数学问题.9.下列运算中正确的是( )A .235a b ab +=B .220a b ba -=C .32534a a a +=D .22321a a -=【答案】B【分析】根据同类项的定义和合并同类项的法则解答.【详解】解:A 、2a 与3b 不是同类项,不能合并,故本选项错误;B 、原式=0,故本选项正确;C 、a 3与3a 2不是同类项,不能合并,故本选项错误;D 、原式=a 2,故本选项错误.故选B .【点睛】此题考查了合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.10.若8x m y 与6x 3y n 的和是单项式,则m +n 的值为( )A .4B .8C .-4D .-8 【答案】A【分析】根据几个单项式的和仍是单项式,可得它们是同类项,再根据同类项是所含字母相同且相同字母的指数也相同,可得m 、n 的值,再代入计算可得答案.解:由8x m y 与6x 3y n 的和是单项式,得:m=3,n=1.所以m+n=3+1=4.故选A .【点睛】本题考查同类项,解题关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.11.下列计算正确的是( )A .5a 2b 7ab +=B .325a 3a 2a -=C .2224a b 3ba a b -=D .224113y y y 244--=- 【答案】C【分析】根据合并同类项法则逐一进行计算即可判断.【详解】A 、原式不能合并,错误;B 、原式不能合并,错误;C 、原式=a 2b ,正确;D 、原式=-34y 2,错误, 故选C .【点睛】本题考查了合并同类项,熟练掌握合并同类项法则是解本题的关键.12.下列各组中的两项,不是同类项的是( )A .3x 与-5yB .0与7-C .6xy 与1xy 2-D .22x y -与23x y【答案】A【分析】根据同类项的概念即可求出答案.【详解】3x 与5y -不是同类项,故选A .本题考查同类项的概念,解题的关键还是熟练运用同类项的概念,本题属于基础题型.13.下列判断中正确的是( )A .3a 2bc 与bca 2不是同类项B .单项式﹣x 3y 2的系数是﹣1C .3x 2﹣y+5xy 2是二次三项式D .35m n 不是整式 【答案】B【分析】根据同类项概念和单项式的系数以及多项式的次数的概念分析判断【详解】解:A 、3a 2bc 与bca 2是同类项,故错误;B 、单项式﹣x 3y 2的系数是﹣1,正确;C 、3x 2﹣y+5xy 2是3次3项式,故错误;D 、35m n 是整式,故错误; 故选B【点睛】主要考查了整式的有关概念.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法. 14.下列计算正确的是( ∵A .235m n mn +=B .22423x x x +=C .220a b ba -+=D .3()3a b a b +=+【答案】C【分析】根据整式的加减运算逐一判断可得.【详解】A. 2323?m n m n +=+,不能合并同类项,故错误;B. 22223x x x +=,故错误;C. 220a b ba -+=,正确;D. ()333a b a b +=+,故错误.【点睛】本题考查的是整式的加减,熟练掌握合并同类项是解题的关键.15.若单项式2x 3y 2m 与∵3x n y 2的差仍是单项式,则m+n 的值是( )A .2B .3C .4D .5 【答案】C【分析】根据合并同类项法则得出n=3∵2m=2,求出即可.【详解】∵单项式2x 3y 2m 与-3x n y 2的差仍是单项式,∵n=3∵2m=2∵解得:m=1∵∵m+n=1+3=4∵故选C∵【点睛】本题考查了合并同类项和单项式,能根据题意得出n=3∵2m=2是解此题的关键.16.下列各组单项式中,不是同类项的一组是∵ ∵A .2x y 和22xyB .3xy 和2xy -C .25x y 和22yx -D .23-和3【答案】A【分析】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.【详解】根据题意可知:x 2y 和2xy 2不是同类项.故答案选:A.【点睛】本题考查了单项式与多项式,解题的关键是熟练的掌握单项式与多项式的相关知识点.17.合并同类项m ﹣3m+5m ﹣7m+…+2013m 的结果为( )A .0B .1007mC .mD .以上答案都不对【分析】m 与-3m 结合,5m 与-7m 结合,依此类推相减结果为-2m,得到503对-2m 与2013m 之和,计算即可得到结果.【详解】解:m ﹣3m+5m ﹣7m+…+2013m=-2m -2m -2m...-2m+2013m=-2m×503+2013m=1007m.故选B.【点睛】本题考查了合并同类项,根据题意弄清式子的规律是解本题的关键.18.若单项式a m ∵1b 2与212n a b 的和仍是单项式,则n m 的值是( ) A .3B .6C .8D .9 【答案】C【详解】分析:首先可判断单项式a m -1b 2与12a 2b n 是同类项,再由同类项的定义可得m∵n 的值,代入求解即可. 详解:∵单项式a m -1b 2与12a 2b n 的和仍是单项式, ∵单项式a m -1b 2与12a 2b n 是同类项, ∵m -1=2∵n=2∵∵m=3∵n=2∵∵n m =8∵故选C∵点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.19.下列运算结果正确的是( )A .5x∵x=5B .2x 2+2x 3=4x 5C .∵4b+b=∵3bD .a 2b∵ab 2=0 【答案】C【解析】A.5x ∵x =4x ,错误;B.2x 2与2x 3不是同类项,不能合并,错误;C.∵4b +b =∵3b ,正确;D.a 2b ∵ab 2,不是同类项,不能合并,错误;20.下列运算正确的是∵ ∵A .43m m -=B .33323a a a -=-C .220a b ab -=D .2yx xy xy -=【答案】B【解析】A. 43m m m -= ,错误;B. 33323a a a -=- ,正确;C. 22a b ab 与 不是同类项,不能合并,故错误;D. 2yx xy xy -=-,错误,故选B.21.若﹣x 3y a 与x b y 是同类项,则a+b 的值为( )A .2B .3C .4D .5 【答案】C【详解】试题分析:已知﹣x 3y a 与x b y 是同类项,根据同类项的定义可得a=1,b=3,则a+b=1+3=4.故答案选C . 考点:同类项.22.已知m∵n 为常数,代数式2x 4y∵mx |5-n|y∵xy 化简之后为单项式,则m n 的值共有( ) A .1个B .2个C .3个D .4个 【答案】C【分析】根据题意可得m=-1∵|5-n|=1或m=-2∵|5-n|=4,求出m∵n 的值,然后求出m n 的值即可.【详解】∵代数式2x 4y∵mx |5-n|y∵xy 化简之后为单项式,∵化简后的结果可能为2x 4y ,也可能为xy∵当结果为2x 4y 时,m=-1∵|5-n|=1∵解得:m=-1∵n=4或n=6∵则m n =∵-1∵4=1或m n =∵-1∵6=1∵当结果为xy 时,m=-2∵|5-n|=4∵解得:m=-2∵n=1或n=9∵则m n =∵-2∵1=-2或m n =∵-2∵9=-29∵综上,m n 的值共有3个,故选C.【点睛】本题考查了合并同类项,解答本题的关键是掌握合并同类项的法则.23.下列各题结果正确的是( )A .220y y --=B .22219910a b ba a b -=C .(6)6x x --=--D .2752x x x -=【答案】B【分析】根据整式的加减运算法则即可判断.【详解】A. 2222y y y --=-,故错误;B. 22219910a b ba a b -=,故正确;C. (6)+6x x --=-,故错误;D. 752x x x -=,故错误;故选B【点睛】本题考查整式的加减,解题的关键是熟知合并同类项法则.24.如果单项式232n x y -与37m x y 是同类项,则m n -的值是( )A .3B .2C .1D .1- 【答案】C【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可求得m ,n 的值,继而可求得m -n .【详解】解:∵单项式232n x y -与37m x y 是同类项,∵m=2,3n=3,∵n=1∵m -n=2-1=1.故选:C .【点睛】本题考查了同类项,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同. 25.下列计算正确的是( )A .321b b -=B .23545a a a +=C .3(2)32a b a b --=-+D .222352a b ba ba -=- 【答案】D【分析】根据合并同类项法则、去括号法则对各式计算得到结果,即可作出判断.【详解】解:A 、原式=b ,不符合题意;B 、原式不能合并,不符合题意;C 、原式=-3a+6b ,不符合题意;D 、原式=-2ba 2,符合题意.故选:D .【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.26.下面的说法正确的是( )A .单项式2ab -的次数是2次B .335ab 的系数是3C .22x y -与22xy 是同类项D .13x x++不是多项式 【答案】D【分析】根据单项式的次数与系数的定义、同类项的定义、多项式的定义逐项判断即可得.【详解】A 、单项式2ab -的次数是3次,此项错误;B 、335ab 的系数是35,此项错误;C 、22x y -与22xy 所含字母相同,但相同字母的指数均不同,不是同类项,此项错误;D 、13x x++不是多项式,此项正确; 故选:D .【点睛】本题考查了单项式与多项式、同类项,熟记各定义是解题关键.27.下列各式中,与233x y 是同类项的是( )A .52xB .323y xC .323x yD .513y - 【答案】B【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可.【详解】解:A 、2x 5与3x 2y 3不是同类项,故本选项错误;B 、323y x 与3x 2y 3是同类项,故本选项正确;C 、323x y 与3x 2y 3不是同类项,故本选项错误;D 、513y -与3x 2y 3不是同类项,故本选项错误; 故选:B .【点睛】本题考查了同类项的知识,解答本题的关键是理解同类项的定义.28.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6 【答案】C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=,解得:3{0a b ==,所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.29.下列运算结果正确的是( )A .(-69)+9=7B .0+(-1)= 1C .2x+3x=5xD .-a -a=0【答案】C【分析】直接利用有理数的加减运算法则和合并同类项法则分别判断得出答案.【详解】解:A. (-69)+9=-60,故此选项错误;B. 0+(-1)=-1,故此选项错误;C.2x+3x=5x ,结果计算正确;D.-a -a=-2a ,故此选项错误;故选:C .【点睛】此题主要考查了有理数的加减法和合并同类项,熟练掌握运算法则是解答此题的关键.30.已知24n m n x y +与623x y -是同类项,那么mn =( )A .1-B .3-C .1D .3 【答案】B【分析】根据同类项的定义中相同字母的指数也相同,可求出m ,n .【详解】解:∵24n m n x y +与623x y -是同类项,∵2n=6,m+n=2.解得,m=-1,n=3,∵mn=-3,故选:B .【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.二、填空题31.写出32xyz 的一个同类项:_____________.【答案】35xyz -(答案不唯一)【分析】根据同类项的定义分析,即可得到答案.【详解】32xyz 的一个同类项为:35xyz -故答案为:35xyz -(答案不唯一).【点睛】本题考查了同类项的知识,解题的关键是熟练掌握同类项的定义,从而完成求解.32.若单项式﹣2x1﹣m y 3与2213n x y -是同类项,则m n =_____. 【答案】1.【分析】根据同类项的定义列方程即可.【详解】解:因为单项式﹣2x 1﹣m y 3与2213n x y -是同类项, 所以,1﹣m=2,213n -=,解得,m=-1,2n =,m n =(-1)2=1;故答案为:1.【点睛】本题考查了同类项的定义和乘方运算,解题关键是理解同类项的定义,根据相同字母的指数也相同列方程. 33.若单项式22m x y 与3n x y -是同类项,则m n +=____________________.【答案】5【分析】根据同类项的定义得出n=2,m=3,代入求出即可.【详解】解:∵单项式22m x y 与3n x y -是同类项,∵n=2,m=3,∵m+n=5,故答案为:5.【点睛】本题考查了对同类项的定义的应用,注意:同类项是指:所含字母相同,并且相同字母的指数也分别相等的项.34.若53323343a b x y x y x y +--+=-,则ab 的值________.【答案】2【分析】直接利用合并同类项法则得534a x y +-与32b x y -为同类项,可得出a ,b 的值进而得出答案.【详解】解:∵53323343a b x y x y x y +--+=-,∵a +5=3,2-b =3,解得:a =﹣2,b=-1故ab =2.故答案为:2.【点睛】此题主要考查了同类项,合并同类项,正确把握合并同类项的定义是解题关键.35.单项式12m a b -与212n a b -的和仍是单项式,则m n 的值是________. 【答案】8-【分析】根据题意可知这两个单项式是同类项,根据同类项的定义可求m 、n ,代入计算即可.【详解】解:单项式12m a b -与212n a b -的和仍是单项式, 说明这两个单项式是同类项,∵12m -=,m=3;2n -=,n=-2,3(2)8m n =-=-,故答案为:8-.【点睛】本题考查了同类项的定义,解题关键是理解题目中隐含的两个单项式是同类项,依据同类项的定义列方程.三、解答题36.如果单项式5mx 3y 与﹣5nx 2a ﹣3y 是关于x 、y 的单项式,且它们是同类项.求(1)(7a ﹣22)2017的值;(2)若5mx 3y ﹣5nx 2a ﹣3y =0,且xy ≠0,求(5m ﹣5n )2018的值.【答案】(1)-1;(2)0【分析】(1)根据同类项是字母相同且相同字母的指数也相同,可得关于a 的方程,解方程,可得答案;(2)根据合并同类项,系数相加字母部分不变,可得m 、n 的关系,根据0的任何整数次幂都得零,可得答案.【详解】解:(1)由单项式5mx 3y 与﹣5nx 2a ﹣3y 是关于x 、y 的单项式,且它们是同类项,得3=2a ﹣3,解得a =3,∵(7a ﹣22)2017=(7×3﹣22)2017=(﹣1)2017=﹣1;(2)由5mx 3y ﹣5nx 2a ﹣3y =0,且xy ≠0,得5m ﹣5n =0,解得m =n ,∵(5m ﹣5n )2018=02018=0.【点睛】本题考查了同类项,利用了同类项的定义,负数的奇数次幂是负数,零的任何正数次幂都得零. 37.设A =33-ax bx ,B =328--+ax bx ,(1)求A+B ;(2)当x =-1时,A+B=10,求代数式962b a -+的值【答案】(1)32ax 3bx 8-+;(2)8【分析】(1)根据合并同类项的性质计算,即可得到答案;(2)根据含乘方的有理数混合运算、代数式的性质计算,即可得到答案.【详解】(1)∵A =33-ax bx ,B =328--+ax bx∵333328238ax bx ax bx ax A B bx +---+=-+=;(2)∵x =-1时,A+B=10∵()()32131823810a b a b ---+=-++=∵322b a -=∵()96233223228b a b a -+=-+=⨯+=.【点睛】本题考查了合并同类项、含乘方的有理数混合运算、代数式的知识;解题的关键是熟练掌握合并同类项、含乘方的有理数混合运算、代数式的性质,从而完成求解.38.对于任意实数a ,b ,定义一种新的运算公式:3a b a b ⊕=-,如()()616319⊕-=-⨯-=. (1)计算:()124⎛⎫-⊕- ⎪⎝⎭; (2)已知()15103a b b a ⎛⎫+⊕-=- ⎪⎝⎭,求+a b 的值.【答案】(1)234;(2)-5 【分析】 (1)结合题意,根据有理数混合运算的性质计算,即可得到答案;(2)结合题意,通过合并同类项计算,即可得到答案.【详解】(1)()124⎛⎫-⊕- ⎪⎝⎭ ()1324=--⨯- 164=-+ =234; (2)∵()15103a b b a ⎛⎫+⊕-=- ⎪⎝⎭∵153103a b b a ⎛⎫+--=- ⎪⎝⎭∵2210a b +=-∵5a b +=-.【点睛】本题考查了有理数运算、合并同类项的知识;解题的关键是熟练掌握有理数混合运算、合并同类项的性质,从而完成求解.39.(1)若单项式2122m a b --与3n ab -的和仍是单项式,求m ,n 的值;(2)若多项式1132n n m x x x ---+可化为六次二项式,求2231n m -+的值.【答案】(1)1m =,5n =;(2)55或52【分析】(1)根据题意,这两个单项式为同类项,则它们的字母相同,相同字母的指数也相同,即可求出m 和n 的值;(2)分情况讨论,13n x -和12-m x 是同类项或n x 和12-m x 是同类项,根据多项式是六次二项式,求出m 和n 的值,再代入求值.【详解】解:(1)两个单项式的和还是单项式,则这两个单项式为同类项,∵211m -=,23n =-,解得1m =,5n =;(2)若13n x -和12-m x 是同类项,则原式15n n x x -=-,此时11m n -=-,即m n =,∵它是六次二项式,∵6n =,则6m =,22231263617218155n m -+=⨯-⨯+=-+=;若n x 和12-m x 是同类项,则原式13n n x x -=+,此时1n m =-,∵它是六次二项式,∵6n =,则7m =,22231263717221152n m -+=⨯-⨯+=-+=.【点睛】本题考查同类项,多项式的项数和次数的定义,解题的关键是利用分类讨论的思想进行求解. 40.认真计算,并写清解题过程(1)22114145x x x x +----(2)()3253(2)25+--+⨯⨯- (3)5831241524⎛⎫⎛⎫-⨯⨯-⨯ ⎪ ⎪⎝⎭⎝⎭ (4)()()4.5 5.29.6 6.4-+----【答案】(1)2106x -;(2)4;(3)124;(4)12.9- 【分析】(1)根据整式加减法的性质计算,即可得到答案;(2)根据含乘方的有理数混合运算性质计算,即可得到答案;(3)根据有理数乘法的性质计算,即可得到答案;(4)根据有理数加减法的性质计算,即可得到答案.(1)()()22221114415106114145x x x x x x x =-+----+---=-; (2)()3253(2)25+--+⨯⨯-()282016204=⨯-+=-+= (3)5831241524⎛⎫⎛⎫-⨯⨯-⨯ ⎪ ⎪⎝⎭⎝⎭1319824⎛⎫=-⨯-= ⎪⎝⎭ (4)()()4.5 5.29.6 6.4 4.5 5.29.6 6.4-+----=---+19.3 6.412.9=-+=-.【点睛】本题考查了有理数和整式运算的知识;解题的关键是熟练掌握整式加减法、含乘方的有理数混合运算的性质,从而完成求解.41.已知:f (x )=2x ﹣1,当x =﹣2时,f (﹣2)=2×(﹣2)﹣1=﹣5.(1)求f (﹣0.5)的值;(2)若单项式9x m y 3与单项式4x 2y n 之和同样是单项式,求f (m )﹣f (n )的值;(3)求式子()()()()f 1f 2f 2009f 20091++++的值. 【答案】(1)-2;(2)-2;(3)20092 【分析】(1)把x =﹣0.5代入f (x )计算即可求出值;(2)根据题意得到两单项式为同类项,确定出m 与n 的值,代入原式计算即可求出值;(3)归纳总结得到一般性规律,原式化简后计算即可求出值.【详解】解:(1)∵f (x )=2x ﹣1,∵f (﹣0.5)=2×(-0.5)-1=﹣1﹣1=﹣2;(2)∵单项式9x m y 3与单项式4x 2y n 之和同样是单项式,∵m =2,n =3,则原式=f (2)﹣f (3)=2×2-1-(2×3-1)=3﹣5=﹣2;(3)∵f (1)=1,f (2)=3,f (3)=5,…,f (2009)=4018﹣1=4017,∵原式21354017200920094017140182++++===+.此题考查了合并同类项,单项式,以及规律型:数字的变化类,熟练掌握运算法则是解本题的关键.42.若关于x,y的单项式2ax m y与5bx2m﹣3y是同类项,且a,b不为零.(1)求(4m﹣13)2009的值.(2)若2ax m y+5bx2m﹣3y=0,且xy≠0,求2a3ba5b-+的值.【答案】(1)-1;(2)16 5 -【分析】根据同类项的定义列出方程,求出m的值.(1)将m的值代入代数式计算.(2)将m的值代入2ax m y+5bx2m﹣3y=0,且xy≠0,得出2a+5b=0,即a=﹣2.5b.代入求得2a3ba5b-+的值.【详解】解:∵单项式2ax m y与5bx2m﹣3y是同类项,且a,b不为零.∵m=2m﹣3,解得m=3(1)将m=3代入,(4m﹣13)2009=﹣1.(2)∵2ax m y+5bx2m﹣3y=0,且xy≠0,∵(2a+5b)x3y=0,∵2a+5b=0,a=﹣2.5b.∵2a3b16 a5b5-=-+【点睛】本题考查了同类项的应用,注意同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同,是易混点.43.已知4x2m y3+n与﹣3x6y2是同类项,求多项式0.3m2n15-mn2+0.4n2m﹣m2n12+nm2的值.【答案】12 5【分析】根据同类项的概念即可求出m与n的值,然后将原式化简即可求出答案.【详解】由题意可知:2m =6,3+n =2,∵m =3,n =﹣1,∵原式=(0.3﹣112+)m 2n+(15-+0.4)mn 2 15=-m 2n 15+mn 2 15=-⨯32×(﹣1)15+⨯3×(﹣1)2 125= 【点睛】本题考查同类项的概念,涉及代入求值,合并同类项等知识.44.合并下列多项式中的同类项.(1)5a 2+2ab ﹣3b 2﹣ab+3b 2﹣5a 2;(2)6y 2﹣9y+5﹣y 2+4y ﹣5y 2.【答案】(1)ab ;(2)﹣5y+5【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,求解即可.【详解】解:(1)5a 2+2ab ﹣3b 2﹣ab+3b 2﹣5a 2=(5﹣5)a 2+(2﹣1)ab+(3﹣3)b 2=ab ;(2)6y 2﹣9y+5﹣y 2+4y ﹣5y 2=(6﹣1﹣5)y 2﹣(9﹣4)y+5=﹣5y+5.【点睛】本题考查了合并同类项的知识,解答本题的关键是掌握合并同类项的法则.45.己知单项式134b a x y +与单项式625b x y --是同类项,c 是多项式253mn m n ---的次数. (1)a =___________,b =___________,c =___________;(2)若关于x 的二次三项式2ax bx c ++的值是3,求代数式2201926x x --的值.【答案】(1)1;3;2 ;(2)2017【分析】(1)根据同类项的定义列得a+1=2,6-b=b ,分别求出a 及b 的值,再根据多项式的次数的定义求出c ; (2)由(1)求出232x x ++=3,得到23x x +=1,再代入计算即可.【详解】(1)∵单项式134b a x y +与单项式625b x y --是同类项, ∵a+1=2,6-b=b ,解得a=1,b=3,∵c 是多项式253mn m n ---的次数.∵c=2,故答案为:1,3,2;(2)由题意知2ax bx c ++=3,∵a=1,b=3,c=2,∵232x x ++=3,∵23x x +=1,∵2201926x x --=220192(3)x x -+=2019-2=2017.【点睛】此题考查同类项的定义,多项式的次数的定义,已知代数式的值求整式的值,正确计算是解题的关键. 46.如果关于x 、y 的两个单项式32a mx y 和44b nx y -是同类项(其中0xy ≠)(1)求a 、b 的值;(2)如果这两个单项式的和为0,求2021(21)m n --的值.【答案】(1)a=4,b=3;(2)1-.【分析】(1)直接利用同类项的定义得出a ,b 的值;(2)利用两个单项式的和为0,得出m -2n 的值,进而得出答案.【详解】解:(1)∵关于x 、y 的两个单项式32a mx y 和44b nx y -是同类项(其中xy≠0),∵a=4,b=3;(2)∵434324mx y nx y -=0,∵2m -4n=0,∵m -2n=0,∵2021(21)m n --=2021(1)-=1-.【点睛】此题主要考查了合并同类项及乘方计算,正确把握同类项的定义是解题关键.47.(1)合并同类项:23593a b a b -+--.(2)化简,并求值:22113333a abc c a c +--+,其中16a =-,2b =,3c =-. 【答案】(1)7123a b --;(2)abc ,1.【分析】(1)依据合并同类项法则合并同类项即可;(2)先合并同类项,再代值计算即可.【详解】解:(1)原式=(25)(39)3a b ++---=7123a b --;(2)原式=211(33)()33a abc c -++-+ =abc 当16a =-,2b =,3c =-, 原式=12(3)16-⨯⨯-=. 【点睛】本题考查整式的加减.主要考查合并同类项,合并同类项时字母以及字母指数不变,系数相加即可. 48.22254263m n mn mn m n mn -+-++【答案】224m n mn mn ++【分析】根据合并同类项的法则解答即可.解:原式=()()22256234m n m n mn mn mn -++-++=224m n mn mn ++. 【点睛】本题考查了合并同类项的知识,属于基础题目,熟练掌握合并的法则是解题的关键.49.一家住房的结构如下图所示,房子的主人打算把卧室以外的部分都铺上地板砖,至少需要多少平方米的地板砖?如果这种地板砖的价格为a 元/平方米,那么购买地板砖至少需要多少元?【答案】至少需要11xy 平方米的地板砖,至少需要11xya 元.【分析】分别求出卫生间、厨房、客厅的面积即可得所需的地板砖面积;根据单价求出花费的钱数即可.【详解】由题意得:(42)(42)24y x x x x y y x y --+-+⋅,28xy xy xy =++,11xy =(平方米),则购买地板砖至少需要花费的钱数为11xya 元,答:至少需要11xy 平方米的地板砖,购买地板砖至少需要11xya 元.【点睛】本题考查了列代数式、整式的加减法,依据题意,正确列出代数式是解题关键.50.若3a m bc 2和﹣2a 3b n c 2是同类项,求3m 2n ﹣[2mn 2﹣2(m 2n +2mn 2)]的值.【答案】51.【分析】原式去括号合并得到最简结果,利用同类项的定义求出m 与n 的值,代入原式计算即可求出值.原式=3m 2n ﹣2mn 2+2m 2n+4mn 2=5m 2n+2mn 2,∵3a m bc 2和﹣2a 3b n c 2是同类项,∵m =3,n =1,则原式=45+6=51.【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解题的关键.51.若单项式122m x y --与45m x y -是同类项,求22321m m m m --+-的值.【答案】-1【分析】首先利用同类项的定义列出等式,求得m 的值,再代入代数式求值即可.【详解】解:由题意得:124m m -=-, 解得12m =-, 22321m m m m --+-=221m m +- =2112122⎛⎫⎛⎫⨯-+-- ⎪ ⎪⎝⎭⎝⎭=1-.【点睛】本题考查了同类项以及代数式求值,解答本题的关键是掌握同类项定义中的相同字母的指数相同的概念. 52.(1)计算:31716(2)3+÷-⨯(2)合并同类项:222262x y xy x y x y +--【答案】(1)11;(2)223x y xy +.【分析】(1)先算乘方,再计算乘除,最后计算加法;(2)直接利用合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.【详解】解:(1)原式=1716(8)317(2)311+÷-⨯=+-⨯=.(2)222222623x y xy x y x y x y xy +--=+【点睛】本题考查有理数的混合运算、合并同类项法则,正确掌握运算法则是解题关键.53.已知A=22x −3x 2y −1,B=32x −2x 2y ,C=5x 2y ,(1)当x=−2,y=3,求A+B+C 的值;(2)若x 、y 为整数,试取出一组x ,y 的值,使得A -B+C 的值为偶数.【答案】(1)19;(2)当x=1,y=2时,原式=14.【分析】(1)先根据合并同类项法则化简得出A+B+C 的最简结果,再代入求值即可;(2)根据合并同类项法则化简得出A -B+C 的最简结果,再选择两个可使A -B+C 的值为偶数的整数计算即可.【详解】(1)∵A=22x −3x 2y −1,B=32x −2x 2y ,C=5x 2y ,∵A+B+C=22x −3x 2y −1+32x −2x 2y +5x 2y=5x 2-1,当x=-2,y=3时,A+B+C=5x 2-1=5×4-1=19.(2)∵A=22x −3x 2y −1,B=32x −2x 2y ,C=5x 2y ,∵A -B+C=22x −3x 2y −1-(32x −2x 2y )+5x 2y=22x −3x 2y −1-32x +2x 2y +5x 2y=-x 2+4x 2y -1,当x=1,y=2时,原式=-x 2+4x 2y -1=-1+16-1=14.【点睛】本题考查整式的加减,熟练掌握合并同类项法则是解题关键.54.合并同类项:(1)5237x y x y +--(2) 22335237a ab a ab ---++【答案】(1)2x -5y ;(2)a 2+2【分析】(1)先运用加法交换律移项,然后再合并同类项即可完成解答;(2)先运用加法交换律移项,然后再合并同类项即可完成解答.【详解】解:(1)5237x y x y +--=(5x -3x )+(2y -7y )=2x -5y(2) 22335237a ab a ab ---++=()()()22323375a a ab ab -+-+- =22+a【点睛】本题考查了运用加法交换律以及合并同类项,识别同类项并合并是解答本题的关键.55.合并同类项:(1)2231253x x x x ---+-(2)()()2221231a a a a -+--+ 【答案】(1)226x x +-;(2)22a a --+【分析】(1)根据合并同类项的法则,即可求出答案.(2)先去括号,然后根据合并同类项的法则,即可求出答案.【详解】解:(1)2231253x x x x ---+-=226x x +-;(2)()()2221231a a a a -+--+ =22212333a a a a -+-+-=22a a --+.【点睛】本题考查合并同类项,涉及去括号法则.解题的关键是熟练掌握运算法则进行计算.56.化简:(1)﹣12x+6y ﹣3+10x ﹣2﹣y ;(2)﹣2(a 3﹣3b 2)+(﹣b 2+a 3).【答案】(1)﹣2x+5y ﹣5;(2)﹣a 3+5b 2.【分析】(1)合并同类项后,所得项的系数是合并前各同类项系数的和,且字母部分不变;据此化简即可; (2)先去括号,再根据合并同类项法则化简即可.【详解】(1)﹣12x+6y ﹣3+10x ﹣2﹣y=﹣2x+5y ﹣5.(2)﹣2(a 3﹣3b 2)+(﹣b 2+a 3)=﹣2a 3+6b 2﹣b 2+a 3=﹣a 3+5b 2.【点睛】本题考查合并同类项,合并同类项后,所得项的系数是合并前各同类项系数的和,且字母部分不变;熟练掌握合并同类项法则是解题关键.57.阅读下面第(1)题的解答过程,填全过程然后解答第(2)题.(1)已知552m n x y +-与234m n x y -是同类项,求m n +的值.解:根据同类项的定义,可知x 的指数相同,即:5m n += . y 的指数也相同,即3m n -= . 所以:(5)(3)25m n m n ++-=+,即:222()7m n m n +=+=所以:m n += .(2)已知37m n x y -与331112m n x y +- 是同类项,求2m n +的值.【答案】(1)2,5,72;(2)522m n += 【分析】 (1)根据同类项的定义,即可列出方程解答;(2)根据(1)的解题方法,结合同类项的概念直接进行计算.【详解】解:(1)根据同类项的定义,可知x 的指数相同,即:52m n +=. y 的指数也相同,即35m n -=. 所以:(5)(3)25m n m n ++-=+,即:222()7m n m n +=+= 所以:72m n +=. 故答案为:2,5,72; (2)根据同类项的定义,可知x 的指数相同,即:33m n -=. y 的指数也相同,即3117m n +=. 所以:(3)(311)37m n m n -++=+,即:484(2)10m n m n +=+= 所以:522m n +=. 【点睛】本题考查了同类项的概念以及代数式求值,解题的关键是注意类比方法的运用.58.某校发起了“保护流浪动物”行动,七年级两个班的105名学生积极参与,踊跃捐款,已知甲班有13的学生每人捐了10元,乙班有25的学生每人捐了10元,两个班其余学生每人捐了5元,设甲班有学生x 人. (1)用含x 的代数式表示两班捐款的总额;(结果要化简)(2)计算当x =45,两班共捐款多少元?【答案】(1)13753x -+;(2)720元. 【分析】(1)设甲班有学生x 人,则乙班有学生(105-x )人,分别表示出每班捐款10和5元的总数,求和并化简即可;(2)根据(1)中所求代数式,把x=45代入求值即可.【详解】(1)设甲班有学生x 人,∵两个班共有学生105人,∵乙班人数为105-x ,∵两班捐款的总额是:121210(105)10(1)5(1)(105)53535x x x x ⨯+⨯-⨯+-⨯+-⨯-⨯ 10104204315333x x x =+-++- 1375()3x =-+元. (2)当x=45时,11375=45375=-15+735=72033x -+-⨯+(元). 答:两班共捐款720元.【点睛】本题考查列代数式及整式的加减,根据题意,分别表示出每班捐款10和5元的总数的代数式并熟练掌握合并同类项法则是解题关键.59.合并同类项(1)a -4(2a -b)-2(a+2b) (2)x -y -(5x -4y)【答案】(1)-9a .(2)-4x+3y .【分析】原式去括号合并即可得到结果,注意合并同类项,系数相加字母和字母的指数不变,根据法则即可求解.【详解】解:(1)原式=a -8a+4b -2a -4b=-9a .(2)x -y -(5x -4y )=x -y -5x+4y=(1-5)x+(-1+4)y=-4x+3y .【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.60.综合题,求解下列各题:(1)两个单项式523xm n 与﹣5m y ﹣1n 6是同类项,求解x 和y ; (2)两个单项式m |3x ﹣2|n |y+1|与2m 4n 6﹣|2y ﹣1|是同类项,求解x 和y ;。
人教版七年级数学上册目录及知识点汇总集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)人教版新课标七年级上册数学教材目录第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)——合并同类项与移项3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程第四章几何图形初步4.1 几何图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状的包装纸盒第一章有理数1.1 正数与负数①正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。
2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
初中一年级数学知识点总结第二章有理数及其运算1、有理数的分类正有理数有理数零负有理数或整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
任何一个有理数都可以用数轴上的一个点来表示。
解题时要真正掌握数形结合的思想,并能灵活运用。
4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
6、有理数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
7、有理数的运算:(1)五种运算:加、减、乘、除、乘方(2)有理数的运算顺序先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
(3)运算律加法交换律加法结合律乘法交换律乘法结合律乘法对加法的分配律第三章字母表示数1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
3、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。
4、去括号法则(1)括号前是“+”,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。
(2)括号前是“﹣”,把括号和它前面的“﹣”号去掉后,原括号里各项的符号都要改变。
5、整式的运算:整式的加减法:(1)去括号;(2)合并同类项。
第四章平面图形及其位置关系1、线段:绷紧的琴弦,人行横道线都可以近似的看做线段。
线段有两个端点。
2、射线:将线段向一个方向无限延长就形成了射线。
射线有一个端点。
第一章 有理数1.2有理数1.2.1有理数 1.有理数的两种分类 (1)按数域(或范围)分类:(2)按正负分类:2.非负数及非正数的概念(1)非负数:正数和0(或不是负数的数)叫做非负数. (2)非正数:负数和0(或不是正数的数)叫做非正数. 1.2.2数轴1.数轴的定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴.2.数轴的三要素: 原点、正方向、单位长度.1.2.3相反数1.相反数的定义(有两种定义方法):(1)只有符号不同的的两个数叫做互为相反数.举例,-2和2 (2)绝对值相等,符号相反的两个数叫做互为相反数. 举例, |3||3|=- 2.相反数的两个特点:(1)互为相反数的两个数的和等于0.如,2+(-2)=0 用公式表示:若a 和b 互为相反数,则a+b=0. (2)互为相反数的两个非零数的商等于-1. 如,313-=-用公式表示:若非零数a 和b 互为相反数, 1(0,0)a a b b =-≠≠则.典型考点: 若两个非零数a 、b 互为相反数,c 、d 互为倒数。
求a a b cd b+++的值。
1.2.4绝对值1.绝对值的定义(有两种定义方法):(1)几何定义:数轴上表示数a 的点到原点的距离叫做数a 的绝对值.记作|a|.在几何定义.....里., “绝对值”即“|a|”应理解为“距离” 或“长度”.如, “|10|”的意义是在数轴上表示10的点到原点的距离;又如“|-7|”的意义是在数轴上表示-7的点到原点的距离. (2)代数定义:① 一个正数的绝对值等于它本身.如, |10|=10 公式: 如果a >0,那么|a|=a.② 0的绝对值等于0(或它本身). 如, |0|=0 公式: 如果a=0,那么|a|=0.③一个负数的绝对值等于它的相反数.如, |-7|=7 公式: 如果a <0,那么|a|=-a.通过绝对值的代数定义,可归纳出下面的结论:|a|=-a.|a|=a.⑤由a≤0④由a≥0|a|=-a.③由a <0|a|=0.②由a=0|a|=a.①由a >0典型考点:⑴当a 时, a=a;⑵当a 时, a=-a;⑶已知|x-5| = x-5,则x的取值范围是;⑷已知|a-3| = 3- a ,则a的取值范围是.2.绝对值的非负性在代数定义里......,“绝对值”即“|a|”应理解为“一个数”,并且这个“数”不可能是负数. 或说这个“数”是非负数,即|a|≥0.重要结论:若多个非负数的和为0,则每个非负数均为0.典型考点:⑴若|x+2|+|y-3|=0,则2x2-y+1= .⑵已知2-a与2+b互为相反数.则a+b= .3.有理数的大小比较(1)正数大于负数,0大于负数.自己举例说明:(2)两个负数,绝对值大的反而小. 自己举例说明:(3)在数轴上,右边的数总是大于左边的数.1.3有理数的加减法1.3.1有理数的加法1.有理数的加法法则:(1)同号的两数相加,取相同的符号,并把绝对值相加.(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.(3)互为相反数的两个数相加得零.2.(1)加法交换律:两个数相加,交换加数的位置,和不变.公式:a+b=b+a.(2)加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,公式:(a+b)+c=a+(b+c)注:要恰当地运用结合律,否则就越用越繁.1.3.2有理数的减法有理数的减法的法则:减去一个数,等于加上这个数的相反数.公式:()-=+-a b a b注:减去一个负数时一定要转化为加法后再进行计算.如, 4-(-6)=4+6=111.4有理数的乘除法1.4.1有理数的乘法1.有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘.(2)任何数与0相乘,都得0.2.(1)定义:乘积为1的两个数叫做互为倒数.如,3×13=1,就说3和13互为倒数.又如,因为(12-)×(2-)=1, 所以12-和2-互为倒数.显然: 0没有倒数.填表:(2)①互为倒数的两个数的积为1.②1和-1的倒数等于它本身.③0没有倒数.④互为倒数的两个数的符号相同.(3)乘法的三个运算律:①乘法交换律:②乘法结合律:③分配律:1.4.2有理数的除法1. 有理数除法的运算法则:除以一个不等于0的数,等于乘以这个数的倒数.公式:1(0)a b a bb÷=⨯≠2. 有理数除法的符号法则:(1)两个数相除,同号得正,异号得负,并把绝对值相除.(1)0除以一个不等于0的数,都得0.运用法则填表练习:用“>”或“<”或“=”填空:(1)如果a<0,b>0,则a⋅b 0, a0.b(2) 如果a>0,b<0,则a⋅b 0, a0.b(3) 如果a<0,b<0,则a⋅b 0, a0.b(4) 如果a=0,b≠0,则a⋅b 0, a0.b1.5有理数的乘方1.5.1乘方1.乘方的定义:一般地,n个相同的因数a相乘,即a·a·…·a,记作a n,读作a的n次方.求n个相同因数的积......的运算,叫做乘方,乘方的结果叫做幂.在a n中,a叫做底数,n 叫做指数,当a n看作a的n次方的结果时,也可读作a的n次幂.说明:(1)一个数可以看作是这个数本身的一次方,通常省略指数1不写;如,1=88(2)因为a n就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算;如,322228=⨯⨯=(3)乘方是一种运算,幂是乘方运算的结果.2. 根据有理数的乘法法则得出有理数乘方的符号规律:(1)负数的奇次幂是负数,负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-a n和(a-b)n=-(b-a)n , 当n为正偶数时: (-a)n =a n 和(a-b)n=(b-a)n .(2)正数的任何次幂都是正数;(3)0的任何次幂都是0.填表由填表发现:(1)0的任何次方都都等于0.即00(nn =为任何数)(2)①1-的偶次方等于1, 即2(1)1(n n -=为正整数);②1-的奇次方等于1-, 即21(1)1(n n +-=-为正整数). (3) ①2(3)-和23-的读法不同,结果也不同.②22()3-、22()3-和223-的读法不同,结果也不同.3.偶次方的非负性:任何数的偶次方都是非负数.即 20()n a n ≥为正整数典型考点: (重要结论:若多个非负数的和为0,则每个非负数均为0.)1. 已知22(3)(2)0a b -++=,则b a += .2. 已知2|2|(3)0a b -++=,则a b b -= .4.有理数混合运算顺序(1)先乘方,再乘除,最后加减; (2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.1.5.2科学计数法 1.5.3近似数1.科学计数法的定义:一般地,10的n 次幂,在1的后面有n 个0,这样就可用10的幂表示一些大数,如, 6 100 000 000=6.1×1 000 000 000=6.1×910.象上面这样把一个大于10的数记成a ×n 10的形式,其中a 是整数数位只有一位的数,这种记数法叫做科学记数法.其中1≤a <10的数,n 的值等于整数部分的位数减1. 2.用科学记数法表示一个数时应注意:(1)首先要确定这个数的整数部分的位数.或说先找到这个数的小数点位置; (2)将这个数的小数点移到第一个不为0的数字后面;(3)在科学记数法中,10的指数比原数的整数位数少1。