百米高墩外翻内爬模施工工法
- 格式:docx
- 大小:22.58 KB
- 文档页数:8
桥梁高墩墩身滑模、翻模、爬模施工工艺(一)引言概述:桥梁高墩的施工工艺对于保证桥梁的安全性和稳定性具有重要作用。
本文将介绍桥梁高墩滑模、翻模和爬模施工工艺的相关内容。
滑模、翻模和爬模是常用的桥梁高墩施工方法,它们分别适用于不同的墩身结构类型。
在正文中,我们将详细介绍这三种工艺的施工步骤和主要特点,并提供相关施工注意事项。
正文:一、滑模工艺1. 基槽准备工作:清理基坑、测量基坑尺寸、布置护坡和排水系统。
2. 墩身模板制作:根据设计要求制作适用于滑模的墩身模板。
3. 模板安装:安装墩身模板,包括竖向支撑和横向连接。
4. 混凝土浇筑:在模板内浇筑混凝土,采用分段浇筑方法进行。
5. 模板拆除:待混凝土强度达到规定要求后,进行模板的拆除。
二、翻模工艺1. 基槽准备工作:同滑模工艺。
2. 墩身模板制作:根据设计要求制作适用于翻模的墩身模板。
3. 模板安装:安装墩身模板,包括竖向支撑和横向连接。
4. 墩身翻转:使用专业设备将模板与已浇筑混凝土的墩身一起翻转,完成新的墩身浇筑。
5. 模板拆除:待混凝土强度达到规定要求后,进行模板的拆除。
三、爬模工艺1. 基槽准备工作:同滑模工艺。
2. 墩身模板制作:根据设计要求制作适用于爬模的墩身模板。
3. 模板安装:将墩身模板分段安装在墩身上,并利用升降设备使其逐段上移。
4. 混凝土浇筑:在墩身模板上逐段浇筑混凝土,保持模板的稳定。
5. 模板拆除:待混凝土强度达到规定要求后,进行模板的拆除。
总结:滑模、翻模和爬模是桥梁高墩施工中常用的三种工艺,它们各自适用于不同墩身结构类型。
滑模工艺适用于平底墩,翻模工艺适用于柱段变形大的墩身,爬模工艺适用于悬臂墩。
无论采用哪种工艺,都需要严格按照工艺要求进行操作,确保施工质量和安全。
为了保证桥梁的稳定性和使用寿命,还需加强监测和维护工作。
墩身爬模施工工艺工法1 前言1.1 工艺工法概况液压自爬模是现浇高耸钢筋混凝土结构的一项较为先进的施工工艺。
它包括预埋件系统、模板系统、爬架系统及动力爬升系统四部分。
在施工中由于模板及爬架系统的提升动力不同引起施工操作的变化。
常见的有:液压式、牛腿顶升式及模板和爬架互为依托交替爬升等多种形式。
1.2 工艺原理把已浇筑的混凝土墩阶段为承力主体,以预埋爬锥为支撑点、液压顶升系统为动力,推动爬架及模板系统交替上升。
随着模板内不断浇筑混凝土和绑扎钢筋,动力系统不断提升模板系统来完成墩身的混凝土施工。
2 工艺工法特点2.1 结构简单,加工方便,制造成本低。
2.2 爬架刚度大,工作平台稳定、可靠,不易发生扭转,墩身线形易于控制。
2.3 液压提升系统自动化程度高,操作简便,施工速度快,劳动强度低。
3 适用范围本工法适用于铁路和公路桥梁不同形式、不同坡率及变坡高墩施工。
也可用于水塔、烟囱等高耸构筑物的施工。
4 主要技术标准《公路桥涵施工技术规范》(JTJ041)《公路斜拉桥设计规范》(JTJ027)《公路桥涵钢结构及木结构设计规范》(JTJ025)《钢结构工程施工质量验收规范》(GB50205)《公路工程质量检验评定标准》(JTGB80-1)《铁路桥涵施工规范》(TB 10203)《铁路桥涵工程施工质量验收标准》(TB 10415)5 施工方法将工作平台经爬架装置支承于墩身模板上,并用穿心式千斤顶将其提升至一定高度(一般为一节模板高度)。
平台上悬挂吊架,在吊架上进行模板的拆卸、提升、安装及钢筋绑扎等作业。
混凝土的灌注、捣固、吊架移动及中线控制等作业则在工作平台上进行。
对空心高墩,模板采用的是大块钢模板或小块钢模板组拼成的大块模板,内模采用小块定型钢模和木模组拼,内外模加固,采用内撑外拉。
通过在已浇节段混凝土的预留件(或预留孔)安装托架来锁定模板下端,利用模板爬架动力提升模板,实现墩身混凝土的逐节浇筑。
6 工艺流程及操作要点6.1 施工工艺流程空心高墩爬模施工工艺流程见图1。
超高空心墩“内滑外爬” 整体提升施工工法超高空心墩内滑外爬整体提升施工工法一、前言超高空心墩是一种特殊形式的桥墩,由于其高度较高,传统的施工方法存在诸多困难。
因此,超高空心墩内滑外爬整体提升施工工法应运而生。
本文将详细介绍该工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析以及一个工程实例。
二、工法特点超高空心墩内滑外爬整体提升施工工法的特点主要包括以下几个方面:1.工艺先进:采用特殊的内滑外爬工法,使得施工过程更加高效、准确。
2.施工周期短:相比传统工法,内滑外爬整体提升施工工法能够大大缩短施工周期,提高工程进度。
3.施工成本低:由于采用了整体提升的方法,节省了辅助支撑与拆除的时间与费用。
4.施工安全性高:通过内滑外爬的方式施工,减少了墩身的高空作业,降低了高空作业的风险。
5.适应范围广:适用于各种形状、规格和高度的超高空心墩的施工。
三、适应范围超高空心墩内滑外爬整体提升施工工法适用于各类桥梁、高速公路、轨道交通等需要建设超高空心墩的工程项目。
其适应范围广泛,可以满足不同工程的施工需求。
四、工艺原理内滑外爬整体提升施工工法的核心原理是将墩身分段制作,运用特殊的滑动装置使得内部的墩段滑动到预定的位置,然后通过外部的爬升装置将墩段顺利提升到最终的位置并与其他墩段连接。
这种工法能够保证整个施工过程的稳定性和准确性。
五、施工工艺施工工艺主要包括墩身分段制作、滑动、外爬、固定和连接等多个阶段。
具体流程如下:1.墩身分段制作:根据设计要求,将墩身划分为若干个适宜尺寸的墩段。
2.滑动:利用内部设备使得墩段在内部滑动到预定位置。
3.外爬:通过外部爬升装置将墩段整体提升到合适高度。
4.固定和连接:将墩段与其他墩段进行固定和连接,形成完整的墩身。
六、劳动组织劳动组织是保证施工顺利进行的重要因素。
在施工过程中,需要制定合理的施工进度,安排好人员的工作任务,合理配置劳动力资源,确保施工安全和质量。
高墩爬模施工方案1、爬模施工1.1、模板体系施工1)、模板组装施工①、常用模板拼装工具有:手电钻、开孔器、钻头、批头、电刨、电锯、曲线锯、锯片、墨斗、铅笔、卷尺、角尺、电锯、靠尺、线坠、油漆刷、灰刀、毛笔、扳手、胶枪、气钉枪、气钉等。
②、辅助材料有:油漆、玻璃胶、原子灰、自攻螺钉、铁钉、钢丝等③、拼装平台模板拼装采取模板正面打自攻螺钉,拼装平台要求高度200-400mm,可选用“工”字钢,或者槽钢搭设平台;要求操作平台搭设牢固、安全、平稳,对应的各构件平行而且确保在同一水平面上,对角线长度保持一致。
④、组装背楞用套管支撑在两片槽钢中间,螺栓穿过槽钢上的的孔和套管把它们连接成整体背楞。
每组背楞所需的套管数量及连接位置均由设计图纸指出(过程如下图)。
⑤、放置背肋按照图纸所示间距把背楞排放在搭设平台上,在背楞上画上定位线,拉准对角线,让任意两条背楞构成的长方形对角线相等。
⑥、木梁组装按图纸尺寸,先在背楞两端各放一根木工字梁,画上定位线,拉准对角线,让两根木梁构成的长方形对角线相等,然后用连接爪螺栓固定。
这两根木工字梁的同一端连上一根细线,作为基准线,其他木梁都对齐这根基准线排放,并保证与两边的木梁平行,把每根木梁用连接爪固定。
在固定连接爪的时候,将要装吊钩的木梁两侧都要用连接爪,两边的木梁连接爪要固定在木梁内侧,其余的木梁连接爪的方向交错放置。
最后按图纸尺寸装上吊钩。
特别注意,在选择安装吊钩的木梁时,距吊钩孔距离最近的木梁腹板指接缝应该大于1.5米;安装吊钩时,要用一块钢板和吊钩夹紧木梁,然后用螺栓固定,钢板的大小尺寸和孔位与吊钩的钢板一样。
⑦、模板组装⑧、打对拉螺杆或埋件孔根据图纸模板拉杆孔的大小,给手电钻装好相应的开孔器。
按图纸孔位,用墨斗弹好线,确定孔在模板上的位置,要求孔的上下、左右位置偏差在2㎜以内。
注意,保证电钻与模板面垂直,打好的孔无偏斜现象。
每个孔的内壁、孔沿上刷好两遍油漆,防止模板渗水膨胀。
高墩爬模内模体系整体提升施工工法一、前言高墩爬模内模体系是一种先进的施工工法,通过采用特殊的内模结构和施工工艺,可以提高施工效率、降低施工成本,并且提高了施工质量。
本文将对该工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析和工程实例进行详细介绍。
二、工法特点高墩爬模内模体系具有以下几个显著的特点:1. 提高施工效率:采用高墩的结构设计,可以减少施工过程中的拆模和搭模次数,从而大大缩短了施工周期。
2. 降低施工成本:内模体系采用模板的工艺,减少了现场拆模所需的人力和时间,同时减少了模板材料的消耗,可以有效降低施工成本。
3. 提高施工质量:采用内模的方式可以保证模板固定的稳定性,减少了模板拆卸和安装过程中的误差,避免了施工质量的风险。
4. 环保节能:内模体系采用可回收的材料制作,不仅减少了对自然资源的消耗,还减少了施工过程中的能耗和废弃物的产生。
三、适应范围高墩爬模内模体系适用于各类建筑工程,特别适用于高层建筑和大跨度结构的施工。
也适用于需要快速施工、工程周期紧张的项目。
四、工艺原理高墩爬模内模体系的工艺原理是通过在施工现场搭建高墩结构,然后在高墩内部搭建模板,完成混凝土浇筑后,继续向上爬模,进行下一层的施工。
在具体施工中,需要采取一系列的技术措施,如使用高强度的内模材料、设置稳定的模板支撑装置等,以确保施工的稳定性和质量。
五、施工工艺高墩爬模内模体系的施工工艺包括以下几个阶段:准备阶段、高墩搭建阶段、内模搭建阶段、混凝土浇筑阶段、爬模阶段和拆模阶段。
在每个阶段,需要按照施工顺序进行详细的操作,同时注意施工过程中的质量控制和安全措施。
六、劳动组织高墩爬模内模体系的施工需要合理的劳动组织,包括人员配备、工作计划和工作协调等。
特别需要注意的是施工人员的技能培训和安全意识培养,以确保施工过程中人员的安全和施工质量的稳定。
七、机具设备高墩爬模内模体系的施工过程需要使用特定的机具设备,包括高墩支撑装置、升降设备、模板安装工具等。
高墩墩身爬模施工工法摘要:本文介绍了高墩墩身爬模施工工法,该工法是一种高质量、高效率的建筑模板施工方法,适用于各类高墩墩身的施工。
引言:在现代建筑中,高墩墩身具有承重性能强、抗风抗震能力好等优点,因此被广泛应用于各类建筑工程中。
高墩墩身的施工过程中,如何确保施工质量和提高施工效率成为了施工方面的关键问题。
高墩墩身爬模施工工法是一种解决这一问题的有效方法,本文将详细介绍该施工工法的原理和实施步骤。
一、高墩墩身爬模施工工法的原理高墩墩身爬模施工工法是通过在高墩墩身的结构上设置模板支撑体系,利用悬挑模板和滚轮系统实施施工。
该施工方法能够确保模板的平稳移动和施工质量的优良。
二、施工准备工作在实施高墩墩身爬模施工工法之前,需要做一系列的准备工作:1.确定施工方案:根据具体施工需求和建筑设计要求,制定详细的施工方案,明确施工的步骤和工期。
2.选择适用的模板:根据高墩墩身的尺寸和要求选择合适的模板,确保模板的质量和稳定性。
3.搭建支撑体系:根据施工方案,搭建适当的支撑体系,确保模板能够平稳移动。
4.购买和配置必要的设备:购买和配置必要的设备和工具,如悬挑模板和滚轮系统等,用于实施高墩墩身的爬模施工。
三、高墩墩身爬模施工工法的步骤1.安装模板支撑体系:根据施工方案,安装模板支撑体系,确保支撑体系的稳定性和可靠性。
2.安装悬挑模板:将悬挑模板按照设计要求和施工方案安装在墩身上。
3.调整模板水平:利用水平仪等工具调整模板的水平度,确保模板的平整和稳定。
4.安装滚轮系统:在高墩墩身的上部安装滚轮系统,以实现模板的平稳移动。
5.移动模板:通过滚轮系统控制模板的移动方向和速度,逐步移动模板至所需位置。
6.固定模板:当模板移动到目标位置后,使用固定装置固定模板,确保模板的稳定性。
7.拆除旧模板:在固定好新模板后,拆除旧模板,清理施工现场。
8.重复以上步骤:根据施工方案,重复以上步骤,逐步施工高墩墩身,直至完工。
四、高墩墩身爬模施工工法的优势1.保证施工质量:高墩墩身爬模施工工法能够确保施工质量的可控性和稳定性,减少施工中的误差和隐患。
高墩滑模、爬模、翻模的施工工艺滑动模板施工空心高墩可采用滑模提升法施工,滑模施工具有施工进度快,工程质量好、施工安全、劳动强度低、便于操作等优点。
1、基本构造:滑模由模板结构,提升设备,配套设备三大部份组成,其中模板结构按滑模设计图加工制作。
2、施工工艺和原理3、滑模组装与提升滑模拼装按先内后外,先上后下的原则进行,具体步骤如下:搭设组拼平台、拼装内钢环、安装辐射梁、安装外钢环安装内外立柱、上下联轩、安装扁担梁、安装收坡装置、安装内外模板、安装套管千斤顶、安装悬杆、安装操作台铺板、栏杆、调模板锥度、壁厚丝杆安装测量装置、插顶杆、安装内外吊脚手、安装养护装置安装照明电源、试滑排故障、钢筋绑扎、灌注底层砼、初滑升、收坡、放预埋件、观测调整、正常循环、模板未次提升,收坡调整未次灌注砼拆除模板。
(砼施工工艺)a、配合比设计与控制优选水泥品种和干净的中砂及级配良好的粗骨料有利于提高砼的和易性与墩身表面的平整度,施工所选用的砼配合比既要能满足设计强度的要求并具备有早强和良好的和易性等特点,能适应滑模施工的工艺要求,宜选用低塑性砼等,陷度在2~4cm,并加速凝剂,初凝时间控制在2h 以内。
b、气温影响下的施工控制气温对滑模提升的施工影响很大,要使模板达到正常提升,既要保证砼不流溢、表面不拉裂、还要保证顶杆不失稳、截面不变形、整个滑模系统安全滑升,为此,气温降低时必须改善砼施工条件,既要保证砼具有一定的强度,又要保证顶杆套管顺利抽拔,并严格控制滑模的施工速度。
c、修补与养生砼脱模后,由于模板的接缝不平或砼表面毛裂等情况,必须及时修补,派专人抹光压实,或用同等级的砼砂浆补平压光,脱模后的砼根据气温条件及时养护。
施工控制与纠偏滑模施工是一种快速连续的施工方法,在施工过程中要完成模板收坡,截面变化、钢筋绑扎、砼灌注等系列工序,对各工序应严格按规范及工艺细则进行控制。
a、标高与水平控制每次起顶前后,值班技术人员用水准仪及时监测标高及水平,作出记录,当液压油顶不同步、不水平时,应即时调整,误差控制在允许范围内。
桥梁高墩墩身施工工艺一高墩滑模施工工艺滑模施工因其进度快、节省投资且特别适用于高桥墩施工而受到青睐。
采用滑升模板施工,不仅可以提高施工质,还可以降低施工成本,缩短了工期,加快工程进度。
桥梁工程高墩身液压滑升模板施工工艺采用高墩桥梁方案道路跨越深沟宽谷时的有效措施,既可以保证线路顺畅,又可以节省投资。
近些年来,滑模施工技术在我国桥梁建中得到广泛应用。
1 滑模组装(1) 在桥墩基础顶面上将混凝土凿毛清洗,接长竖向主筋,绑扎提升架横梁以下的横向结构筋。
搭设枕木垛,定出桥墩中心线。
(2) 在枕木垛上按设计要求安装模板和提升架,将套管固定在提升架横梁下部。
继续安装操作平台、千斤顶及顶杆等。
顶杆需穿过千斤顶心孔到达基础顶面。
(3) 提升整个系统,撤去枕木垛,将模板下落就位,再安装其他设施。
注意套管底部与基础表面要接触紧密,并用砂浆将周围围起来,以免灰浆漏进套管内。
外吊脚手架应在滑模提升适当高度后安装。
2 浇注墩身混凝土滑模施工宜采用低流动或半干硬性混凝土,坍落度控制在6〜8cm o分层均匀对称浇注混凝土,分层浇注厚度为20〜30 cm ,浇注后混凝土表面距模板上缘的距离宜控制在 10 〜 15 cm o 混凝土浇筑应在前一层混凝土凝结前进行,同时采用插入式振捣器进行捣固o 振捣器插入前一层混凝土的深度不应超过5 cm ,避免振捣器触及钢筋、顶杆和模板,禁止在模板滑升时振捣混凝土。
混凝土出模强度应控制在0.2〜0 . 4 MPa 范围内,以防止坍塌变形。
出模 8h后开始养生。
3 滑模提升在滑模施工的整个过程中,模板的滑升可分为初升、正常滑升和终升 3 个阶段。
(1) 初升o最初灌注的混凝土的高度一般为 60 〜 70cm ,分 2 〜 3 层浇注,约需 3 〜 4 h ,随后即可将模板缓慢提升 5cm ,检查底层混凝土凝固的状况。
若混凝土已达到 0 . 2 〜0 . 4 MPa 的脱模强度时,可以将模板再提升 3 〜 5 个千斤顶行程。
滑模、爬模、翻模的施工工艺工程091 陈加伟09931233高桥墩滑模施工工艺3.1滑模组装(1)在桥墩基础顶面上将混凝土凿毛清洗,接长竖向主筋,绑扎提升架横梁以下的横向结构筋。
搭设枕木垛,定出桥墩中心线。
(2)在枕木垛上按设计要求安装模板和提升架,将套管固定在提升架横梁下部。
继续安装操作平台、千斤顶及顶杆等。
顶杆需穿过千斤顶心孔到达基础顶面。
(3)提升整个系统,撤去枕木垛,将模板下落就位,再安装其他设施。
注意套管底部与基础表面要接触紧密,并用砂浆将周围围起来,以免灰浆漏进套管内。
外吊脚手架应在滑模提升适当高度后安装。
3.2浇注墩身混凝土滑模施工宜采用低流动或半干硬性混凝土,坍落度控制在6~8cm。
分层均匀对称浇注混凝土,分层浇注厚度为20~30 cm,浇注后混凝土表面距模板上缘的距离宜控制在10~15 cm。
混凝土浇筑应在前一层混凝土凝结前进行,同时采用插入式振捣器进行捣固。
振捣器插入前一层混凝土的深度不应超过5 cm,避免振捣器触及钢筋、顶杆和模板,禁止在模板滑升时振捣混凝土。
混凝土出模强度应控制在0.2~0.4 MPa范围内,以防止坍塌变形。
出模8h后开始养生。
3.3滑模提升在滑模施工的整个过程中,模板的滑升可分为初升、正常滑升和终升3个阶段。
(1)初升。
最初灌注的混凝土的高度一般为60~70cm,分2~3层浇注,约需3~4 h,随后即可将模板缓慢提升5cm,检查底层混凝土凝固的状况。
若混凝土已达到0.2~0.4 MPa的脱模强度时,可以将模板再提升3~5个千斤顶行程。
此时,应对滑模系统进行全面检查。
包括提升架的垂直度和水平度是否满足要求,围圈的连接是否可靠,系统的变形是否在允许范围内,模板接缝是否严密,操作平台的水平度是否达到标准,连接螺栓是否松动,千斤顶工作是否正常,顶杆有无弯曲现象等。
发现问题要及时修正和完善。
(2)正常滑升。
待各项检查完毕并符合要求后,可进入正常滑升阶段。
每浇注一层混凝土,即每滑升一次,力争使滑升高度与混凝土浇注厚度基本一致。
百米高墩外翻内爬模施工工法一、前言随着建筑材料、工程机械的发展和设计理论、施工方法的成熟,桥梁的跨越能力也逐步增大,尤其是在跨越天然河流沟壑等。
大跨度桥梁一般来说存在高墩或索塔等高的建筑物,对于这类高的建筑物与通常的高层建筑还很多不同之处,因此研究高墩施工技术就显得相当有意义了。
本工法结合大桥墩身施工实例,从模板设计、机械选择、翻爬模施工等方面对百米高墩施工进行研究,总结了一套外翻内爬高墩施工方法。
二、工法特点翻模主要的优点是混凝土外观质量好,方便施工,节省劳动力,施工周期短。
缺点是需要大型起重设备;但综合考虑墩身、悬灌梁材料运输、0#块施工,挂篮的拼装及垂直运输,尤其对于双幅桥梁,为了加快施工进度,也是必不可少地要用大型起重设备。
爬模的主要优点是不需要大型起重设备,容易形成作业平台,施工安全。
缺点是施工时需要滑轨和大量的预埋件,模板就位相对较慢。
翻模与爬模的施工工艺相同之处是混凝土均分节浇筑待强度达到规范要求再拆除模板;另外翻模的分节数可超过三节而爬模的节数一般不宜超过三节。
爬模通常设计比较轻便,因此每次浇筑的混凝土不宜太高,模板的清理不如翻模方便。
本项施工技术整合了这两项技术的优点, 尤其要特别指出的是该套模板与滑模、爬模等传统结构最大区别在于模板安装好后,只与下层已固节的墩身模板接触,施工荷载对其不发生影响,有效的提高了立模精度,这对控制138米高墩墩身混凝土质量以及墩身的垂直纠偏起到了关键性的作用。
该项工法节约了投资,加快了进度,使资源达到合理配置,做到了流水作业,从工艺上减少了整个墩身施工缝,从根本上保证了墩身的表观及内部质量。
三、适用范围适用于等截面高墩,索塔等类似工程施工。
四、工艺原理1.外模结构考虑到拉杆布置及模板整体的受力效果,每节外模由8块组成,即四块定型平板模和四块角模块组成。
模板横、竖缝均采用企口方式拼接,外模板采用鞍钢δ=6mm钢板,竖筋用[8槽钢,横向拉杆位置设[12双槽钢(注意横纵拉杆上下错位)。
分块模板接口采用L80×80×8钢板式法兰连接。
为施工的安全方便,每节段设水平桁架两道,距上下边缘50cm各一道;550cm×200cm模板设竖向桁架4道,250cm×200cm模板设竖向桁架3道,在设计过程中为节省材料,模板围带与桁架考虑共同受力;角模做成角隅结构。
分层竖向桁架对齐并注意错开拉杆孔位。
外模的规格及数量: 550×200cm平模 2块;250×200cm平模 2块;75×50×200cm角模 4块。
模板主要构件的计算:面板的选用,主要是根据以往的工程实际用6mm热扎钢板。
竖向背楞间距及选用规格是依据不同的荷载组合进行验算,横向围带及桁架的设计是根据围带和桁架变形协调来选材验算的,桁架的高度为60cm主要是考虑施工安全方便。
为了减少拉杆数量,在墩身6.5米方向每层设三道,4米方向每层两道。
1、2-法兰L80×80×8;3-竖肋[8;4-围带[12;5-面板;6-斜撑角钢L63×63×6;7-法兰板10×230×120;8-边桁架L63×63×6;9-边桁架 L63×63×6;10-横连角钢L63×63×6;11-操作平台A3;2.内模及内井架内井架与内模整体提升就位后,内、外模同步固定,考虑到内模作业空间小,且拆除时无落点存放,只能随着墩身的施工不断提升,受塔吊起重能力的限制,经精确计算各项荷载,制作时弱化其结构,与内井字架构成可拆分的整体结构。
9#内模整体控制高度为6.6m,顶节和中间节为2m、底节高2.6m。
底节段0.6m固定在已施工的凝混凝土上。
内模钢板厚δ=4mm,避开拉杆位置设脱模机构,脱模后内模板与井架的联系以倒链受力为主,脱模机构为辅。
井字架采用型钢和角钢组合焊接,加斜撑形成矩形井架结构,底部设基座与墩身内部已施工的凝混凝土预埋套筒,采用三角钢架牛腿的方式生根。
井字架水平支撑层距2m以便模板拆装,从整体迅速提升的角度出发,原则上内模和井字架总重量控制在8T以内,可对井字架进行适当的弱化设计(如图二)。
在内井字架上搭设方木,方木上铺木板,木板上铺2mm钢板,形成内侧施工平台,进行钢筋、混凝土、模板作业。
内模按普通模板拼装设计,考虑到方便拆模按照模板的拆装顺序模板接缝设成企口缝。
3.模板的固定拉杆的层距选择1m,拉杆孔垂直位置设在每节段2m高模板的上50cm和下50cm处;平面图四模板拉杆布置图每层设顺桥向三道,设计通气孔位全部为拉杆位置,不再另行留设,薄壁内设钢筋撑,非通气孔位置的拉杆洞在拆模时及时堵好,横桥向两道,考虑到拆装和重复利用,每根拉杆均加PVC外套,拉杆采用φ20圆钢。
井字架上设脱模机构,脱模机构为正反丝结构形式,方便拆装,有效缩短工序循环时间。
每一节段纵向定型模、角模及层间均在桁架上用螺栓联接成一个整体。
生根节2m内、外模分别用套筒与主桥墩身钢筋连接,以消除外模翻升时的不安全隐患。
4.工作平台外工作平台:在外部桁架上附着比较灵巧的人行平台,宽度60cm,以能行走和进行简单操作为原则,同时起到安全防护的作用。
在顶面沿周边设立防护栏杆,栏杆外侧至模板底部设封闭安全网。
施工平台上面铺设5cm厚木板或2mm厚钢板网,供操作人员作业、行走,存放小型机具,整修外模板。
内工作平台:负责钢筋接长、绑孔,临时存放小型机具和周转性材料,混凝土施工。
由于9#墩每个循环井字架生根考虑0.5m高,未拆除内模板高度6.6m,下一循环钢筋绑扎和模板架立需不小于 3.4m 的工作平台,井字架的高度不小于10.5m,否则无法进行钢筋制安、架立模板和混凝土灌注等工序。
五、工艺流程主墩每次混凝土灌注6m高为一个作业循环,外模为翻模,内模与内井架整体提升。
外模分A、B、C、D四节大块组合模板,节高2m。
施工时放出立模边线,第一次墩身立模边线外用砂浆找平,并用水平尺分段抄平,待砂浆硬化后先立A节,由下至上依次为A、B、C、D节段模板。
当第D节段混凝土强度达到3Mpa,A段混凝土强度达到10Mpa时,拆除A节段模板,此时荷载由已硬化的墩身混凝土传至基顶。
模板由下至上排列为第一循环ABCD、第二循环DABC、第三循环CDAB、第四循环BCDA(模板循环见图五)。
利用塔吊人工辅助将A节段模板翻升至D节上面,依次循环形成钢筋长接绑扎——拆模——翻升——组拼——提升内模与六、材料墩身翻模4套(层高2米),内爬模定型内模(高6.6米),内井架高10.5米,内模生根牛腿4套,相配套的螺栓拉杆若干。
七、机具设备主要辅助设备有:电梯与塔吊。
主桥四个墩各设一部塔式吊机,一部外部电梯。
塔吊和外部电梯设备设在主桥墩身左右幅之间,并尽量避开结构物的重要部位,减小施工干扰。
墩身施工时,每20m预埋金属杆件,用于塔吊和外部电梯设备附着杆与墩身连接。
塔吊用于内模内井架的整体提升,材料、小型机具、模板、钢筋等的垂直运输,外部电梯设备用于施工人员上下。
塔吊基础与承台施工同步进行。
八、劳动组织略。
九、安全措施1.成立专门的高墩施工安全组织机构,设专职安全员,设立安全标识、标志、标牌,对操作人员进行定期安全教育,定期组织安全检查评比。
2.电梯、塔吊等设备定期检查,严格按操作规程操作。
3.制定明确的安全责任制,明确奖罚,定期讲评。
4.严肃劳动纪律,非作业人员不允许进入施工现场。
十、质量要求略。
十一、效益分析经济效益:该翻模施工与同类型滑模施工相比较,滑模施工每墩液压系统滑轨需要Φ48mm普通钢管(壁厚3.5mm)64根,每延米3.81kg,以9#墩为例,墩高138米,共计用钢管33650kg,按每吨钢管3500元计,共计11.8万元;则另以每节段拆模和装模的工作量统计,滑模需要人工40人,而该翻模需要人工20人,以9#墩为例,共计浇注混凝土(施工节段数)23次,则节约人工460个,按高墩施工每人工50元计,共节约人工费2.3万元,则每墩节约费用14万元,经济效益明显;此外,大大提高了施工效率,节约了墩身的施工时间,正常情况下,采用该翻模施工法9#墩只需3个月的时间即可完工,若采用滑模施工则施工时间延长一月,为整个上部施工争取了施工时间。
社会效益:该翻模与以往其他高墩所使用的模板相比较,对内壁直坡的空心墩采用外翻内爬式,外模从底节往上依次翻升;内模与内井架组装成一整体,从而实现内模与内井架利用塔吊整体同步提升。
一个循环浇注混凝土6米,正常3天一个循环,每墩日进尺可达2米,施工效率明显提高,同时极大的减少了墩身的施工缝。
外模采用大面板,桁架结构。
使用大面板可保证墩身混凝土的外观质量,桁架结构既可增加模板自身的刚度,延长模板的使用寿命,又可将此模板应用于0#块的侧模及挂篮的侧模,提高了模板的使用效率。
内外模的固定采用套筒连接。
套筒连接可降低内外模板架立时的相互影响,同时将模板拆除时不安全因素降为最小。
采用该翻模施工法,墩柱施工混凝土外观质量好,施工速度快,获得了业主的一致好评,取得了较好的社会效益。
十二、工程实例该翻模施工在**特大桥主桥7#(墩高80米)、8#(墩高130米)、9#(墩高138米)、10#(墩高58米)墩上予以实施。
从2004年3月开始施工,至2004年9月各主墩全部完工。
四个主墩的施工实践证明:该翻模施工很好地适用于高墩的施工,为主墩施工节约了施工时间,做到了高效、安全、优质。
该翻模施工对于其他同类型的高墩施工具有很好的推广及应用的价值。