鲁教版五四制九年级数学上册反比例函数
- 格式:ppt
- 大小:2.23 MB
- 文档页数:21
K值的几何意义1学习目标:明确k的几何意义,并能解决简单的面积问题。
典例1:如图,点是反比例函数图象上的一个动点,过点作轴,轴,垂足点分别为、,矩形的面积为,则———变式1,如图,在平面直角坐标系中,点为轴正半轴上一点,过点的直线轴,且直线分别与反比例函数()和()的图象交于、两点,若,则的值为_____ 。
典例2,如图,点是反比例函数的图象上的一点,过点作轴,垂足为,点为轴上的一点,连接,。
若的面积为,则的值是______变式2,如图正比例函数y=kx(k>0)和反比例函数y=1/x的图象相交于A、C 两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=______变式3,如图,过点分别作轴于点,轴于点,、分别交反比例函数()的图象于点、,则四边形的面积为________.当堂检测:1,如图,已知矩形AOBC的面积为4,反比例函数的图象的一支经过矩形对角线的交点P,则该反比例函数的解析式是2,3,如图所示,点A在双曲线y=1/X上,点B在双曲线y=3/X上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为______.K值的几何意义2目标:1,利用k值的几何意义,进行面积转换。
2,能够选择关键点构造A型图运用相似三角形,反比例函数的性质进行求值计算。
典例1,如图,已知双曲线经过直角三角形斜边的中点,与直角边相交于点。
若的面积为,则k=——变式:如图,双曲线,经过斜边上的点,且满足,与交于点,,求——————。
当堂检测:1,如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(-6,4),则△AOC的面积为2,K值的几何意义31,如图,已知双曲线y=k/x (x>0))经过矩形OABC边AB的中点F,交BC于点E,(1)若四边形OEBF的面积是4,求k的值(2)若梯形OEBA的面积为9,求k的值2,如图,是函数与函数在第一象限内的图象,点是的图象上一动点,轴于点,交的图象于点,轴于点,交的图象于点。
反比例函数教学设计教材:鲁教版义务教育课程标准实验教科书九年级上册一、课标要求结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式。
二、学习目标1.讨论现实情境中两个变量之间的相依关系,加深对函数概念的理解。
2.从现实情境中抽象出反比例函数概念,并根据反比例函数的概念,找出现实情境中的反比例函数。
3.根据条件确定反比例函数的关系式。
三、教材分析本节课内容是鲁教版义务教育课程标准实验教科书九年级上册第一章《反比例函数》中的第一节。
函数是在探索具体问题中数量关系和变化规律的基础上抽象出的重要的数学概念,是研究现实世界变化规律的重要数学模型。
在学生已有知识体系的基础上,继续谈论反比例函数及其性质可以进一步领悟函数的概念,并积累函数性质的方法及用函数观点处理实际问题的经验,从而对后继学习产生积极影响。
本节的内容主要是反比例函数的概念,教材设计的基本思路是从现实生活中大量的反比例关系中抽象出反比例函数概念,让学生进一步感受函数是反映现实世界中变量关系的一种有效数学模型,逐步从对具体反比例函数的感性认识上升到对抽象的反比例函数概念的理性认识。
同时,本节的学习内容,直接承接本章后续内容的学习,也是继续学习其它各类函数的基础。
本节课的教学重点是通过对现实情境的讨论,加深对函数概念的理解并抽象出反比例函数的概念。
四、学情分析在前面的学习过程中,学生对函数的概念,即函数所反映的是两个变量之间的关系的内涵有了一定的了解。
在已经学习了正比例函数、一次函数后,再一次研究函数。
根据变量间不同的变化特点,让学生们抽象出另一种函数关系——反比例函数。
初四学生已经具备了思维的完整性、深刻性、实践性、批判性等思维品质,但尚待提高,学生抽象概括能力也有限,对函数意义的理解、变量变化特征的把握还有一定的难度,特别是对抽象的表达式中的变量的取值理解不深。
因此要充分利用多媒体教学平台,采用教师引导,学生自主探索和小组合作相结合的教学方式。
鲁教版(五四学制)九年级上册数学反比例函数一等奖创新教案1.1 反比例函数教案【教学目标】知识技能:能理解反比例函数的概念;能判断一个给定的函数是否为反比例函数;会根据已知条件,求出反比例函数的解析式数学思考:在探究过程中体会类比、数学建模等数学思想。
问题解决:通过探究求反比例表达式的过程,掌握待定系数法。
情感态度:通过本节课的学习,让学生感知数学就在身边,激发学习数学的兴趣。
【教学重点】反比例函数的概念的形成过程【教学难点】反比例函数的概念的形成过程【教学过程】引入新课老师开车从家到区二中大约20千米,在老师行驶过程中,请同学们完成以下问题1、找出变化的量与不变的量不变的量:__变化的量:__2、表示上述过程中几个量之间的关系_3、利用所列关系式,填写下列表格观察表格,你能得出什么结论?【设计意图】学生对函数的知识遗忘较多,因此首先设计一个生活实际情境:路程=速度×时间,让学生直观的看出其中两个变量一个随另一个的变化而变化,回忆起函数的概念,还需要看出两个变量的乘积不变,然后引导学生会用含有一个变量的代数式表示另一个变量,表示成反比例函数的形式,从而引入本节课的课题——反比例函数。
探索新知用函数关系式表示下列问题中两个量之间的关系1、学校要建一个面积为100m2的矩形花坛,花坛的长y(m)随宽x(m)的变化而变化.2、已知两个实数的乘积为-8,如果其中一个因数为p,另一个因数为q,则q与p的函数关系是什么?观察三个表达式,它们有什么共同特点?定义:____【设计意图】从生活实际情景出发,引导学生经历从具体问题中抽象出反比例函数的过程,通过分析每个问题中每个变量之间的关系,建立函数模型,体会建模思想。
与引入新课的函数模型放在一起,分析这三个函数模型的共同特征:都有2个变量,而且都具有分式的形式,分子都是一个常数,找出特点之后,类比正比例函数的定义,给出反比例函数的定义。
最后老师给出概念深入理解强调。
章节测试题1.【答题】反比例函数y=的图象在第二、四象限,则n的取值范围为______,,为图象上两点,则______用“<”或“>”填空.【答案】n<1 <【分析】根据反比例函数的性质再结合反比例函数图象上点的坐标特征即可求解.【解答】因为反比例函数y=的图象在第二、四象限,所以n-1<0,所以n<1.又因为A(2,y1),B(3,y2)在第四象限,所以y1<y2.故答案为:n<1,<.2.【题文】反比例函数的图象经过A(-2,1)、B(1,m)、C(2,n)两点,试比较m、n大小.【答案】m<n【分析】将点A代入反比例函数解出k值,再将B、C的坐标分别代入已知反比例函数解析式,分别求得m、n的值,然后再来比较它们的大小即可【解答】反比例函数,它的图象经过A(-2,1),,k=-2,,将B,C两点代入反比例函数得,,,∴m<n.3.【答题】下列函数中是反比例函数的是()A. y=x﹣1B. y=C. y=D. =1【答案】C【分析】此题应根据反比例函数的定义进行判断,反比例函数的一般形式是y=(k≠0).【解答】A、y=x-1是一次函数,不符合题意;B、y=不是反比例函数,不符合题意;C、y=是反比例函数,符合题意;D、=1不是反比例函数,不符合题意;选C.4.【答题】已知函数是反比例函数,则m的值为()A. 2B. ﹣2C. 2或﹣2D. 任意实数【答案】B【分析】此题应根据反比例函数的定义进行判断,反比例函数的一般形式是y=(k≠0).【解答】解:∵函数是反比例函数,∴,解得:m=﹣2.选B.5.【答题】下面说法正确的是()A.一个人的体重与他的年龄成正比例关系B.正方形的面积和它的边长成正比例关系C.车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系D.水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成反比例关系【答案】C【分析】分别利用反比例函数、正比例函数以及二次函数关系分别分析得出答案.【解答】A、一个人的体重与他的年龄成正比例关系,错误;B、正方形的面积和它的边长是二次函数关系,故此选项错误;C、车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系,正确;D、水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成正比例关系,故此选项错误;选C.6.【答题】下列函数中,表示y是x的反比例函数的是()A. y=B. y=C. y=2xD. y=【答案】B【分析】根据反比例函数的定义判断各选项即可.【解答】根据反比例函数的定义,可判断出只有y=表示y是x的反比例函数.选B.7.【答题】下列函数中,y既不是x的正比例函数,也不是反比例函数的是()A. B. C. D.【答案】C【分析】根据正比例函数y=kx,反比例函数y=kx-1或y=,可得答案.【解答】A、是反比例函数,故A错误;B、是正比例函数,故B错误;C、既不是正比例函数也不是反比例函数,故C正确;D、是反比例函数,故D错误;选C.8.【答题】将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3,…,如此继续下去,则y2012的值为()A. 2B.C.D. 6【答案】A【分析】分别计算出y1,y2,y3,y4,可得到每三个一循环,而2012=670…2,即可得到y2012=y2.【解答】y1=-=-,把x=+1=-代入y=-中得y2=-,把x=2+1=3代入反比例函数y=-中得y3=-,把x=-+1=代入反比例函数y=-得y4=,如此继续下去每三个一循环,2012=670…2,∴y2012=2.选A.9.【答题】下列关系中,两个量之间为反比例函数关系的是()A.正方形的面积S与边长a的关系B.正方形的周长l与边长a的关系C.矩形的长为a,宽为20,其面积S与a的关系D.矩形的面积为40,长a与宽b之间的关系【答案】D【分析】此题应根据反比例函数的定义进行判断.【解答】A、根据题意,得,所以正方形的面积S与边长a的关系是二次函数关系;故本选项错误;B、根据题意,得,所以正方形的周长l与边长a的关系是正比例函数关系;故本选项错误;C、根据题意,得,所以正方形的面积S与边长a的关系是正比例函数关系;故本选项错误;D、根据题意,得,所以正方形的面积S与边长a的关系是反比例函数关系;故本选项正确.选D.10.【答题】反比例函数中常数k为()A. ﹣3B. 2C.D.【答案】D【分析】此题应根据反比例函数的定义进行判断,反比例函数的一般形式是(k≠0).【解答】反比例函数中常数k为.选D.11.【答题】函数是y关于x的反比例函数,则m=______.【答案】3【分析】此题应根据反比例函数的定义进行判断,反比例函数的一般形式是y=(k≠0).【解答】由题意得,解得m=3.12.【答题】若函数y=(m+2)x|m|﹣3是反比例函数,则m的值为______.【答案】2【分析】由于函数y=(m+2)x|m|﹣3是反比例函数,根据反比例函数的定义得到m+2≠0且|m|﹣3=﹣1,然后去绝对值和解不等式即可得到m的值.【解答】∵函数y=(m+2)x|m|﹣3是反比例函数,∴m+2≠0且|m|﹣3=﹣1,∴m=2.故答案为2.13.【答题】若函数是反比例函数,则m=______.【答案】±1【分析】根据反比例函数的定义先求出m的值,再根据系数不为0进行取舍.【解答】∵是反比例函数,∴m2-2=-1,∴m2=1,∴m=±1.故答案为±1.14.【答题】若反比例函数的图象在第二、四象限,m的值为______.【答案】-2【分析】由反比例函数的定义可知3-m2=-1,由反比例函数图象在第二、四象限可知m+1<0.【解答】∵是反比例函数,∴3-m2=-1.解得:m=±2.∵函数图象在第二、四象限,∴m+1<0,解得:m<-1.∴m=-2.故答案为:-2.15.【题文】列出下列问题中的函数关系式,并判断它们是否为反比例函数.(1)某农场的粮食总产量为1500t,则该农场人数y(人)与平均每人占有粮食量x(t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数关系式;(3)小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数关系式.【答案】见解答【分析】(1)由平均数,得x=,即y=是反比例函数,(2)由单价乘以油量等于总价,得y=4.75x,即y=4.75x是正比例函数,(3)由路程与时间的关系,得t=,即t=是反比例函数.【解答】解:(1)由平均数,得x=,即y=是反比例函数,(2)由单价乘以油量等于总价,得y=4.75x,即y=4.75x是正比例函数,(3)由路程与时间的关系,得t=,即t=是反比例函数.16.【题文】函数是反比例函数,则m的值是多少?【答案】-2【分析】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的定义去判断.【解答】∵是反比例函数,∴3-m2=-1,m-2≠0,解得:m=-2.故m的值为-2.17.【题文】若反比例函数的图象经过第二、四象限,求函数的解析式.【答案】y=﹣【分析】根据反比例函数的定义,可以得到m2-24=1,而图象经过第二、四象限,则比例系数是负数,据此即可求解.【解答】根据题意得:解得:m=﹣5.则函数的解析式是:y=﹣.18.【题文】给出下列四个关于是否成反比例的命题,判断它们的真假.(1)面积一定的等腰三角形的底边长和底边上的高成反比例;(2)面积一定的菱形的两条对角线长成反比例;(3)面积一定的矩形的两条对角线长成反比例;(4)面积一定的直角三角形的两直角边长成比例.【答案】见解答【分析】根据反比例函数的定义及形式y=(k≠0)可判断各个命题的真假.【解答】解:(1)∵等腰三角形的面积一定,∴底边长和底边上的高的乘积为非零常数.∴命题(1)正确;(2)∵菱形的面积是它的对角线长的乘积的一半,∴当菱形的面积一定时,对角线长的乘积也一定.∴它们成反比例.故正确.(3)∵矩形的面积一定时,它的对角线长的乘积并不一定,∴两对角线长不成反比例,∴命题(3)为假命题;(4)∵直角三角形的面积为直角边乘积的一半,∴当它的面积一定时,其直角边长的乘积也一定.∴两直角边长成反比例,∴命题(4)正确.19.【答题】下列函数中,不是反比例函数的是()A. B. C. D.【答案】D【分析】本题考查了反比例函数的定义。