ka n 0 kn , 2 a
n 2,4,6, n 1,3,5,
cos
ka n 0 kn , 2 a
由此可得方程的解为
n B cos a x, n 1,3,5, n ( x) n A sin x, n 2,4,6, a
n ( x)
粒子的能量为
(| x | a / 2) (| x | a / 2)
2 n cos x, a a 2 n sin x, a a n 1,3,5, n 2,4,6,
试通过具体解定态薛定谔方程,证明势阱中粒子的波函数为
| x | a / 2
( x)
令k
2
2E ,则方程化为 2 ( x) k 2 ( x) 0
2E ( x) 0 2
该方程的通解为
( x) A sin kx B cos kx ( x) x a / 2 0 ( x) x a / 2 0
粒子的能量和波函数分别为
q 2E2 1 E n n 2 2 2
n ( x) N n e
1 2 2 x1 2
H n (x1 ),
x1 x
qE
2
证明:势函数与时间无关,是定态问题。定态薛定谔方程为
2 1 ( x) 2 x 2 qE x ( x) E ( x) 2u 2
上式可改写为
2 1 qE q 2 E2 q 2E2 ( x) 2 ( x 2 2 2 x 2 4 ) ( x ) ( x ) E ( x ) 2u 2 2 2
即
1 2 qE 2 q 2E2 ( x) ( x) 2 ( x ) E 2u 2 2 2 2 2 2 qE qE , E E ,则方程化为标准的一维谐振子方程 作代换 x1 x 2 2 2