高中数学必修一第三章选择题1
- 格式:doc
- 大小:4.24 MB
- 文档页数:48
高中数学必修一第三章《函数的应用》单元测试卷及答案2套测试卷一(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.函数y =1+1x的零点是( )A .(-1,0)B .-1C .1D .02.设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)3.某企业2010年12月份的产值是这年1月份产值的P 倍,则该企业2010年度产值的月平均增长率为( )A .P P -1 B .11P -1C .11PD .P -1114.如图所示的函数图象与x 轴均有交点,其中不能用二分法求图中交点横坐标的是( )A .①③B .②④C .①②D .③④5.如图1,直角梯形OABC 中,AB∥OC,AB =1,OC =BC =2,直线l∶x=t 截此梯形所得位于l 左方图形面积为S ,则函数S =f(t)的图象大致为图中的( )图16.已知在x 克a%的盐水中,加入y 克b%的盐水,浓度变为c%,将y 表示成x 的函数关系式为( )A .y =c -ac -b x B .y =c -ab -c x C .y =c -bc -axD .y =b -cc -ax 7.某单位职工工资经过六年翻了三番,则每年比上一年平均增长的百分率是( ) (下列数据仅供参考:2=1.41,3=1.73,33=1.44,66=1.38)A .38%B .41%C .44%D .73%8.某工厂生产某种产品的固定成本为200万元,并且生产量每增加一单位产品,成本增加1万元,又知总收入R 是单位产量Q 的函数:R(Q)=4Q -1200Q 2,则总利润L(Q)的最大值是________万元,这时产品的生产数量为________.(总利润=总收入-成本)( )A .250 300B .200 300C .250 350D .200 3509.在一次数学实验中,运用图形计算器采集到如下一组数据:x -2.0 -1.0 0 1.00 2.00 3.00 y0.240.5112.023.988.02则x 、y )A .y =a +bxB .y =a +b xC .y =ax 2+bD .y =a +b x10.根据统计资料,我国能源生产自1986年以来发展得很快,下面是我国能源生产总量(折合亿吨标准煤)的几个统计数据:1986年8.6亿吨,5年后的1991年10.4亿吨,10年后的1996年12.9亿吨,有关专家预测,到2001年我国能源生产总量将达到16.1亿吨,则专家是以哪种类型的函数模型进行预测的?( )A .一次函数B .二次函数C .指数函数D .对数函数11.用二分法判断方程2x 3+3x -3=0在区间(0,1)内的根(精确度0.25)可以是(参考数据:0.753=0.421875,0.6253=0.24414)( )A .0.25B .0.375C .0.635D .0.82512.有浓度为90%的溶液100g ,从中倒出10g 后再倒入10g 水称为一次操作,要使浓度低于10%,这种操作至少应进行的次数为(参考数据:lg 2=0.3010,lg 3=0.4771)( )A .19B .20C .21D .22二、填空题(本大题共4小题,每小题5分,共20分)13.用二分法研究函数f(x)=x 3+2x -1的零点,第一次经计算f(0)<0,f(0.5)>0,可得其中一个零点x 0∈________,第二次计算的f(x)的值为f(________).14.若函数f(x)=a x-x -a(a>0,且a≠1)有两个零点,则实数a 的取值范围为________.15.一批设备价值a 万元,由于使用磨损,每年比上一年价值降低b%,则n 年后这批设备的价值为________________万元.16.函数f(x)=x 2-2x +b 的零点均是正数,则实数b 的取值范围是________. 三、解答题(本大题共6小题,共70分)17.(10分)华侨公园停车场预计“十·一”国庆节这天停放大小汽车1200辆次,该停车场的收费标准为:大车每辆次10元,小车每辆次5元.(1)写出国庆这天停车场的收费金额y(元)与小车停放辆次x(辆)之间的函数关系式,并指出x 的取值范围.(2)如果国庆这天停放的小车占停车总辆数的65%~85%,请你估计国庆这天该停车场收费金额的范围.18.(12分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为a ,通过x 块玻璃后强度为y.(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下?(lg 3≈0.4771)19.(12分)某医药研究所开发一种新药,据监测,如果成人按规定的剂量服用,服用药后每毫升中的含药量y(微克)与服药的时间t(小时)之间近似满足如图所示的曲线,其中OA 是线段,曲线AB 是函数y =ka t(t≥1,a>0,且k ,a 是常数)的图象.(1)写出服药后y 关于t 的函数关系式;(2)据测定,每毫升血液中的含药量不少于2微克时治疗疾病有效.假设某人第一次服药为早上6∶00,为保持疗效,第二次服药最迟应当在当天几点钟?(3)若按(2)中的最迟时间服用第二次药,则第二次服药后3小时,该病人每毫升血液中的含药量为多少微克(精确到0.1微克)?20.(12分)已知一次函数f(x)满足:f(1)=2,f(2)=3, (1)求f(x)的解析式;(2)判断函数g(x)=-1+lg f 2(x)在区间[0,9]上零点的个数.21.(12分)截止到2009年底,我国人口约为13.56亿,若今后能将人口平均增长率控制在1%,经过x 年后,我国人口为y 亿.(1)求y 与x 的函数关系式y =f(x);(2)求函数y =f(x)的定义域;(3)判断函数f(x)是增函数还是减函数?并指出函数增减的实际意义.22.(12分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x 个,零件的实际出厂单价为P 元,写出函数的表达式; (3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)答案1.B [由1+1x =0,得1x=-1,∴x =-1.]2.B [由题意x 0为方程x 3=(12)x -2的根,令f (x )=x 3-22-x,∵f (0)=-4<0,f (1)=-1<0,f (2)=7>0, ∴x 0∈(1,2).]3.B [设1月份产值为a ,增长率为x ,则aP =a (1+x )11, ∴x =11P -1.]4.A [对于①③在函数零点两侧函数值的符号相同,故不能用二分法求.] 5.C [解析式为S =f (t ) =⎩⎪⎨⎪⎧12t ·2t 0≤t ≤112×1×2+t -1×21<t ≤2=⎩⎪⎨⎪⎧t 20≤t ≤12t -11<t ≤2∴在[0,1]上为抛物线的一段,在(1,2]上为线段.]6.B [根据配制前后溶质不变,有等式a %x +b %y =c %(x +y ),即ax +by =cx +cy ,故y =c -a b -cx .] 7.B [设职工原工资为p ,平均增长率为x , 则p (1+x )6=8p ,x =68-1=2-1=41%.]8.A [L (Q )=4Q -1200Q 2-Q -200=-1200(Q -300)2+250,故总利润L (Q )的最大值是250万元,这时产品的生产数量为300.]9.B [∵x =0时,b x无意义,∴D 不成立. 由对应数据显示该函数是增函数,且增幅越来越快, ∴A 不成立. ∵C 是偶函数,∴x =±1的值应该相等,故C 不成立. 对于B ,当x =0时,y =1, ∴a +1=1,a =0;当x =1时,y =b =2.02,经验证它与各数据比较接近.]10.B [可把每5年段的时间视为一个整体,将点(1,8.6),(2,10.4),(3,12.9)描出,通过拟合易知它符合二次函数模型.]11.C [令f (x )=2x 3+3x -3,f (0)<0,f (1)>0,f (0.5)<0,f (0.75)>0,f (0.625)<0,∴方程2x 3+3x -3=0的根在区间(0.625,0.75)内, ∵0.75-0.625=0.125<0.25,∴区间(0.625,0.75)内的任意一个值作为方程的近似根都满足题意.]12.C [操作次数为n 时的浓度为(910)n +1,由(910)n +1<10%,得n +1>-1lg 910=-12lg3-1≈21.8,∴n ≥21.] 13.(0,0.5) 0.25解析 根据函数零点的存在性定理. ∵f (0)<0,f (0.5)>0,∴在(0,0.5)存在一个零点,第二次计算找中点,即0+0.52=0.25. 14.(1,+∞)解析 函数f (x )的零点的个数就是函数y =a x与函数y =x +a 交点的个数,如下图,由函数的图象可知a >1时两函数图象有两个交点,0<a <1时两函数图象有唯一交点,故a >1.15.a (1-b %)n解析 第一年后这批设备的价值为a (1-b %);第二年后这批设备的价值为a (1-b %)-a (1-b %)·b %=a (1-b %)2; 故第n 年后这批设备的价值为a (1-b %)n. 16.(0,1]解析 设x 1,x 2是函数f (x )的零点,则x 1,x 2为方程x 2-2x +b =0的两正根,则有⎩⎪⎨⎪⎧Δ≥0x 1+x 2=2>0x 1x 2=b >0,即⎩⎪⎨⎪⎧4-4b ≥0b >0.解得0<b ≤1.17.解 (1)依题意得y =5x +10(1200-x ) =-5x +12000,0≤x ≤1200. (2)∵1200×65%≤x ≤1200×85%, 解得780≤x ≤1020,而y =-5x +12000在[780,1 020]上为减函数, ∴-5×1020+12000≤y ≤-5×780+12000. 即6900≤y ≤8100,∴国庆这天停车场收费的金额范围为[6 900,8 100]. 18.解 (1)依题意:y =a ·0.9x,x ∈N *. (2)依题意:y ≤13a ,即:a ·0.9x≤a3,0.9x≤13=0.91log 30.9,得x ≥log 0.913=-lg32lg3-1≈-0.47710.9542-1≈10.42.答 通过至少11块玻璃后,光线强度减弱到原来的13以下.19.解 (1)当0≤t <1时,y =8t ;当t ≥1时,⎩⎪⎨⎪⎧ka =8,ka 7=1.∴⎩⎪⎨⎪⎧a =22,k =8 2.∴y =⎩⎪⎨⎪⎧8t , 0≤t <1,8222t,t ≥1.(2)令82·(22)t≥2,解得t ≤5. ∴第一次服药5小时后,即第二次服药最迟应当在当天上午11时服药. (3)第二次服药后3小时,每毫升血液中含第一次所服药的药量为y 1=82×(22)8=22(微克);含第二次服药后药量为y 2=82×(22)3=4(微克),y 1+y 2=22+4≈4.7(微克). 故第二次服药再过3小时,该病人每毫升血液中含药量为4.7微克. 20.解 (1)令f (x )=ax +b ,由已知条件得⎩⎪⎨⎪⎧a +b =22a +b =3,解得a =b =1,所以f (x )=x +1(x ∈R ).(2)∵g (x )=-1+lg f 2(x )=-1+lg (x +1)2在区间[0,9]上为增函数,且g (0)=-1<0,g (9)=-1+lg102=1>0,∴函数g (x )在区间[0,9]上零点的个数为1个. 21.解 (1)2009年底人口数:13.56亿. 经过1年,2010年底人口数:13.56+13.56×1%=13.56×(1+1%)(亿). 经过2年,2011年底人口数:13.56×(1+1%)+13.56×(1+1%)×1% =13.56×(1+1%)2(亿). 经过3年,2012年底人口数:13.56×(1+1%)2+13.56×(1+1%)2×1% =13.56×(1+1%)3(亿).∴经过的年数与(1+1%)的指数相同.∴经过x年后人口数为13.56×(1+1%)x(亿).∴y=f(x)=13.56×(1+1%)x.(2)理论上指数函数定义域为R.∵此问题以年作为时间单位.∴此函数的定义域是{x|x∈N*}.(3)y=f(x)=13.56×(1+1%)x.∵1+1%>1,13.56>0,∴y=f(x)=13.56×(1+1%)x是增函数,即只要递增率为正数,随着时间的推移,人口的总数总在增长.22.解(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x0个,则x0=100+60-510.02=550.因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元.(2)当0<x≤100时,P=60;当100<x<550时,P=60-0.02·(x-100)=62-x50;当x≥550时,P=51.所以P=f(x)=⎩⎪⎨⎪⎧60,0<x≤10062-x50,100<x<550,51,x≥550(x∈N).(3)设销售商的一次订购量为x个时,工厂获得的利润为L元,则L=(P-40)x=⎩⎪⎨⎪⎧20x,0<x≤10022x-x250,100<x<550,11x,x≥550(x∈N).当x=500时,L=6000;当x=1000时,L=11000.因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元.测试卷二(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.设方程|x 2-3|=a 的解的个数为m ,则m 不可能等于( )A .1B .2C .3D .42.将进货单价为80元的商品按90元一个售出时,能卖出400个,已知该商品每个涨价1元,其销售量就减少20个,为了赚得最大利润,售价应定为( )A .每个110元B .每个105元C .每个100元D .每个95元3.今有一组实验数据如下表,现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是( )A .y =log 2tB .y =12C .y =t 2-12D .y =2t -24.某商场对顾客实行购物优惠活动,规定一次购物付款总额: (1)如果不超过200元,则不给予优惠;(2)如果超过200元但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.某人两次去购物,分别付款168元和423元,假设他去一次购买上述同样的商品,则应付款是( )A .413.7元B .513.7元C .548.7元D .546.6元5.方程x 2+ax -2=0在区间[1,5]上有解,则实数a 的取值范围为( )A .(-235,+∞) B .(1,+∞) C .[-235,1]D .(-∞,-235]6.设f(x)是区间[a ,b]上的单调函数,且f(a)f(b)<0,则方程f(x)=0在区间[a ,b]( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一实根7.方程x 2-(2-a)x +5-a =0的两根都大于2,则实数a 的取值范围是( )A .a<-2B .-5<a<-2C .-5<a≤-4D .a>4或a<-48.四人赛跑,其跑过的路程f(x)和时间x 的关系分别是:f 1(x)=12x ,f 2(x)=14x ,f 3(x)=log 2(x +1),f 4(x)=log 8(x +1),如果他们一直跑下去,最终跑到最前面的人所具有的函数关系是( )A .f 1(x)=12xB .f 2(x)=14xC .f 3(x)=log 2(x +1)D .f 4(x)=log 8(x +1)9.函数f(x)=ln x -2x的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(e,3)D .(e ,+∞)10.已知f(x)=(x -a)(x -b)-2的两个零点分别为α,β,则( )A .a<α<b<βB .α<a<b<βC .a<α<β<bD .α<a<β<b11.设f(x)是连续的偶函数,且当x>0时是单调函数,则满足f(2x)=f(x +1x +4)的所有x之和为( )A .-92B .-72C .-8D .812.在某种金属材料的耐高温实验中,温度随着时间变化的情况由微机记录后再显示的图象如图所示.现给出下面说法:①前5分钟温度增加的速度越来越快; ②前5分钟温度增加的速度越来越慢; ③5分钟以后温度保持匀速增加; ④5分钟以后温度保持不变. 其中正确的说法是( )A .①④B .②④C .②③D .①③二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f(x)=⎩⎪⎨⎪⎧log 2x x>03xx≤0,且关于x 的方程f(x)+x -a =0有且只有一个实根,则实数a 的取值范围是______________.14.要建造一个长方体形状的仓库,其内部的高为3m ,长与宽的和为20m ,则仓库容积的最大值为________.15.已知函数f(x)=⎩⎪⎨⎪⎧2x-1, x>0,-x 2-2x ,x≤0.若函数g(x)=f(x)-m 有3个零点,则实数m 的取值范围为________.16.若曲线|y|=2x+1与直线y =b 没有公共点,则b 的取值范围是________. 三、解答题(本大题共6小题,共70分)17.(10分)讨论方程4x 3+x -15=0在[1,2]内实数解的存在性,并说明理由.18.(12分)(1)已知f(x)=23x-1+m 是奇函数,求常数m 的值; (2)画出函数y =|3x-1|的图象,并利用图象回答:k 为何值时,方程|3x-1|=k 无解?有一解?有两解?19.(12分)某出版公司为一本畅销书定价如下: C(n)=⎩⎪⎨⎪⎧12n ,1≤n≤24,n ∈N *,11n ,25≤n ≤48,n ∈N *,10n ,n ≥49,n ∈N *,这里n 表示定购书的数量,C (n )是定购n 本书所付的钱数(单位:元).若一本书的成本价是5元,现有甲、乙两人来买书,每人至少买1本,两人共买60本,问出版公司最少能赚多少钱?最多能赚多少钱?20.(12分)是否存在这样的实数a,使函数f(x)=x2+(3a-2)x+a-1在区间[-1,3]上与x轴恒有一个交点,且只有一个交点?若存在,求出范围;若不存在,请说明理由.21.(12分)已知a是实数,函数f(x)=2ax2+2x-3-a,如果函数y=f(x)在区间[-1,1]上有零点,求实数a的取值范围.22.(12分)我国是水资源比较贫乏的国家之一,各地采用价格调控等手段以达到节约用水的目的.某市用水收费标准是:水费=基本费+超额费+定额损耗费,且有如下三条规定:①若每月用水量不超过最低限量m立方米时,只付基本费9元和每户每月定额损耗费a 元;②若每月用水量超过m立方米时,除了付基本费和定额损耗费外,超过部分每立方米付n元的超额费;③每户每月的定额损耗费a不超过5元.(1)求每户每月水费y(元)与月用水量x(立方米)的函数关系式;(2)该市一家庭今年第一季度每月的用水量和支付的费用如下表所示:m,n,a的值.答案1.A [在同一坐标系中分别画出函数y1=|x2-3|和y2=a的图象,如图所示.可知方程解的个数为0,2,3或4,不可能有1个解.] 2.D [设售价为x 元,则利润y =[400-20(x -90)](x -80)=20(110-x )(x -80)=-20(x 2-190x +8800) =-20(x -95)2+4500.∴当x =95时,y 最大为4500元.]3.C [当t =4时,y =log 24=2,y =12log 4=-2,y =42-12=7.5,y =2×4-2=6.所以y =t 2-12适合,当t =1.99代入A 、B 、C 、D4个选项,y =t 2-12的值与表中的1.5接近,故选C.]4.D [购物超过200元,至少付款200×0.9=180(元),超过500元,至少付款500×0.9=450(元),可知此人第一次购物不超过200元,第二次购物不超过500元,则此人两次购物总金额是168+4230.9=168+470=638(元).若一次购物,应付500×0.9+138×0.7=546.6(元).]5.C [令f (x )=x 2+ax -2,则f (0)=-2<0, ∴要使f (x )在[1,5]上与x 轴有交点,则需要⎩⎪⎨⎪⎧f 1≤0f 5≥0,即⎩⎪⎨⎪⎧a -1≤023+5a ≥0,解得-235≤a ≤1.]6.D [∵f (a )·f (b )<0,∴f (x )在区间[a ,b ]上存在零点,又∵f (x )在[a ,b ]上是单调函数,∴f (x )在区间[a ,b ]上的零点唯一,即f (x )=0在[a ,b ]上必有唯一实根.]7.C [由题意知⎩⎪⎨⎪⎧Δ≥02-a2>2f 2>0,解得-5<a ≤-4.]8.B [在同一坐标系下画出四个函数的图象,由图象可知f 2(x )=14x 增长的最快.]9.B [f (2)=ln2-22=ln2-1<1-1=0,f (3)=ln3-23>1-23=13>0.故零点所在区间为(2,3).]10.B [设g (x )=(x -a )(x -b ),则f (x )是由g (x )的图象向下平移2个单位得到的,而g (x )的两个零点为a ,b ,f (x )的两个零点为α,β,结合图象可得α<a <b <β.]11.C [∵x >0时f (x )单调且为偶函数, ∴|2x |=|x +1x +4|,即2x (x +4)=±(x +1). ∴2x 2+9x +1=0或2x 2+7x -1=0. ∴共有四根.∵x 1+x 2=-92,x 3+x 4=-72,∴所有x 之和为-92+(-72)=-8.]12.B [因为温度y 关于时间t 的图象是先凸后平行直线,即5分钟前每当t 增加一个单位增量Δt ,则y 随相应的增量Δy 越来越小,而5分钟后y 关于t 的增量保持为0.故选B.]13.(1,+∞)解析 由f (x )+x -a =0, 得f (x )=a -x ,令y =f (x ),y =a -x ,如图,当a >1时,y =f (x )与y =a -x 有且只有一个交点, ∴a >1. 14.300m 3解析 设长为x m ,则宽为(20-x )m ,仓库的容积为V , 则V =x (20-x )·3=-3x 2+60x,0<x <20,由二次函数的图象知,顶点的纵坐标为V 的最大值. ∴x =10时,V 最大=300(m 3). 15.(0,1)解析 函数f (x )=⎩⎪⎨⎪⎧2x-1, x >0,-x 2-2x ,x ≤0的图象如图所示,该函数的图象与直线y =m 有三个交点时m ∈(0,1),此时函数g (x )=f (x )-m 有3个零点.16.[-1,1]解析 分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b 没有公共点,则b 应满足的条件为b ∈[-1,1].17.解 令f (x )=4x 3+x -15, ∵y =4x 3和y =x 在[1,2]上都为增函数. ∴f (x )=4x 3+x -15在[1,2]上为增函数,∵f (1)=4+1-15=-10<0,f (2)=4×8+2-15=19>0, ∴f (x )=4x 3+x -15在[1,2]上存在一个零点, ∴方程4x 3+x -15=0在[1,2]内有一个实数解. 18.解 (1)∵f (x )=23x -1+m 是奇函数,∴f (-x )=-f (x ),∴23-x -1+m =-23x -1-m .∴2·3x1-3x +m =21-3x -m , ∴23x -11-3x+2m =0. ∴-2+2m =0,∴m =1.(2)作出直线y =k 与函数y =|3x-1|的图象,如图.①当k <0时,直线y =k 与函数y =|3x-1|的图象无交点,即方程无解;②当k =0或k ≥1时,直线y =k 与函数y =|3x-1|的图象有唯一的交点,所以方程有一解;③当0<k <1时,直线y =k 与函数y =|3x-1|的图象有两个不同的交点,所以方程有两解.19.解 设甲买n 本书,则乙买(60-n )本(不妨设甲买的书少于或等于乙买的书),则n ≤30,n ∈N *.①当1≤n ≤11且n ∈N *时,49≤60-n ≤59,出版公司赚的钱数f (n )=12n +10(60-n )-5×60=2n +300; ②当12≤n ≤24且n ∈N *时,36≤60-n ≤48, 出版公司赚的钱数f (n )=12n +11(60-n )-5×60=n +360;③当25≤n ≤30且n ∈N *时,30≤60-n ≤35, 出版公司赚的钱数f (n )=11×60-5×60=360. ∴f (n )=⎩⎪⎨⎪⎧2n +300, 1≤n ≤11,n ∈N *,n +360,12≤n ≤24,n ∈N *,360,25≤n ≤30,n ∈N *.∴当1≤n ≤11时,302≤f (n )≤322; 当12≤n ≤24时,372≤f (n )≤384; 当25≤n ≤30时,f (n )=360.故出版公司最少能赚302元,最多能赚384元. 20.解 若实数a 满足条件, 则只需f (-1)f (3)≤0即可.f (-1)f (3)=(1-3a +2+a -1)(9+9a -6+a -1)=4(1-a )(5a +1)≤0,所以a ≤-15或a ≥1.检验:(1)当f (-1)=0时a =1, 所以f (x )=x 2+x .令f (x )=0,即x 2+x =0,得x =0或x =-1. 方程在[-1,3]上有两根,不合题意,故a ≠1. (2)当f (3)=0时a =-15,此时f (x )=x 2-135x -65.令f (x )=0,即x 2-135x -65=0,解得,x =-25或x =3.方程在[-1,3]上有两根,不合题意,故a ≠-15.综上所述,a ∈(-∞,-15)∪(1,+∞).21.解 当a =0时,函数为f (x )=2x -3,其零点x =32不在区间[-1,1]上.当a ≠0时,函数f (x )在区间[-1,1]分为两种情况: ①函数在区间[-1,1]上只有一个零点,此时:⎩⎪⎨⎪⎧Δ=4-8a -3-a ≥0f -1·f 1=a -5a -1≤0或⎩⎪⎨⎪⎧Δ=4-8a -3-a =0-1≤-12a ≤1,解得1≤a ≤5或a =-3-72.②函数在区间[-1,1]上有两个零点,此时⎩⎪⎨⎪⎧Δ>0-1<-12a <1f -1f 1≥0,即⎩⎪⎨⎪⎧8a 2+24a +4>0-1<-12a<1a -5a -1≥0.解得a ≥5或a <-3-72.综上所述,如果函数在区间[-1,1]上有零点,那么实数a 的取值范围为(-∞,-3-72]∪[1,+∞). 22.解 (1)依题意,得y =⎩⎪⎨⎪⎧9+a ,0<x ≤m , ①9+n x -m +a ,x >m .②其中0<a ≤5.(2)∵0<a ≤5,∴9<9+a ≤14.由于该家庭今年一、二月份的水费均大于14元,故用水量4立方米,5立方米都大于最低限量m 立方米.将⎩⎪⎨⎪⎧x =4,y =17和⎩⎪⎨⎪⎧x =5,y =23分别代入②,得⎩⎪⎨⎪⎧17=9+n 4-m +a , ③23=9+n 5-m +a .④③-④,得n =6.代入17=9+n (4-m )+a ,得a =6m -16. 又三月份用水量为2.5立方米,若m <2.5,将⎩⎪⎨⎪⎧x =2.5,y =11代入②,得a =6m -13,这与a =6m -16矛盾.∴m ≥2.5,即该家庭三月份用水量2.5立方米没有超过最低限量.将⎩⎪⎨⎪⎧x =2.5,y =11代入①,得11=9+a ,由⎩⎪⎨⎪⎧a =6m -16,11=9+a ,解得⎩⎪⎨⎪⎧a =2,m =3.∴该家庭今年一、二月份用水量超过最低限量,三月份用水量没有超过最低限量,且m =3,n =6,a =2.。
高中数学 人教A 版 必修1 第三章 函数的应用 高考复习习题(选择题201-300)含答案解析学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知函数f(x)=|lnx|,g(x){0,0<x ≤1|x 2−4|−2,x >1,则方程|f(x)−g(x)|=2的实根个数为( )A . 1B . 2C . 3D . 4 2,方程()0f x a -=有四个不同的根,记最大的根的所有取值为集合D ,若函数()()F x f x kx =- ()x D ∈有零点,则k 的取值范围是( )A . B.C . D. 3.已知函数()22,{52,x x af x x x x a+>=++≤,若函数恰有三个不同的零点,则实数的取值范围是( )A . [-1,1)B . [-1,2)C . [-2,2)D . [0,2]4函数()()g x f x m =-,则下列说法错误的是( )A . ,则函数()g x 无零点B . ,则函数()g x 有零点C .,则函数()g x 有一个零点,则函数()g x 有两个零点5,则实数m 的取值范围( ) A .B .C . (),16-∞D .6.已知函如果存在实数,s t ,其中s t <,使得()()f s f t =,则t s -的取值范围是( )A . [)32ln2,2-B . []32ln2,1e --C . []1,2e -D . [)0,1e + 7.设[]x 表示不超过x 的最大整数,如[][]11,0.50==,已知函数,若方程()0fx =有且仅有3个实根,则实数k 的取值范围是( )A .B .C .D . 8.已知函数f(x)=ln |x |−2ax 3+x 2,若f(x)有三个零点,则实数a 的取值范围是 A . (−12,0)∪(0,12) B . (−∞,−12)∪(12,+∞)C . (−1,0)∪(0,1)D . [−1,0)∪(0,1] 9()()2h x f x mx =-+有三个不同的零点,则实数m 的取值范围是() A .B .C .D . 10与直线y x =的交点的横坐标是0x ,则0x 的取值范围是( )A.()1,2 D .()2,3 11.已知函数()2221,2,{ 2,2,x x x x f x x --++<=≥且存在三个不同的实数123,,x x x ,使得()()()123f x f x f x ==,则123x x x ++的取值范围为( )A . ()4,5B . [)4,5C . (]4,5D . []4,512 ()()g x f x a =-,若函数()g x 有四个零点,则a 的取值范围( ).A . ()0,1B . (]0,2C . []0,1D . (]0,113.设f(x)=(12)x −x 3,已知0<a <b <c ,且f(a)·f(b)·f(c)<0,若x 0是函数f(x)的一个零点,则下列不等式不可能成立的是( )A . x 0<aB . 0<x 0<1C . b <x 0<cD . a <x 0<b14.已知函数f (x )={−x 2+4x, x ≤0ln (x +1), x >0 ,若|f (x )|≥ax ,则实数a 的取值范围为A . [−2,1]B . [−4,1]C . [−2,0]D . [−4,0]15.函数f(x)按照下述方式定义,当x ≤2时,f(x)=−x 2+2x ;当x >2时,f(x)=12f(x −3),方程f(x)=15的所有实数根之和是( )A . 8B . 12C . 18D . 2416.已知函数()f x 是R 上的奇函数,当0x >时,函数()()1g x xf x =-在[)7,-+∞上的所有零点之和为( ) A . 0 B . 4 C . 8 D . 1617.已知(),,0,a b c ∈+∞且a b c ≥≥, 12a b c ++=, 45ab bc ca ++=,则a 的最小值为( )A . 5B . 10C . 15D . 2018.已知函数()cos f x x =,,,a b c 分别为ABC ∆的内角,,A B C 所对的边,且222334a b c ab +-=,则下列不等式一定成立的是( )A .()()sin cos f A fB ≤ B .()()sin sin f A f B ≤420C .()()cos sin f A f B ≤D .()()cos cos f A f B ≤19,则方程()()330f f x e -=的根的个数为( )A . 1B . 2C . 3D . 420.已知函数f(x)={x 2−2x,x ≥0e −x ,x <0,若方程|f(x)|=mx 有3个根,则m 的取值范围是( )A . 0<m <2B . m <−2或0<m <2C . −e <m ≤2D . m <−e 或0<m <221.已知函数若函数()()g x f x k =-有2个零点,则实数k 的取值范围为( )A . ()0,+∞B . [)1,+∞ C . ()0,1 D . ()1,+∞ 22.已知M 是函数在()0,x ∈+∞上的所有零点之和,则M 的值为( )A . 3B . 6C . 9D . 1223且()()1f x f x =, ()()()1n n f x f f x -=,1,2,3,n =….则满足方程()n f x x =的根的个数为( ). A . 2n 个 B . 22n 个 C . 2n个 D . ()221n -个 24.将函图象按向量()1,0a =平移,得到的函数图象与函数()2sin 24y x x π=-≤≤的图象的所有交点的横坐标之和等于( )A . 2B . 4C . 6D . 825.已知函数f(x)=x −√x(x >0),g(x)=x +e x ,ℎ(x)=x +lnx 的零点分别为x 1,x 2,x 3,则A . x 1<x 2<x 3B . x 2<x 1<x 3C . x 2<x 3<x 1D . x 3<x 1<x 2 26.R 上的偶函数()f x 满足()()11f x f x -=+,当01x ≤≤时, ()2f x x =,则)A . 4B . 8C . 5D . 1027.3个零点,则实数a 的取值范围为( ) A . B . C . D .28.已知函数f(x)是定义在R 上的单调递增函数,且满足对任意实数x 都有f[f(x)−2x ]=3,当x ≥0时,函数g(x)=f(x)−31sinπx −1零点的个数为 A . 4 B . 5 C . 6 D . 7 29.已知函数f (x )=e x x,若关于x 的方程f 2(x )+2a 2=3a |f (x )|有且仅有4个不等实根,则实数a 的取值范围为( )A . (0,e2) B . (e2,e) C . (0,e ) D . (0,+∞)302个不同的零点,则实数k 的取值范围是( )A . (-4,0)B . (-4,0]C . (-∞,0]D . (-∞,0)31.把函数y =sin (4x −π6)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到函数f (x )的图象,已知函数g (x )={f (x ),−11π12≤x ≤a 3x 2−2x −1,a <x ≤13π12 ,则当函数g (x )有4个零点时a 的取值集合为( ) A . (−5π12,−13)∪(π12,1)∪(7π12,13π12) B . [−5π12,−13)∪[π12,1)∪[7π12,13π12)C . [−5π12,−13)∪[7π12,13π12) D . [−5π12,−13)∪[π12,1) 32.已知函数()()sin 1f x x ϕ=--(()f x 的一个零点是( )A.B . C. D. 33.设函数()()()2ln 1f x x a x x =++-,若()f x 在区间()0+∞,上无零点,则实数a 的取值范围是( )A . []01,B . []10-,C . []02,D . []11-,34.已知二次函数f(x)=x 2+bx +c(b ∈R,c ∈R),M,N 分别是函数f(x)在区间[−1,1]上的最大值和最小值,则M −N 的最小值 A . 2 B . 1 C . 12 D . 1435.定义在R 上的奇函数f(x),当x≥0时,f(x)则关于x 的函数g(x)=f(x)+a(0<a<2)的所有零点之和为( ) A . 10 B . 1-2aC . 0D . 21-2a36.设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( ) A . 3,12e ⎡⎫-⎪⎢⎣⎭ B . 33,24e ⎡⎫-⎪⎢⎣⎭C . 33,24e ⎡⎫⎪⎢⎣⎭D . 3,12e ⎡⎫⎪⎢⎣⎭37.若*n N ∈时,不等式()6ln 0n nx x ⎛⎫-≥⎪⎝⎭恒成立,则实数x 的取值范围是( ) A . []1,6 B . []2,3 C . []1,3 D . []2,638.已知函数f (x )=(2x −2−x )∙x 3,若实数a 满足f (log 2a )+f (log 0.5a )≤2f (1),则实数a 的取值范围为A . (−∞,12)∪(2,+∞) B . (12,2)C . [12,2]D . (−∞,12]∪[2,+∞)39.已知函数f(x)=x 2e 2x +m|x|e x +1(m ∈R)有四个零点,则m 的取值范围为( ) A . (−∞,−e −1e ) B . (−∞,e +1e ) C . (−e −1e ,−2) D . (−∞,−1e )40.定义运算,,{,,b a b a b a a b <⊗=≥设函数,若函数()()g x f x ax =-在区间()0,4上有三个零点,则实数a 的取值范围是( )A .B .C .D . 41.已知函数()222,0{ ,0x x x a x f x e ax e x ++<=-+-≥ 恰有两个零点,则实数a 的取值范围是( )A . ()0,1B . (),e +∞C . ()()0,1,e ⋃+∞D . ()()20,1,e ⋃+∞42.已知1x 是函数f (x )=x+1-ln (x+2)的零点, 2x 是函数g (x )=2x -2ax 4a 4++的零点,且满足|12x -x |≤1,则实数a 的最小值是 A . -1 B . -2 C .D .43()f x[]1,x π∈时()ln f x x =,若函数()()g x f x ax =-在上有唯一的零点,则实数a 的取值范围是( )A .B .C . []0,ln ππD . 44,在区间()0,1内任取两个数,p q ,且p q ≠,不等恒成立,则实数a 的取值范围为( )A . [)4,+∞B . (]1,4C . [)10,+∞D . []0,10 45.已知函数f (x )=22,{ 52,x x ax x x a+>++≤函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值范围是( )A . [-1,1)B . [0,2]C . [-2,2)D . [-1,2)46.已知f (x )是定义域为(0 , +∞)的单调函数,若对任意x ∈(0 , +∞)都有f (f (x )+log 13x)=4,且关于x 的方程|f (x )−3|=x 2−6x 2+9x −4+a 在区间(0 , 3]上有两个不同实数根,则实数a 的取值范围是A . (0 , 5]B . [0 , 5]C . (0 , 5)D . [5 , +∞)47,若方程()0f x kx -=有3个不同的实根,则实数k 的取值范围为()A .B .C .D . 48.函数()|2|ln f x x x =--在定义域内的零点的个数为A .0B .1C .2D .349.不等式xlnx +x 2+(a −2)x ≤2a 有且只有一个整数解,则a 的取值范围是( ) A . [−1 , +∞) B . (−∞ , −4−4ln2]∪[−1 , +∞)C . (−∞ , −3−3ln3]∪[−1 , +∞)D . (−4−4ln2 , −3−3ln3]∪[−1 , +∞)50.若关于x 的方程.则实数a 的取值范围是( ) A . ()0,1 B . (]0,1 C . ()0,+∞ D . ()1,+∞ 51.已知函数()()221,1{log 1,1x x f x x x +≤=->, ()2221g x x x m =-+-。
最新人教版高中数学必修一第三章试卷(含答案)
第三章函数的概念与性质
一、单选题
1.下列函数是奇函数的是()
A.B.C.D.
2.幂函数的图象经过点,则的值为()
A.1B.-1C.0D.2
3.已知函数是定义在R上偶函数,且在内是减函数,若,则满足的实数x的取值范围为()
A.B.
C.D.
4.设函数的定义域为,有下列三个命题,这些命题中,真命题的个数是()
①若存在常数,使得任意,有,则是函数的最大值
②若存在,使得对任意,且,有,则是函数的最大值
③若的最大值为2,则的最大值也为2
A.0个B.1个C.2个D.3个
5.函数,,则的值域为()
A.B.
C.D.
6.已知是定义在上的偶函数,且在区间单调递减,则不等式
的解集为()
A.B.C.D.
二、多选题
7.已知函数,下列说法正确的是()
A.函数的图象的对称中心是(0,1)B.函数在R上是增函数
C.函数是奇函数D.方程的解为
8.已知偶函数满足,在区间上,下列判断正确的是()
A.B.在上是减函数
C.函数在处取得最大值D.函数没有最小值
三、填空题
9.函数的值域是_________.
10.若函数,则__________.
11.已知函数,若对,不等式恒成立,则实数的取值范围是______.
12.已知函数,,若在区间上的最大值是3,则的取值范围是______.
四、解答题
13.已知实数是常数,函数.求函数的定义域,判断函数的奇偶性,并说明理由.。
第三章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数20()(31)f x x =+-的定义域是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .1,13⎛⎫⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭D .11,,133⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭2.已知函数1(2),()(3)(2),x f x f x x =+⎪⎩≥<则(1)(9)f f +等于( )A .2-B .7-C .27D .73.函数111y x -=+-的图像是下列图像中的( )ABCD4.若函数y ax =与by x=-在(0,)+∞上都是减函数,则2()f x ax bx =+在(0,)+∞上是( ) A .增函数B .减函数C .先增后减D .先减后增5.函数2()(2)1f x ax a x =+++是偶函数,则函数的单调递增区间为( ) A .[0,)+∞B .(,0]-∞C .(,)-∞+∞D .[1,)+∞6.函数2()(1)1f x mx m x =+-+在区间(,1]-∞上为减函数,则m 的取值范围是( )A .10,3⎛⎤ ⎥⎝⎦B .10,3⎡⎫⎪⎢⎣⎭C .10,3⎡⎤⎢⎥⎣⎦D .10,3⎛⎫ ⎪⎝⎭7.定义在R 上的偶函数()f x ,对任意()1212,[0,)x x x x ∈+∞≠,有()()21210f x f x x x --<,则( )A .(3)(2)(1)f f f -<<B .(1)(2)(3)f f f -<<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f -<<8.若函数,1,()(23)1,1ax f x x a x x ⎧⎪=⎨⎪-+⎩>≤是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤ ⎥⎝⎦D .2,3⎛⎫+∞ ⎪⎝⎭9.设函数()f x 满足对任意的,m n (,m n 为正数)都有()()()f m n f m f n +=⋅且(1)2f =,则(2)(3)(2020)(1)(2)(2019)f f f f f f +++等于( )A .2 020B .2 019C .4 038D .4 04010.在函数([1,1])y x x =∈-的图像上有一点(,)P t t ,此函数图象与x 轴、直线1x =-及x t =围成图形的面积为S (如图的阴影部分所示),则S 与t 的函数关系的图象可表示为( )ABCD11.设奇函数()f x 在(0,)+∞上是增函数,且(2)0f =,则不等式()()0f x f x x --<的解集为( )A .(2,0)(2,)-+∞B .(2,0)(0,2)-C .(,2)(2,)-∞-+∞D .(,2)(0,2)-∞-12.已知定义在R 上的函数()f x ,若函数(1)y f x =+为偶函数,且()f x 对任意()1212,[1,)x x x x ∈+∞≠都有()()21210f x f x x x -->,若(1)(2)f a f a -≥,则实数a 的取值范围是( )A .[1,1]-B .(,1]-∞-C .[1,)+∞D .(,1][1,)-∞-+∞二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.设函数0()1,02x x f x x =⎨⎛⎫⎪ ⎪⎝⎭⎩≥<则((4))f f -=________.14.若函数2(1)2()1a x a f x x a -+-=+-为奇函数,则实数a =________. 15.设函数2()24f x x x =-+在区间[,]m n 上的值域是[6,2]-,则m n +的取值范围是________.16.已知函数29,3,()6,3,x f x x x x ⎧⎪=⎨-+⎪⎩≥<则不等式()22(34)f x x f x --<的解集是________. 三、解答题(本大题共6小题,共70分.解答时写出必要的文字说明,证明过程或演算步骤)17.[10分]已知函数22(),[1,)x x af x x x++=∈+∞. (1)当12a =时,求函数()f x 的最小值; (2)若对任意[1,),()0x f x ∈+∞>恒成立,试求实数a 的取值范围; (3)讨论函数的单调性.(只写出结论即可)18.[12分]设函数2()23,f x x x a x =--+∈R .(1)小鹏同学认为,无论a 取何值,()f x 都不可能是奇函数,你同意他的观点吗?请说明你的理由. (2)若()f x 是偶函数,求a 的值.(3)在(2)的情况下,画出()y f x =的图象并指出其单调递增区间。
第三章《函数的应用》复习测试题(一)一、选择题1.(2012北京)函数的零点个数为( ).A.0B.1C.2D.3考查目的:考查函数零点的概念、函数的单调性和数形结合思想.答案:B.解析:(方法1):令得,,在平面直角坐标系中分别画出幂函数和指数函数的图象,可知它们只有一个交点,∴函数的零点只有一个.(方法2):∵函数在上单调递增,且,∴函数的零点只有一个.答案选B.2.(2010天津)函数的零点所在的一个区间是( ).A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)考查目的:考查函数零点的存在性定理.答案:B解析:∵,,∴答案选B.3.(2009福建)若函数的零点与的零点之差的绝对值不超过0.25,则可以是( ).A. B.C. D.考查目的:考查函数零点的概念和零点存在性定理.答案:A.解析:的零点为,的零点为,的零点为,的零点为.下面估算的零点. ∵,,∴的零点.依题意,函数的零点与的零点之差的绝对值不超过0.25,∴只有的零点符合题意,故答案选A.4.在研制某种新型材料过程中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( ).1.95 3.00 3.94 5.10 6.120.97 1.59 1.98 2.35 2.61A. B. C.D .考查目的:考查几类不同增长类型函数模型与实际问题的拟合程度.答案:D.解析:通过检验可知,只有函数较为接近,故答案选D.5.已知函数,,的零点分别为,,则的大小关系是( ).A. B.C. D.考查目的:考查函数零点的定义,指数函数、对数函数、幂函数、一次函数的图象,以及数形结合思想.答案:C.解析:由已知得,,在同一平面直角坐标系中,画出函数的图象,由图象可知,,故答案选C.6.(2010陕西)某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数与该班人数之间的函数关系用取整函数(表示不大于的最大整数)可以表示为( ).A. B. C.D.考查目的:考查函数的建模及其实际应用,意在考查分析问题与解决问题的能力.答案:B.解析:(方法1):当除以的余数0,1,2,3,4,5,6时,由题设知,且易验证,此时.当除以10的余数为7,8,9时,由题设知,易验证,此时.综上得,必有,故选B.(方法2):依题意知:若,则,由此检验知选项C,D错误.若,则,由此检验知选项A错误.故由排除法知,本题答案应选B.二、填空题7.(2009浙江)某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量(单位:千瓦时)高峰电价(单位:元/千瓦时)低谷月用电量(单位:千瓦时)低谷电价(单位:元/千瓦时)50及以下的部分0.56850及以下的部分0.288超过50至200的部分0.598超过50至200的部分0.318超过200的部分0.668超过200的部分0.388若某家庭5月份的高峰时间段用电量为千瓦时,低谷时间段用电量为千瓦时,则按这种计费方式,该家庭本月应付的电费为元(用数字作答).考查目的:考查分段函数在解决实际问题中的应用.答案:.解析:该家庭本月应付电费由两部分构成:高峰部分为,低谷部分为,这两部分电费之和为(元).8.(2009山东)若函数有两个零点,则实数的取值范围是__________.考查目的:考查函数零点的定义,指数函数与一次函数的图象,数形结合的思想.答案:.解析:设函数和函数,则函数有两个零点,就是函数的图象与函数的图象有两个交点.由图象可知,当时,两个函数的图象只有一个交点,不符合题意;当时,∵函数的图象过点(0,1),而直线所过的点一定在点(0,1)的上方,∴两个函数的图象一定有两个交点,∴实数的取值范围是.9.某电脑公司2012年的各项经营收入中,经营电脑配件的收入为400万元,占全年经营总收入的40%.该公司预计2014年经营总收入要达到1690万元,且计划从2012年到2014年,每年经营总收入的年增长率相同,则2013年预计经营总收入为________万元.考查目的:考查增长率模型在实际问题中的应用和读题审题能力.答案:1300.解析:设年平均增长率为,则,∴,∴2013年预计经营总收入为×=1300(万元).10.(2010全国I理15改编)若函数有四个零点,则实数的取值范围是 .考查目的:考查函数零点的定义,函数的图象与性质、不等式的解法,和数形结合思想.答案:.解析:在平面直角坐标系内,先画函数的图象.当时,,图象的顶点为,与轴交于点(0,-1);当时,,图象的顶点为,与轴交于点(0,-1).是一条与轴平行的直线.当时,直线与函数的图象有4个交点,即当,函数有四个零点.11.为了预防流感,某段时间学校对教室用药熏消毒法进行消毒.设药物开始释放后第小时教室内每立方米空气中的含药量为毫克.已知药物释放过程中,教室内每立方米空气中的含药量(毫克)与时间(小时)成正比.药物释放完毕后,与的函数关系式为(为常数).函数图象如图所示.则从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式为 .考查目的:考查待定系数法求指数函数、一次函数解析式的方法,以及阅读理解能力和分类讨论思想.答案:.解析:函数图象由一条线段与一段指数函数图象组成,它们的交点为(0.1,1).当时,由(毫克)与时间(小时)成正比设,∴,解得,∴.当时,将(0.1,1)代入得,∴,,∴函数关系式为.。
第三章 函数的应用章末整合提升A 级 基础巩固一、选择题1.函数f (x )=x 2-3x -4的零点是( D ) A .(1,-4) B .(4,-1) C .1,-4D .4,-1[解析] 由x 2-3x -4=0,得x 1=4,x 2=-1.2.在用二分法求函数f (x )在区间(a ,b )上的唯一零点x 0的过程中,取区间(a ,b )上的中点c =a +b2,若f (c )=0,则函数f (x )在区间(a ,b )上的唯一零点x 0( D )A .在区间(a ,c )内B .在区间(c ,b )内C .在区间(a ,c )或(c ,b )内D .等于a +b2[解析] 根据二分法求方程的近似解的方法和步骤,函数f (x )在区间(a ,b )上的唯一零点,x 0=a +b2,故选D .3.某工厂2018年生产某种产品2万件,计划从2019年开始每年比上一年增产20%,那么这家工厂生产这种产品的年产量从哪一年开始超过12万件?( C )A .2026年B .2027年C .2028年D .2029年[解析] 设经过x 年这种产品的年产量开始超过12万件,则2(1+20%)x>12,即1.2x>6,∴x >lg6lg1.2≈9.8,取x =10,故选C .4.(2019·某某某某市高一期末测试)函数f (x )=2x+x -4,则f (x )的零点所在的大致区间是( B )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)[解析]f (0)=20-4=-3<0,f (1)=2+1-4=-1<0, f (2)=22+2-4=2>0,∴f (1)·f (2)<0,故选B .5.向高为H 的水瓶中注水,若注满为止,注水量V 与水深h 的函数关系图象如图所示,那么水瓶的形状是( B )[解析] 解法一:很明显,从V 与h 的函数图象看,V 从0开始后,随h 的增大而增大且增速越来越慢,因而应是底大口小的容器,即应选B .解法二:取特殊值h =H 2,可以看出C ,D 图中的水瓶的容量恰好是V2,A 图中的水瓶的容量小于V2,不符合上述分析,排除A ,C ,D ,应选B .解法三:取模型函数为y =kx 13(k >0),立即可排除A ,C ,D ,故选B .6.用长度为24 m 的材料围成一矩形场地,并且中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为( A )A .3 mB .4 mC .5 mD .6 m[解析] 设隔墙的长度为x m ,即矩形的宽为x m ,则矩形的长为24-4x 2m(0<x <6),∴矩形的面积S =x ·24-4x 2=x (12-2x )=-2x 2+12x =-2(x -3)2+18,∴当x =3时,S max =18.∴当隔墙的长度为3 m 时,矩形的面积最大,最大为18 m 2. 二、填空题7.设函数f (x )=⎩⎪⎨⎪⎧12x -7x <0x x ≥0,f (a )<1,则实数a 的取值X 围是__(-3,1)__.[解析] 当a <0时,(12)a -7<1,即2-a <23,∴a >-3,∴-3<a <0;当a ≥0时,a <1, ∴0≤a <1.综上可知-3<a <1.故实数a 的取值X 围是(-3,1).8.用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要清洗的次数是__4__(lg2≈0.301 0).[解析] 设至少要洗x 次,则(1-34)x ≤1100,∴x ≥1lg2≈3.322,所以需4次.三、解答题9.某旅行团去风景区旅游,若每团人数不超过30人,飞机票每X 收费900元;若每团人数多于30人,则给予优惠,每多1人,机票每X 减少10元,直至每X 降为450元为止.某团乘飞机,旅行社需付给航空公司包机费15 000元.假设一个旅行团不能超过70人.(1)写出每X 飞机票的价格关于人数的函数关系式; (2)每团人数为多少时,旅行社可获得最大利润? [解析] (1)设旅行团的人数为x ,机票价格为y ,则:y =⎩⎪⎨⎪⎧9001≤x ≤30900-x -30·1030<x ≤70,即y =⎩⎪⎨⎪⎧9001≤x ≤301 200-10x 30<x ≤70.(2)设旅行社可获得利润为Q ,则Q =⎩⎪⎨⎪⎧900x -15 0001≤x ≤3012 000-10x x -15 00030<x ≤70,即Q =⎩⎪⎨⎪⎧900x -15 0001≤x ≤30-10x 2+1 200x -15 00030<x ≤70.当x ∈[1,30]时,Q max =900×30-15 000=12 000(元), 当x ∈(30,70]时,Q =-10(x -60)2+21 000, 所以当x =60时,Q max =21 000(元),所以当每团人数为60时,旅行社可获得最大利润21 000元.B 级 素养提升一、选择题1.方程4x=4-x 的根所在区间是( B )A .(-1,0)B .(0,1)C .(1,2)D .(2,3)[解析] 由4x=4-x ,得4x+x -4=0,令f (x )=4x+x -4, ∴方程4x=4-x 的根即为函数,f (x )=4x+x -4的零点,f (-1)=4-1-1-4=-194<0,f (0)=40-4=1-4=-3<0, f (1)=4+1-4=1>0,f (2)=42+2-4=14>0, f (3)=43+3-4=63>0,∴f (0)·f (1)<0,故选B .2.一水池有两个进水口,一个出水口,每个进水口的进水速度如图甲所示,出水口的出水速度如图乙所示,某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则一定正确的是( A )A .①B .①②C .①③D .①②③[解析] 由甲、乙两图可知进水速度为1,出水速度为2,结合丙图中直线的斜率,只进水不出水时,蓄水量增加速度是2,故①正确;不进水只出水时,蓄水量减少速度是2,故②不正确;两个进水一个出水时,蓄水量减少速度也是0,故③不正确.3.四人赛跑,假设他们跑过的路程f i (x )(i ∈{1,2,3,4})和时间x (x >1)的函数关系式分别是f 1(x )=x 2,f 2(x )=4x ,f 3(x )=log 2x ,f 4(x )=2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是( D )A .f 1(x )=x 2B .f 2(x )=4xC .f 3(x )=log 2xD .f 4(x )=2x[解析] 显然四个函数中,指数函数是增长最快的,故最终跑在最前面的人具有的函数关系是f 4(x )=2x,故选D .4.中国共产党第十八届中央委员会第五次全体会议认为,至2020年全面建成小康社会,是我们党确定的“两个一百年”奋斗目标的第一个百年奋斗目标.全会提出了全面建成小康社会新的目标要求:经济保持中高速增长,在提高发展平衡性、包容性、可持续性的基础上,到2020年国内生产总值和城乡居民人均收入比2010年翻一番,产业迈向中高端水平,消费对经济增长贡献明显加大,户籍人口城镇化率加快提高.设从2011年起,城乡居民人均收入每年比上一年都增长p %.下面给出了依据“至2020年城乡居民人均收入比2010年翻一番”列出的关于p 的四个关系式:①(1+p %)×10=2;②(1+p %)10=2; ③lg(1+p %)=2;④1+10×p %=2. 其中正确的是( B ) A .① B .② C .③D .④[解析] 设从2011年起,城乡居民人均收入每一年比上一年都增长p %,由题意,得(1+p %)10=2,故选B .二、填空题5.函数f (x )=x 2-3x +2a 有两个不同的零点,则a 的取值X 围是__(-∞,98)__.[解析] 令x 2-3x +2a =0,由题意得Δ=9-8a >0, ∴a <98.6.某地野生薇甘菊的面积与时间的函数关系的图象如图所示,假设其关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生薇甘菊的面积就会超过30 m 2;③设野生薇甘菊蔓延到2 m 2,3 m 2,6 m 2所需的时间分别为t 1,t 2,t 3,则有t 1+t 2=t 3; ④野生薇甘菊在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.其中正确的说法有__①②③__(请把正确说法的序号都填在横线上). [解析]∵其关系为指数函数,图象过点(4,16),∴指数函数的底数为2,故①正确; 当t =5时,S =32>30,故②正确; ∵t 1=1,t 2=log 23,t 3=log 26, ∴t 1+t 2=t 3,故③正确;根据图象的变化快慢不同知④不正确,综上可知①②③正确. 三、解答题7.已知关于x 的二次方程x 2+2mx +2m +1=0有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值X 围.[解析] 由题意知,抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,可以画出示意图(如图所示),观察图象可得⎩⎪⎨⎪⎧f0=2m +1<0f-1=2>0f1=4m +2<0f2=6m +5>0,解得-56<m <-12.所以m 的取值X 围是(-56,-12).8.我们知道,燕子每年秋天都要从北方飞向南方过冬.研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v =5log 2Q10,单位是m/s ,其中Q 表示燕子的耗氧量.(1)计算,当燕子静止时的耗氧量是多少单位?(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?[解析] (1)由题意可知,当燕子静止时,它的速度v =0,∴5log 2Q 10=0,∴log 2Q10=0,∴Q10=1,∴Q =10.∴当燕子静止时的耗氧量是10个单位.(2)由题意可知,当一只燕子的耗氧量是80个单位时,它的飞行速度v =5log 28010=5log 28=5×3=15.∴它的飞行速度是15 m/s.9.牧场中羊群的最大畜养量为m 只,为保证羊群的生长空间,实际畜养量不能达到最大畜养量,必须留出适当的空闲量.已知羊群的年增长量y 只和实际畜养量x 只与空闲率的乘积成正比,比例系数为k (k >0).(1)写出y 关于x 的函数解析式,并指出这个函数的定义域; (2)求羊群年增长量的最大值;(3)当羊群的年增长量达到最大值时,求k 的取值X 围.[解析] (1)根据题意,由于最大畜养量为m 只,实际畜养量为x 只,则畜养率为x m,故空闲率为1-x m ,由此可得y =kx (1-x m)(0<x <m ).(2)y =kx (1-x m )=-km (x 2-mx )=-k m (x -m2)2+km4,∵0<x <m ,∴当x =m 2时,y 取得最大值km4. (3)由题意知为给羊群留有一定的生长空间,则有实际畜养量与年增长量的和小于最大畜养量,即0<x +y <m .因为当x =m 2时,y max =km 4,所以0<m 2+km4<m , 解得-2<k <2.又因为k >0,所以0<k <2.。
一、选择题1.下列各组函数中,表示同一个函数的是( )A .211x y x -=-与1y x =+B .y x =与log xa y a =(0a >且1a ≠)C .21y x =-与1y x =-D .lg y x =与21lg 2y x =2.函数12xy ⎛⎫= ⎪⎝⎭的大致图象是( ). A . B .C .D .3.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微:数形结合百般好,隔离分家万事休”.在数学学习中和研究中,常用函数的图象来研究函数的性质,页常用函数的解析式来琢磨函数图象的特征,如函数()22xy xx R =-∈的大致图象是( )A .B .C .D .4.已知函数()()3,<1log ,1a a x a x f x x x ⎧--=⎨≥⎩的值域..是R ,那么实数a 的取值范围是( ) A .31,2⎛⎤ ⎥⎝⎦B .()1,+∞C .()()0,11,3D .3,32⎡⎫⎪⎢⎣⎭5.已知函数22()lg[(1)(1)1]f x a x a x =-+++的值域为R .则实数a 的取值范围是( ) A .5[1,]3B .5(1,]3C .(]5,1(,)3-∞-⋃+∞D .()5,1[1,)3-∞-6.已知:23log 2a =,42log 3b =,232c -⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( )A .b c a <<B .b a c <<C .c b a <<D .c a b <<7.函数()212()log 4f x x =-的单调递增区间为( ). A .(0,+∞)B .(-,0)C .(2,+∞)D .(-,-2)8.已知函数()f x 是定义在R 上的单调递增的函数,且满足对任意的实数x 都有[()3]4x f f x -=,则()()f x f x +-的最小值等于( ).A .2B .4C .8D .129.函数1()1x f x a +=-恒过定点( )A .(1,1)B .(1,1)-C .(1,0)-D .(1,1)--10.如图是指数函数①y =x a ;②y =x b ;③y =c x ;④y =d x 的图象,则a ,b ,c ,d 与1的大小关系是( )A .a <b <1<c <dB .b <a <1<d <cC .1<a <b <c <dD .a <b <1<d <c11.函数2()ln(43)f x x x =+-的单调递减区间是( )A .32⎛⎤-∞ ⎥⎝⎦,B .3,42⎡⎫⎪⎢⎣⎭C .3,2⎡⎫+∞⎪⎢⎣⎭D .31,2⎛⎤- ⎥⎝⎦12.已知函数()2,01,0x x f x x x >⎧=⎨+≤⎩,若()()10f a f +=,则实数a 的值等于( )A .-3B .-1C .1D .3二、填空题13.下列命题中所有正确的序号是_____________.①函数1()3x f x a -=+(0a >且1)a ≠的图像一定过定点(1,4)P ; ②函数(1)f x -的定义域是(1,3),则函数()f x 的定义域为(2,4); ③若1log 12a>,则a 的取值范围是112⎛⎫⎪⎝⎭,; ④若22ln ln()x y x y -->-- (0x >,0y <),则0x y +<.14.函数()log 31a y x =+-.(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny ++=上(其中m ,0n >),则12m n+的最小值等于__________. 15.设函数2()ln(1)f x x x =+,若()23(21)0f a f a +-<,则实数a 的取值范围为_____.16.函数()()cos1log sin f x x =的单调递增区间是____________. 17.函数()()212log 56f x x x =-+的单调递增区...间是__________. 18.已知奇函数()()y f x x R =∈满足:对一切x ∈R ,()()11f x f x +=-且[]0,1x ∈时,()1xf x e =-,则()2019f f =⎡⎤⎣⎦__________.19.设函数122,1()1log ,1x x f x x x -⎧≤=⎨->⎩,则满足()2f x ≤的x 的取值范围是_______________.20.如果()231log 2log 9log 64x x x f x =-+-,则使()0f x <的x 的取值范围是______.三、解答题21.已知函数()log (1)log (1)a a f x x x =+--,(0a >且1a ≠) (1)求()f x 的定义域;(2)判断()f x 的奇偶性,并予以证明; (3)求使()0f x >的x 取值范围. 22.已知函数122()log 2xf x x-=+. (1)求函数()f x 的定义域,并判断其奇偶性;(2)判断()f x 在其定义域上的单调性,并用单调性定义证明. 23.已知函数()421()x x f x a a R =-+⋅-∈. (1)当1a =时,求()f x 的值域; (2)若()f x 在区间[]1,0-的最大值为14-,求实数a 的值. 24.已知函数35()log 5xf x x-=+. (1)求函数()f x 的定义域;(2)判断函数()f x 奇偶性,并证明你的结论.25.已知集合(){}2log 33A x x =+≤,{}213B x m x m =-<≤+. (1)若2m =-,求AB ;(2)若A B A ⋃=,求实数m 的取值范围.26.已知函数()f x 是定义在R 上的奇函数,当0x 时,()121xaf x =++. (1)求实数a 的值及()f x 的解析式; (2)求方程4|(1)|5f x -=的解.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分析各个选项中每组函数的定义域和对应关系,若定义域和对应关系均相同则为同一个函数,由此判断出正确选项. 【详解】A .211x y x -=-的定义域为{}1x x ≠,1y x =+的定义域为R ,所以不是同一个函数;B .y x =与log xa y a =的定义域均为R ,且log xa y a =即为y x =,所以是同一个函数; C.y =(][),11,-∞-+∞,1y x =-的定义域为R ,所以不是同一个函数;D .lg y x =的定义域为()0,∞+,21lg 2y x =的定义域为{}0x x ≠,所以不是同一个函数, 故选:B. 【点睛】思路点睛:同一函数的判断步骤:(1)先判断函数定义域,若定义域不相同,则不是同一函数;若定义域相同,再判断对应关系;(2)若对应关系不相同,则不是同一函数;若对应关系相同,则是同一函数.2.A解析:A 【分析】去绝对值符号后根据指数函数的图象与性质判断. 【详解】由函数解析式可得:1,022,0xx x y x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪<⎩可得值域为:01y <≤,由指数函数的性质知:在(),0-∞上单调递增;在()0,∞+上单调递减. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.3.A解析:A 【分析】分析函数()()22xf x xx R =-∈的奇偶性,结合()01f =可得出合适的选项.【详解】令()22=-xf x x ,该函数的定义域为R ,()()()2222xxf x x x f x --=--=-=,函数()22=-xf x x 为偶函数,排除B 、D 选项;又()010f =>,排除C 选项. 故选:A. 【点睛】函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)从函数的特征点,排除不合要求的图象.4.A解析:A 【分析】当0<a <1时,当1≥x 时,log 0a y x =≤,则当1x <时,()3y a x a =--的值域必须要包含()0,+∞,,当1a >时,当1≥x 时,[)log 0a y x =∈+∞,,则当1x <时,()3y a x a =--的值域必须要包含()0-∞,,从而可得答案. 【详解】由题意,()f x 的值域为R ,当0<a <1时,当1≥x 时,log 0a y x =≤,所以当1x <时,()3y a x a =--的值域必须要包含()0,+∞,当1x <时,()3y a x a =--单调递增,()332y a x a a =--<- 所以不满足()f x 的值域为R .当1a >时,当1≥x 时,[)log 0a y x =∈+∞,, 所以当1x <时,()3y a x a =--的值域必须要包含()0-∞,, 若3a =时,当1x <时,3y a =-=-,不满足()f x 的值域为R .若3a >时,当1x <时,()3y a x a =--单调递减,()332y a x a a =-->- 所以不满足()f x 的值域为R .若13a <<时,当1x <时,()3y a x a =--单调递增,()332y a x a a =--<- 要使得()f x 的值域为R ,则320a -≥,即32a ≤ 所以满足条件的a 的取值范围是:312a <≤, 故选:A .【点睛】关键点睛:本题考查根据函数的值域求参数的范围,解答本题的关键是当0<a <1时,当1≥x 时,log 0a y x =≤,则当1x <时,()3y a x a =--的值域必须要包含()0,+∞,,当1a >时,当1≥x 时,[)log 0a y x =∈+∞,,则当1x <时,()3y a x a =--的值域必须要包含()0-∞,,属于中档题. 5.A解析:A 【分析】当函数的值域为R 时,命题等价于函数()()22111y a x a x =-+++的值域必须包含区间()0+∞,得解 【详解】22()lg[(1)(1)1]f x a x a x =-+++的值域为R令()()22111y a x a x =-+++,则()()22111y a x a x =-+++的值域必须包含区间()0+∞,当210a -=时,则1a =± 当1a =时,21y x =+符合题意; 当1a =-时,1y =不符合题意;当1a ≠±时,()()222101410a a a ⎧->⎪⎨∆=+--≥⎪⎩,解得513a <≤ 513a ∴≤≤,即实数a 的取值范围是5[1,]3故选:A 【点睛】转化命题的等价命题是解题关键.6.A解析:A 【分析】由换底公式和对数函数的性质可得112b a <<<,再由指数函数的性质可得102c <<,即可得解. 【详解】23ln3ln12log =02ln 2ln 2a ==>,4212ln ln 2ln1323log =03ln 4ln 2ln 2b ====<, a b ∴>22223231log log 410,239222a c -⎛⎫⎛⎫<===< ⎪ ⎪⎭=⎝>⎭=⎝,b c a ∴<<, 故选:A 【点睛】方法点睛:本题考查了对数式、指数式的大小比较,比较大小的常用方法为同底的对数式和指数式利用其单调性进行比较,也可以借助于中间值0和1进行比较,考查了运算求解能力与逻辑推理能力,属于常考题.7.D解析:D 【分析】求出函数的定义域,根据对数型复合函数的单调性可得结果. 【详解】函数()212()log 4f x x =-的定义域为()(),22,-∞-+∞,因为函数()f x 是由12log y u =和24u x =-复合而成,而12log y u =在定义域内单调递减,24u x =-在(),2-∞-内单调递减,所以函数()212()log 4f x x =-的单调递增区间为(),2-∞-, 故选:D. 【点睛】易错点点睛:对于对数型复合函数务必注意函数的定义域.8.B解析:B 【分析】根据()3x f x -为定值,可假设()3xf x m =+,然后计算()()f x f x +-,并计算m 的值,然后使用基本不等式,可得结果. 【详解】由题可知:()3xf x -为定值故设()3xf x m -=,即()3xf x m =+又[()3]4xf f x -=,所以()341mf m m m =+=⇒= 则()31xf x =+()()3131x x f x f x -+-=+++则1()()32243x x f x f x +-=++≥= 当且仅当133xx =时,取等号 所以()()f x f x +-的最小值为:4故选:B 【点睛】本题考查基本不等式的应用,还考查镶嵌函数的应用,难点在于()3xf x -为定值,审清题意,细心计算,属中档题.9.C解析:C 【分析】根据指数函数性质求定点. 【详解】因为01a =,所以()011f a -=-=0,因此过定点()1,0-,选C.【点睛】本题考查指数函数性质以及定点问题,考查基本分析求解能力,属于基础题.10.B解析:B 【分析】根据指数函数的图象与性质可求解. 【详解】根据函数图象可知函数①y =x a ;②y =x b 为减函数,且1x =时,②y =1b <①y =1a , 所以1b a <<,根据函数图象可知函数③y =c x ;④y =d x 为增函数,且1x =时,③y =c 1>④y =d 1, 所以1c d >> 故选:B 【点睛】本题主要考查了指数函数的单调性,指数函数的图象,数形结合的思想,属于中档题.11.B解析:B 【分析】先求函数的定义域,再利用复合函数的单调性同增异减,即可求解. 【详解】由2430x x +->得2340x x --<,解得:14x -<<,2()ln(43)f x x x =+-由ln y t =和234t x x =-++复合而成,ln y t =在定义域内单调递增,234t x x =-++对称轴为32x =,开口向下, 所以 234t x x =-++在31,2⎛⎫- ⎪⎝⎭ 单调递增,在3,42⎡⎫⎪⎢⎣⎭单调递减, 所以2()ln(43)f x x x =+-的单调减区间为3,42⎡⎫⎪⎢⎣⎭,故选:B 【点睛】本题主要考查了利用同增异减求复合函数的单调区间,注意先求定义域,属于中档题12.A解析:A 【分析】先求得()1f 的值,然后根据()f a 的值,求得a 的值. 【详解】由于()1212f =⨯=,所以()()20,2f a f a +==-,22a =-在()0,∞+上无解,由12a +=-解得3a =-,故选A.【点睛】本小题主要考查分段函数求函数值,考查已知分段函数值求自变量,属于基础题.二、填空题13.①③④【分析】由指数函数的图象函数的定义域对数函数的性质判断各命题①令代入判断②利用函数的定义求出的定义域判断③由对数函数的单调性判断④引入新函数由它的单调性判断【详解】①令则即图象过点①正确;②则解析:①③④ 【分析】由指数函数的图象,函数的定义域,对数函数的性质判断各命题.①,令1x =代入判断,②利用函数的定义求出()f x 的定义域判断,③由对数函数的单调性判断,④引入新函数1()ln 2ln 2xxg x x x -⎛⎫=-=- ⎪⎝⎭,由它的单调性判断.【详解】①令1x =,则(1)4f =,即()f x 图象过点(1,4),①正确; ②13x <<,则012x <-<,∴()f x 的定义域是(0,2),②错;③1log 1log 2a a a ,∴0112a a <<⎧⎪⎨>⎪⎩,∴112a <<.③正确;④由22ln ln()x y x y -->-- (0x >,0y <),得ln 2ln()2x y x y --<--, 又1()ln 2ln 2xx g x x x -⎛⎫=-=- ⎪⎝⎭是(0,)+∞上的增函数, ∴由ln 2ln()2x y x y --<--,得x y <-,即0x y +<,④正确. 故答案为:①③④【点睛】关键点点睛:本题考查指数函数的图象,对数函数的单调性,函数的定义域问题,定点问题:(1)指数函数(0x y a a =>且1)a ≠的图象恒过定点(0,1);(2)对数函数log (0a y x a =>且1)a ≠的图象恒过定点(1,0),解题时注意整体思想的应用.14.8【分析】根据函数平移法则求出点得再结合基本不等式即可求解【详解】由题可知恒过定点又点在直线上故当且仅当时取到等号故的最小值等于8故答案为:8【点睛】本题考查函数平移法则的使用基本不等式中1的妙用属 解析:8【分析】根据函数平移法则求出点A ()2,1--,得21m n +=,再结合基本不等式即可求解【详解】由题可知,()log 31a y x =+-恒过定点()2,1--,又点A 在直线 10mx ny ++=上,故21m n +=,()121242448n m m n m n m n m n ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当122n m ==时取到等号,故12m n+的最小值等于8 故答案为:8【点睛】本题考查函数平移法则的使用,基本不等式中“1”的妙用,属于中档题15.【分析】根据已知可得为奇函数且在上单调递增不等式化为转化为关于自变量的不等式即可求解【详解】的定义域为是奇函数设为增函数在为增函数在为增函数在处连续的所以在上单调递增化为等价于即所以实数的取值范围为 解析:1(1,)3- 【分析】根据已知可得()f x 为奇函数且在R 上单调递增,不等式化为()23(12)f a f a <-,转化为关于自变量的不等式,即可求解.【详解】()f x 的定义域为R ,()()))ln10f x f x x x +-=+==,()f x ∴是奇函数,设,[0,)()x u x x =∈+∞为增函数,()f x 在[0,)+∞为增函数,()f x 在(,0)-∞为增函数,()f x 在0x =处连续的,所以()f x 在R 上单调递增,()23(21)0f a f a +-<,化为()23(12)f a f a <-,等价于2312a a <-,即213210,13a a a +-<-<<, 所以实数a 的取值范围为1(1,)3-.故答案为: 1(1,)3-【点睛】本题考查利用函数的单调性和奇偶性解不等式,熟练掌握函数的性质是解题的关键,属于中档题. 16.【分析】根据对数型复合函数单调性列不等式再根据正弦函数性质得结果【详解】单调递增区间为单调递减区间且所以故答案为:【点睛】本题考查对数型复合函数单调性以及正弦函数性质考查基本分析求解能力属基础题 解析:[2,2),()2k k k Z ππππ++∈ 【分析】根据对数型复合函数单调性列不等式,再根据正弦函数性质得结果.【详解】()()cos1cos1(0,1)log sin f x x ∈∴=单调递增区间为sin y x =单调递减区间且sin 0x >, 所以22,()2k x k k Z ππππ+≤<+∈, 故答案为:[2,2),()2k k k Z ππππ++∈【点睛】 本题考查对数型复合函数单调性以及正弦函数性质,考查基本分析求解能力,属基础题. 17.【分析】求出函数的定义域利用复合函数法可求得函数的单调递增区间【详解】对于函数有解得或所以函数的定义域为内层函数在区间上单调递减在区间上单调递增外层函数为减函数所以函数的单调递增区间为故答案为:【点 解析:(),2-∞【分析】求出函数()f x 的定义域,利用复合函数法可求得函数()()212log 56f x x x =-+的单调递增区间.【详解】对于函数()()212log 56f x x x =-+,有2560x x -+>,解得2x <或3x >. 所以,函数()()212log 56f x x x =-+的定义域为()(),23,-∞+∞,内层函数256u x x =-+在区间(),2-∞上单调递减,在区间()3,+∞上单调递增, 外层函数12log y u =为减函数,所以,函数()f x 的单调递增区间为(),2-∞. 故答案为:(),2-∞.【点睛】复合函数()y f g x ⎡⎤=⎣⎦的单调性规律是“同则增,异则减”,即()y f u =与()u g x =.若具有相同的单调性,则()y f g x ⎡⎤=⎣⎦为增函数,若具有不同的单调性,则()y f g x ⎡⎤=⎣⎦必为减函数.18.【分析】根据题意求得的周期性则可求再结合函数解析式求得函数值即可【详解】由题可知:因为对一切故关于对称;又因为是奇函数则可得故可得故函数是周期为的函数则又当故则故答案为:【点睛】本题考查利用函数周期 解析:31e e --【分析】根据题意,求得()f x 的周期性,则()2019f 可求,再结合函数解析式,求得函数值即可.【详解】由题可知:因为对一切x R ∈,()()11f x f x +=-,故()f x 关于1x =对称;又因为()f x 是奇函数,则可得()()()()()21111f x f x f x f x f x +=++=--=-=-,故可得()()()()4222f x f x f x f x +=++=-+=,故函数()f x 是周期为4的函数.则()()()201911f f f =-=-,又当[]0,1x ∈,()1x f x e =-,故()()201911f f e =-=-, 则()()()()()320191131e f f f e f e f e e -=-=--=--=-.故答案为:31e e --.【点睛】本题考查利用函数周期性求函数值,属综合中档题;难点在于求得函数的周期. 19.【分析】根据分段函数分段解不等式最后求并集【详解】当时因为解得:∴当时解得:所以综上原不等式的解集为故答案为:【点睛】本题主要考查了解分段函数不等式涉及指数与对数运算属于基础题解析:[0,)+∞【分析】根据分段函数,分段解不等式,最后求并集.【详解】当1x ≤时,1()2x f x -=,因为11x -≤,解得:0x ≥,∴01x ≤≤ ,当1x >时,2()1log 2f x x =-≤,2log 1x ≥-,解得:12x ≥,所以1x >, 综上,原不等式的解集为[)0,+∞.故答案为:[)0,+∞.【点睛】 本题主要考查了解分段函数不等式,涉及指数与对数运算,属于基础题.20.【分析】可结合对数化简式将化简为再解对数不等式即可【详解】由由得即当时故;当时无解综上所述故答案为:【点睛】本题考查对数化简公式的应用分类讨论求解对数型不等式属于中档题 解析:81,3⎛⎫ ⎪⎝⎭【分析】可结合对数化简式将()f x 化简为()1log 2log 3log 4x x x f x =-+-,再解对数不等式即可【详解】由()2323231log 2log 9log 641log 2log 3log 4x x x x x x f x =-+-=-+- 31log 2log 3log 41log 8x x x x =-+-=+,由()0f x <得81log 03x -<, 即8log log 3x x x >, 当1x >时,83x <,故81,3x ⎛⎫∈ ⎪⎝⎭;当()0,1x ∈时,83x >,无解 综上所述,81,3x ⎛⎫∈ ⎪⎝⎭ 故答案为:81,3⎛⎫ ⎪⎝⎭【点睛】本题考查对数化简公式的应用,分类讨论求解对数型不等式,属于中档题三、解答题21.(1){|11}x x -<<;(2)函数()f x 是奇函数,证明见解析;(3)当1a >时,01x <<;当01a <<时,10x -<<【分析】(1)根据对数的真数为正数列式可解得结果;(2)函数()f x 是奇函数,根据奇函数的定义证明即可;(3)不等式化为log (1)log (1)a a x x +>-后,分类讨论底数a ,根据对数函数的单调性可解得结果.【详解】(1)要使函数数()f x 有意义,则必有1010x x +>⎧⎨->⎩,解得11x -<<, 所以函数()f x 的定义域是{|11}x x -<< .(2)函数()f x 是奇函数,证明如下:∵(1,1)x ∈-,(1,1)x -∈-,()log (1)log (1)a a f x x x -=--+[]log (1)log (1)a a x x =-+--()f x =-,∴函数()f x 是奇函数(3)使()0f x >,即log (1)log (1)a a x x +>-当1a >时,有111010x x x x +>-⎧⎪->⎨⎪+>⎩,解得01x <<,当01a <<时,有111010x x x x +<-⎧⎪->⎨⎪+>⎩,解得10x -<<.综上所述:当1a >时,01x <<;当01a <<时,10x -<<.【点睛】方法点睛:已知函数解析式,求函数定义域的方法:有分式时:分母不为0;有根号时:开奇次方,根号下为任意实数,开偶次方,根号下大于或等于0;有指数时:当指数为0时,底数一定不能为0;有根号与分式结合时,根号开偶次方在分母上时:根号下大于0;有指数函数形式时:底数和指数都含有x ,指数底数大于0且不等于1;有对数函数形式时,自变量只出现在真数上时,只需满足真数上所有式子大于0,自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大0且不等于1.22.(1)定义域为(2,2)-,奇函数(2)函数()f x 在(2,2)-上为增函数,证明见解析【分析】(1)根据真数大于0可得定义域,根据奇函数的定义可得函数为奇函数;(2)设1222x x -<<<,根据对数函数的单调性可得12()()f x f x <,再根据定义可证函数()f x 在(2,2)-上为增函数.【详解】(1)由函数有意义得202x x->+,解得22x -<<, 所以函数的定义域为(2,2)-, 因为1112222()log log ()22x x f x f x x x -+-⎛⎫-===- ⎪-+⎝⎭, 所以函数为奇函数.(2)因为124()log 12f x x ⎛⎫=-+⎪+⎝⎭,所以函数()f x 在(2,2)-上为增函数, 证明:设1222x x -<<<,则120224x x <+<+<,则1244122x x >>++,则124411022x x -+>-+>++, 因为1012<<,所以12()()f x f x <,所以函数()f x 在(2,2)-上为增函数, 【点睛】思路点睛:判断函数的奇偶性的思路:①求出定义域,并判断其是否关于原点对称;②若定义域不关于原点对称,则函数为非奇非偶函数,若定义域关于原点对称,再判断()f x -与()f x 的关系,若()()f x f x -=-,则函数为奇函数;若()()f x f x -=,则函数为偶函数.23.(1)3,4⎛⎤-∞- ⎥⎝⎦;(2)a =【分析】(1)令()20,xt =∈+∞,可得21y t t =-+-,利用二次函数的性质可求出; (2)令12,12x t ⎡⎤=∈⎢⎥⎣⎦,可得21y t at =-+-,讨论对称轴2a t =的取值范围结合二次函数的性质即可求出.【详解】(1)()2()421221x x x x f x a a =-+⋅-=-+⋅-.令()20,xt =∈+∞,21y t at =-+-,1a =时,2213124y t t t ⎛⎫=-+-=--- ⎪⎝⎭在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减. ∴当12t =时,max 34y =-,∴3,4y ⎛⎤∈-∞- ⎥⎝⎦, 所以()f x 的值域为3,4⎛⎤-∞- ⎥⎝⎦. (2)令12,12x t ⎡⎤=∈⎢⎥⎣⎦,22211124a y t at t a ⎛⎫=-+-=---+ ⎪⎝⎭, 其图象的对称轴为2a t =. ①当122a ≤,即1a ≤时,函数y 在区间1,12⎡⎤⎢⎥⎣⎦上单调递减, 当12t =时,max 1111424y a =-+-=-,解得2a =,与1a ≤矛盾; ②当12a ≥,即2a ≥时,函数y 在区间1,12⎡⎤⎢⎥⎣⎦上单调递增, 当1t =时,max 1114y a =-+-=-,解得74a =,与2a ≥矛盾, ③当1122a <<,即12a <<时,函数y 在1,22a ⎡⎤⎢⎥⎣⎦上单调递增,在,12a ⎡⎤⎢⎥⎣⎦上单调递减.当2a t =时,2max 11144y a =-=-,解得a =,舍去a =综上,a =【点睛】思路点睛:求二次函数在闭区间[],a b 的最值的思路;(1)二次函数开口向上时,求函数的最大值,讨论对称轴和2a b +的大小求解; (2)二次函数开口向上时,求函数的最小值,讨论对称轴在(]()[),,,,,a a b b -∞+∞三个区间的范围求解.24.(1)(5,5)- (2)奇函数,见解析【分析】(1)若()f x 有意义,则需满足505x x->+,进而求解即可; (2)由(1),先判断定义域是否关于原点对称,再判断()f x -与()f x 的关系即可.【详解】(1)由题,则505x x->+,解得55x -<<,故定义域为()5,5-(2)奇函数,证明:由(1),()f x 的定义域关于原点对称,因为()()33355log log log 1055x x f x f x x x +--+=+==-+,即()()f x f x -=-, 所以()f x 是奇函数【点睛】本题考查具体函数的定义域,考查函数的奇偶性的证明.25.(1){}31A B x x ⋂=-<≤;(2)[][)1,24,m ∈-+∞ 【分析】(1)计算{}35A x x =-<≤,{}51B x x =-<≤,再计算交集得到答案.(2)A B A ⋃=,故B A ⊆,讨论B =∅和B ≠∅,计算得到答案.【详解】(1)(){}{}2log 3335A x x x x =+≤=-<≤,{}51B x x =-<≤, 故{}31A B x x ⋂=-<≤.(2){}35A x x =-<≤,A B A ⋃=,故B A ⊆, 当B =∅时,213m m -≥+,解得4m ≥;当B ≠∅时,4m <,故21335m m -≥-⎧⎨+≤⎩,解得12m -≤≤. 综上所述:[][)1,24,m ∈-+∞.【点睛】本题考查交集运算,根据集合的包含关系求参数,意在考查学生的计算能力和综合应用能力. 26.(1) 2a =-,()2121x x f x -=+;(2) 212log 3x =+或212log 3x =- 【分析】(1)根据奇函数(0)0f =求解a ,再根据奇函数的性质求解()f x 的解析式即可.(2)根据(1)可得()2121x x f x -=+为奇函数,可先求解4|()|5f t =的根,再求解4|(1)|5f x -=即可. 【详解】(1)因为()f x 是定义在R 上的奇函数,且当0x ≥时,()121x a f x =++,故0(0)1021a f =+=+,即102a +=,解得2a =-.故当0x ≥时,()22112121x x x f x -=-=++. 所以当0x < 时, ()()211221211221x x x x x x f x f x -----=--=-=-=+++.故()2121x x f x -=+ (2) 先求解4|()|5f t =,此时()214215t t f t -==±+. 当()()214421521215t t t t -=⇒+=-+,即29t =解得22log 92log 3t ==. 因为()2121x x f x -=+为奇函数,故当214215t t -=-+时, 22log 3t =-. 故4|(1)|5f x -=的解为212log 3x -=或212log 3x -=-, 解得212log 3x =+或212log 3x =-【点睛】本题主要考查了根据奇函数求解参数的值以及解析式的方法,同时也考查了根据函数性质求解绝对值方程的问题,属于中档题.。
高一数学必修一第三章测试题及答案:函数的应用数学在科学发展和现代生活生产中的应用非常广泛,小编准备了高一数学必修一第三章测试题及答案,具体请看以下内容。
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设U=r,A={x|x0},b={x|x1},则AUb=()A{x|01} b.{x|0c.{x|x0}D.{x|x1}【解析】 Ub={x|x1},AUb={x|0【答案】 b2.若函数y=f(x)是函数y=ax(a0,且a1)的反函数,且f(2)=1,则f(x)=()A.log2xb.12xc.log12xD.2x-2【解析】 f(x)=logax,∵f(2)=1,loga2=1,a=2.f(x)=log2x,故选A.【答案】 A3.下列函数中,与函数y=1x有相同定义域的是()A.f(x)=lnxb.f(x)=1xc.f(x)=|x|D.f(x)=ex【解析】∵y=1x的定义域为(0,+).故选A.【答案】 A4.已知函数f(x)满足:当x4时,f(x)=12x;当x4时,f(x)=f(x+1).则f(3)=()A.18b.8c.116D.16【解析】 f(3)=f(4)=(12)4=116.【答案】 c5.函数y=-x2+8x-16在区间[3,5]上()A.没有零点b.有一个零点c.有两个零点D.有无数个零点【解析】∵y=-x2+8x-16=-(x-4)2,函数在[3,5]上只有一个零点4.【答案】 b6.函数y=log12(x2+6x+13)的值域是()A.rb.[8,+)c.(-,-2]D.[-3,+)【解析】设u=x2+6x+13=(x+3)2+44y=log12u在[4,+)上是减函数,ylog124=-2,函数值域为(-,-2],故选c.7.定义在r上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是()A.y=x2+1b.y=|x|+1c.y=2x+1,x0x3+1,x0D.y=ex,x0e-x,x0【解析】∵f(x)为偶函数,由图象知f(x)在(-2,0)上为减函数,而y=x3+1在(-,0)上为增函数.故选c.【答案】 c8.设函数y=x3与y=12x-2的图象的交点为(x0,y0),则x0所在的区间是()A.(0,1)b.(1,2)c(2,3)D.(3,4)【解析】由函数图象知,故选b.【答案】 b9.函数f(x)=x2+(3a+1)x+2a在(-,4)上为减函数,则实数a 的取值范围是()A.a-3b.a3c.a5D.a=-3【解析】函数f(x)的对称轴为x=-3a+12,要使函数在(-,4)上为减函数,只须使(-,4)(-,-3a+12)即-3a+124,a-3,故选A.10.某新品牌电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则下列函数模型中能较好反映销量y与投放市场的月数x之间的关系的是()A.y=100xb.y=50x2-50x+100c.y=502xD.y=100log2x+100【解析】对c,当x=1时,y=100;当x=2时,y=200;当x=3时,y=400;当x=4时,y=800,与第4个月销售790台比较接近.故选c. 【答案】 c11.设log32=a,则log38-2log36可表示为()A.a-2b.3a-(1+a)2c.5a-2D.1+3a-a2【解析】 log38-2log36=log323-2log3(23)=3log32-2(log32+log33)=3a-2(a+1)=a-2.故选A.【答案】 A12.已知f(x)是偶函数,它在[0,+)上是减函数.若f(lgx)f(1),则x的取值范围是()A.110,1b.0,110(1,+)c.110,10D.(0,1)(10,+)【解析】由已知偶函数f(x)在[0,+)上递减,则f(x)在(-,0)上递增,f(lgx)f(1)01,或lgx0-lgx1110,或0或110x的取值范围是110,10.故选c.【答案】 c二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.已知全集U={2,3,a2-a-1},A={2,3},若UA={1},则实数a的值是________.【答案】 -1或214.已知集合A={x|log2x2},b=(-,a),若Ab,则实数a的取值范围是(c,+),其中c=________.【解析】 A={x|0【答案】 415.函数f(x)=23x2-2x的单调递减区间是________.【解析】该函数是复合函数,可利用判断复合函数单调性的方法来求解,因为函数y=23u是关于u的减函数,所以内函数u=x2-2x的递增区间就是函数f(x)的递减区间.令u=x2-2x,其递增区间为[1,+),根据函数y=23u是定义域上的减函数知,函数f(x)的减区间就是[1,+).【答案】 [1,+)16.有下列四个命题:①函数f(x)=|x||x-2|为偶函数;②函数y=x-1的值域为{y|y③已知集合A={-1,3},b={x|ax-1=0,ar},若Ab=A,则a的取值集合为{-1,13};④集合A={非负实数},b={实数},对应法则f:求平方根,则f是A到b的映射.你认为正确命题的序号为:________. 【解析】函数f(x)=|x||x-2|的定义域为(-,2)(2,+),它关于坐标原点不对称,所以函数f(x)=|x||x-2|既不是奇函数也不是偶函数,即命题①不正确;函数y=x-1的定义域为{x|x1},当x1时,y0,即命题②正确;因为Ab=A,所以bA,若b=,满足bA,这时a=0;若b,由bA,得a=-1或a=13.因此,满足题设的实数a的取值集合为{-1,0,13},即命题③不正确;依据映射的定义知,命题④正确.【答案】②④三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知函数f(x)=x2-3x-10的两个零点为x1,x2(x1【解析】 A={x|x-2,或x5}.要使Ab=,必有2m-1-2,3m+25,3m+22m-1,或3m+22m-1,解得m-12,m1,m-3,或m-3,即-121,或m-3.18.(本小题满分12分)已知函数f(x)=x2+2ax+2,x[-5,5].(1)当a=-1时,求f(x)的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.【解析】 (1)当a=-1时,f(x)=x2-2x+2=(x-1)2+1,x[-5,5].由于f(x)的对称轴为x=1,结合图象知,当x=1时,f(x)的最小值为1,当x=-5时,f(x)的最大值为37.(2)函数f(x)=(x+a)2+2-a2的图象的对称轴为x=-a,∵f(x)在区间[-5,5]上是单调函数,-a-5或-a5.故a的取值范围是a-5或a5.19.(本小题满分12分)(1)计算:27912+(lg5)0+(2764)-13;(2)解方程:log3(6x-9)=3.【解析】 (1)原式=25912+(lg5)0+343-13=53+1+43=4.(2)由方程log3(6x-9)=3得6x-9=33=27,6x=36=62,x=2.经检验,x=2是原方程的解.20.(本小题满分12分)有一批影碟机(VcD)原销售价为每台800元,在甲、乙两家商场均有销售,甲商场用下面的方法促销:买一台单价为780元,买两台单价为760元,依次类推,每多买一台单价均减少20元,但每台最低不低于440元;乙商场一律按原价的75%销售,某单位需购买一批此类影碟机,问去哪家商场购买花费较少?【解析】设购买x台,甲、乙两商场的差价为y,则去甲商场购买共花费(800-20x)x,由题意800-20x440.118(xN).去乙商场花费80075%x(xN*).当118(xN*)时y=(800-20x)x-600x=200x-20x2,当x18(xN*)时,y=440x-600x=-160x,则当y0时,1当y=0时,x=10;当y0时,x10(xN).综上可知,若买少于10台,去乙商场花费较少;若买10台,甲、乙商场花费相同;若买超过10台,则去甲商场花费较少.21.(本小题满分12分)已知函数f(x)=lg(1+x)-lg(1-x).(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性;【解析】 (1)由1+x0,1-x0,得-1函数f(x)的定义域为(-1,1).(2)定义域关于原点对称,对于任意的x(-1,1),有-x(-1,1),f(-x)=lg(1-x)-lg(1+x)=-f(x)f(x)为奇函数.22.(本小题满分14分)设a0,f(x)=exa+aex是r上的偶函数.(1)求a的值;(2)证明:f(x)在(0,+)上是增函数.【解析】 (1)解:∵f(x)=exa+aex是r上的偶函数,f(x)-f(-x)=0.exa+aex-e-xa-ae-x=0,即1a-aex+a-1ae-x=01a-a(ex-e-x)=0.由于ex-e-x不可能恒为0,当1a-a=0时,式子恒成立.又a0,a=1.(2)证明:∵由(1)知f(x)=ex+1ex,在(0,+)上任取x1f(x1)-f(x2)=ex1+1ex1-ex2-1ex2=(ex1-ex2)+(ex2-ex1)1ex1+x2.∵e1,0ex1+x21,(ex1-ex2)1-1ex1+x20,f(x1)-f(x2)0,即f(x1)f(x)在(0,+)上是增函数.高中是人生中的关键阶段,大家一定要好好把握高中,小编为大家整理的高一数学必修一第三章测试题及答案,希望大家喜欢。
……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………高中数学必修一第三章选择题11.函数xx x f 1lg )(-=的零点个数为 A .0 B .1 C .2 D .32.已知方程310x x --=仅有一个正零点,则此零点所在的区间是 A .(-2,-1) B .(2,3) C .(1,2) D .(0,1)3.函数2()ln f x x x=-的零点所在的大致区间是( ) A .(1,2) B .(2,)e C .(,3)e D .(3,)+∞4.设函数321()2x y x y -==与的图象的交点为),(00y x ,则0x 所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)5.出租车按如下方法收费:起步价7元,可行3km (不含3km );3km 到7km (不含7km )按1.6元/km 计价(不足1km 按1km 计算);7km 以后按2.2元/km 计价,到目的地结算时还需付1元的燃油附加费.若从甲地坐出租车到乙地(路程12.2km ),需付车费(精确到1元) ( ) A 、28元 B 、27元 C 、26元 D 、25元6.设点P 是函数2)1(4---=x y 图象上的任意一点,点)3,2(-a a Q (R ∈a ),则||PQ 的最小值为( )A. 52-B.5C.8525- D.7525- 7.设函数[],0(),(1),0x x x f x f x x -≥⎧=⎨+<⎩其中][x 表示不超过x 的最大整数,如[ 1.2]-=-2,]2.1[=1,]1[=1,若直线(0)y kx k k =+>与函数y=)(x f 的图象恰有三个不同的交点,则k 的取值范围是( )A .)31,41[B .]41,0(C .]31,41[D .]31,41( 8.3()2xf x x =+的零点所在区间为( ) A .(0,1) B .(-1,0)C .(1,2)D .(-2,-l)9.已知函数()122,0,log ,0.x a x f x x x ⎧⋅≤⎪=⎨>⎪⎩若关于x 的方程()()0f f x =有且仅有一个实数解,则实数a 的取值范围是( )A .(),0-∞B .()0,1C .()(),00,1-∞ D .()()0,11,+∞试卷第2页,总15页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………10.已知函数2()|23|f x x x =+-,若关于x 的方程22()(2)()20f x a f x a a -++-=有5个不等实根,则实数a 值是( )A .2B . 4C .2或4D .不确定的11.已知定义在R 上的函数[)[)⎩⎨⎧-∈-∈+=0,1,21,0,2)(22x x x x x f ,且)()2(x f x f =+,则方程252)(++=x x x f 在区间[]1,5-上的所有实根之和为( ) A .5- B .6- C .7- D .8- 12.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林( )A.14400亩B.172800亩C.17280亩D.20736亩13.甲、乙两个同学分别解一道一元二次方程,甲因把一次项系数看错了,而解得方程两根为3-和5,乙把常数项看错了,解得两根为26+和26-,则原方程是( ) A. 24150x x +-= B. 24150x x -+= C. 24150x x ++= D. 24150x x --=14.已知,A B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式( )A .60x t =B .6050x t t =+C .60 (0 2.5)15050 ( 3.5)t t x t t ≤≤⎧=⎨->⎩D .60 (0 2.5)150 (2.5 3.5)15050 (3.5 6.5)t t x t t t ≤≤⎧⎪=<≤⎨⎪-<≤⎩15.函数⎪⎩⎪⎨⎧>++≤-=.0,1,0,)()(2x a x x x a x x f ,若)0(f 是)(x f 的最小值,则a 的取值范围为( )A .[]2,1-B .[]0,1-C .[]2,1D .[]2,016.设)(x f 是定义在R 上的偶函数,对R x ∈,都有)2()2(+=-x f x f ,且当[]02,-∈x 时,1)21()(-=x x f ,若在区间]62(,-内关于x 的方程)1(0)2(log )(>=+-a x x f a 恰有3个不同的实数根,则a 的取值范围是( )A .(1,2)B .(2,+∞)C .(1,34) D .)2,4(3……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………17.在下列区间中,函数34)(-+=x e x f x 的零点所在的区间为( ) A .)41,0( B .)21,41( C .)43,21( D .)1,43(18.设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正常数).公司决定从原有员工中分流x (0100x <<)人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2%x .若要保证产品A 的年产值不减少,则最多能分流的人数是( )A .15B .16C .17D .18 19.设函数(),()f x g x 满足下列条件:(1)对任意实数12,x x 都有121212()()()()()f x f x g x g x g x x ⋅+⋅=-; (2)(1)1f -=-,(0)0f =,(1)1f =. 下列四个命题: ①(0)1g =; ②(2)1g =; ③22()()1f x g x +=;④当2n >,n *∈N 时,[][]()()nnf xg x +的最大值为1.其中所有正确命题的序号是( )A .①③B .②④C .②③④D .①③④20.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为 ( )A .3000B .3300C .3500D .400021.函数f (x )=)10102lg(2---x x 的零点的个数: ( ) A .8 B .7 C .6 D .522.已知符号函数⎪⎩⎪⎨⎧<-=>=0,1,0,0,0,1)sgn(x x x x 则函数x x x f 2ln )sgn(ln )(-=的零点个数为( )A .1B .2C .3D .423.设定义在D 上的函数)(x h y =在点))(,(00x h x P 处的切线方程为)(:x g y l =,当0x x ≠时,若0)()(0>--x x x g x h 在D 内恒成立,则称P 为函数)(x h y =的“类对称点”,则试卷第4页,总15页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………x x x x f ln 46)(2+-=的“类对称点”的横坐标是A .1B .2C .eD .324.若曲线1,11,11x e x y x x ⎧-≤⎪=⎨>⎪-⎩,与直线1y kx =+有两个不同的交点,则实数k 的取值范围是( ) A .(322,322)---+ B .(322,0)(0,)-++∞C .(,322)(0,)-∞--+∞UD .()()-3-2200+∞,,25.定义在实数集R 上的函数()x f y =的图像是连续不断的,若对任意的实数x ,存在常数t 使得()()x tf x tf -=+恒成立,则称()x f 是一个“关于t 函数”,下列“关于t 函数”的结论正确的是( ) A .()2=x f 不是 “关于t 函数” B .()x x f =是一个“关于t 函数” C .“关于21函数”至少有一个零点 D .()x x f πsin =不是一个“关于t 函数”26.偶函数f (x )满足f (x-1)=f (x+1),且在x ∈[0,1]时,f (x )=x ,则关于x 的方程f (x )= x 4log 在x ∈[0,4]上解的个数是( )A .1B .2C .3D .427.如右图是张大爷晨练时所走的离家距离(y )与行走时间(x )之间函数关系的图象,若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是( )28.若存在对于定义域为R 的函数()f x ,若存在非零实数0x ,使函数()f x 在0(,)x -∞……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………和0(,)x +∞上均有零点,则称0x 为函数()f x 的一个“纽点”.则下列四个函数中,不存在“纽点”的是( )A .2()1()f x x bx b =+-∈R B .2()2xf x x =-C .()133--=x x x f D .()21f x x =--29.已知函数()f x 满足1()1(1)f x f x +=+,当[01]x ∈,时,()f x x =,若在区间(11]-,上方程()0f x mx m --=有两个不同的实根,则实数m 的取值范围是( )A .1[0)2,B .1[)2+∞,C .1[0)3,D .1(0]2,30.已知0x 是函数1()21xf x x=+-的一个零点.若1020(1,),(,)x x x x ∈∈+∞ ,则( )A .12()0,()0f x f x <<B .12()0,()0f x f x <>C .12()0,()0f x f x ><D .12()0,()0f x f x >>31.设()x f 和()x g 是定义在同一个区间[]b ,a 上的两个函数,若函数()()x g x f y -=在[]b ,a x ∈上有两个不同的零点,则称()x f 和()x g 在[]b ,a 上是“关联函数”,区间[]b ,a 称为“关联区间”.若()432+-=x x x f 与()m x x g +=2在[]30,上是“关联函数”,则m 的取值范围是( ) A 、⎥⎦⎤ ⎝⎛--249, B 、[]01,- C 、(]2-∞-, D 、⎪⎭⎫⎝⎛+∞-,49 32.方程033=--x x 的实数解落在的区间是( )A 、[]01,-B 、[]10,C 、[]21,D 、[]32, 33.设函数321()2x y x y -==与的图象的交点为),(00y x ,则0x 所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)试卷第6页,总15页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………34.函数f (x )是定义在R 上的偶函数,且满足f (x +2)=f (x ),当x ∈[0,1]时,f (x )=2x ,若方程ax +a -f (x )=0(a >0)恰有三个不相等的实数根,则实数a 的取值范围是( ) A 、(12,1) B 、[0,2] C 、(1,2) D 、[1,+∞) 35.已知定义在[1,+∞)上的函数f (x )=4|812|(12)1()(2)22x x xf x --≤≤⎧⎪⎨>⎪⎩,则( ) A 、在[1,6)上,方程f (x )-16x =0有5个零点 B 、关于x 的方程f (x )-12n =0(n ∈N *)有2n +4个不同的零点 C 、当x ∈[2n -1,2n ](n ∈N *)时,函数f (x )的图象与x 轴围成的图形的面积为4 D 、对于实数x ∈[1,+∞),不等式xf (x )≤6恒成立 36.在实数集R 中定义一种运算“*”,对任意,R a b ∈,a b *为唯一确定的实数,且具有性质:(1)对任意R a ∈,0a a *=; (2)对任意,R a b ∈,(0)(0)a b ab a b *=+*+*.则函数1()()xx f x e e=*的最小值为 A .2 B .3 C .6 D .8 37.已经函数21()()sin ,23x f x x a R a a =-∈++,则()f x 在[0,2π]上的零点个数为A .1B .2C .3D .438.定义区间],[],(),[),(b a b a b a b a 、、、的长度均为a b d -=,用[]x 表示不超过x 的最大整数,例如[]32.3=,[]33.2-=-,记{}[]x x x -=,设[]{}1)(,)(-=⋅=x x g x x x f ,若用d 表示不等式)()(x g x f <解集区间的长度,则当30≤≤x 时有( ) A .1=d B .2=d C .3=d D .4=d39.不等式20ax x c -->的解集为{}21x x -<<,则函数2y ax x c =+-的零点为A .()1,0-和()2,0B .()1,0-C .()2,0D .1-和240.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( )A .108元B .105元C .106元D .118元41.对于三次函数32()(0)f x ax bx cx d a =+++≠,给出定义:设()f x '是函数……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………()y f x =的导数,()f x ''是()f x '的导数,若方程()0f x ''=有实数解0x ,则称点00(,())x f x 为函数()y f x =的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数32115()33212g x x x x =-+-,则122013()()......()201420142014g g g +++=( )A . 2011B . 2012C . 2013D . 201442.设函数()[](),01,0x x x f x f x x ⎧-≥⎪=⎨+<⎪⎩,其中[x]表示不超过x 的最大整数,如[-1.3]=-2,[1.3]=1,则函数y =f (x )-14x -14不同零点的个数为( ) A .2 B .3 C .4 D .543.函数2()21log f x x x =-+的零点所在的一个区间是( )A .11()84, B .1()412, C . 1()21, D .(1)2,44.已知函数⎩⎨⎧>≤+-=1,log 1,)(5.02x x x x x x f , 若对于任意R x ∈,不等式14)(2+-≤t t x f 恒成立,则实数t 的取值范围是 ( ) A .(][)+∞∞-,21, B .(][)+∞∞-,31, C .[]3,1 D .(][)+∞∞-,32, 45.已知函数()()22log 2-+-=x a x f x,若()x f 存在零点,则实数a 的取值范围是( )A.(-∞,-4]∪[4,+∞)B.[1.+∞)C.[2, +∞)D.[4, +∞)46.函数()⎩⎨⎧>≤+-=4,log 4,422x x x x x x f ,若函数()x f y =在区间(a ,a +1)上单调递增,则实数a的取值范围是( )A.(-∞,1]B.[1, 4]C.[4, +∞)D.(-∞,1]∪[4, +∞)47.对于任意的两个实数对),(b a 和),(d c 规定),(),(d c b a =当且仅当d b c a ==,; 运算“⊗”为:),(),(),(ad bc bd ac d c b a +-=⊗,运算“⊕”为:试卷第8页,总15页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………),(),(),(d b c a d c b a ++=⊕,设R q p ∈,,若)0,5(),()2,1(=⊗q p ,则=⊕),()2,1(q p ( )A .)0,2(B .)0,4(C .)2,0(D .)4,0(-48.设()f x 与()g x 是定义在同一区间[,]a b 上的两个函数,若函数()()y f x g x =-在[,]x a b ∈上有两个不同零点,则称()f x 与()g x 在[,]a b 上是“关联函数”,区间[,]a b 称为“关联区间”,若2()34f x x x =-+和()2g x x m =+在[0,3]上是“关联函数”,则m 的范围为( ) A .9[,2)4-- B .9(,2]4-- C .[1,0]- D .(,2]-∞- 49.已知函数32()1()32x mx m n x f x +++=+的两个极值点分别为12,x x ,且1(0,1)x ∈,2(1,)x ∈+∞,点),(n m P 表示的平面区域为D ,若函数log (4)(1)a y x a =+>的图像上存在区域D 内的点,则实数a 的取值范围是( )A. 1,3](B. 1,3()C. [3+∞,)D. 3+∞(,)50.已知[]x 表示不超过实数x 的最大整数,如[1.8]1,[ 1.2]2=-=-. 0x 是函数2()ln f x x x=-的零点,则0[]x 等于( ).. A .2 B .1 C .0 D .-2.51.对于函数()f x 和()g x ,设(){}0m x R f x ∈∈=,(){}0n x R g x ∈∈=,若存在m 、n ,使得1m n -≤,则称()()f x g x 与互为“零点关联函数”.若函数()12x f x e x -=+-与()23g x x ax a =--+互为“零点关联函数”,则实数a 的取值范围为( ).A.7[2,]3B.7[,3]3 C.[2,3] D.[2,4]52.方程260x px -+=的解集为M ,方程260x x q +-=的解集为N ,且{2}M N =I ,那么p q +=( )A. 21B. 8C. 6D. 753.已知关于x 的一元二次方程2(1)10x k x --+=有两个实根,则k 的取值范围为( )A.[1,3]-B.(,1][3,)-∞-+∞C.(1,3)-D.(,1)(3,)-∞-+∞……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………54.若函数()21()log 3xf x x =-,实数0x 是函数()f x 的零点,且100x x <<,则()1f x 的值( ).A .恒为正值B .等于0C .恒为负值D .不大于0 55.函数的()3log 82f x x x =-+零点一定位于区间( ).A .(1,2)B .(2,3)C .(3,4)D .(5,6) 56.已知0,1a a >≠,2()x f x x a =-,当(1,1)x ∈-时,均有1(),2f x <则实数a 的取值范围是( )A .1(0,][2,)2+∞B .1[,1)(1,2]2C .1(0,][4,)4+∞D .1[,1)(1,4]457.已知函数22|2|,04,()23,46x x x f x x ---≤<⎧=⎨-≤≤⎩,若存在12,x x ,当12046x x ≤<≤≤时,12()()f x f x =,则12()x f x ⋅的取值范围是( )A 、[0,1)B 、[1,4]C 、[1,6]D 、[0,1][3,8]58.已知实数,,a b c 满足22211a b ca b c a b c >>⎧⎪++=⎨⎪++=⎩,则a b +的取值范围是( )A 、35(,)23B 、4(1,]3C 、4(1,)3D 、1(,0)3- 59.已知()y f x =为R 上的可导函数,当0x ≠时,()()'0f x f x x+>,则关于x 的函数()()1g x f x x=+的零点个数为( )A .1B .2C .0D .0或 2 60.函数2()ln(1)f x x x=+-的零点所在的大致区间是( ) A .(0,1) B .1,2()C .(2,e )D .(3,4) 61.定义域为R 的函数()y f x =,若对任意两个不相等的实数12,x x ,都有11221221()()()()x f x x f x x f x x f x +>+,则称函数为“H 函数”,现给出如下函数:①31y x x =-++②32(sin cos )y x x x =--③1+=xe y ④ln ,0()0,0x x f x x ⎧≠=⎨=⎩其中为“H 函数”的有( )A .①②B .③④C . ②③D . ①②③62.已知a 是函数12()2log x f x x =-的零点,若a x <<00,则0()f x 的值满足( )试卷第10页,总15页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A.0()f x <0B.0()f x =0C.0()f x >0D.0()f x 的符号不确定 63.已知函数)(x f 满足)()(x f x f -=,且当)0,(-∞∈x 时,)(')(x xf x f +0<成立,若)2(ln )2(ln ),2()2(1.01.0f b f a ⋅=⋅=,c b a f c ,,),81(log )81(log 22则⋅=的大小关系是( )A .a b c >>B .c b a >>C .c a b >>D .a c b >>64.设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f ,则不等式)1()(f x f >的解集是( )A .),3()1,3(+∞-B .),2()1,3(+∞-C .),3()1,1(+∞-D .)3,1()3,( --∞65.若函数)(x f 对任意0>a 且1≠a ,都有)()(x af ax f =,则称函数为“穿透”函数,则下列函数中,不是“穿透”函数的是( )A .x x f -=)(B .1)(+=x x fC .x x f =)(D .x x x f -=)( 66.若函数()()2,,0f x ax bx c a b c =++>没有零点,则a cb+的取值范围是 A .[)2,+∞ B .()2,+∞ C .[)1,+∞ D .()1,+∞ 67.已知函数c x x y +-=33的图像与x 轴恰有两个公共点,则c = A .3-或1 B .9-或3 C .1-或1 D .2-或2 68.当10<<x 时,则下列大小关系正确的是( ) A 、x x x 33log 3<< B 、x x x 33log 3<< C 、x x x 3log 33<< D 、333log x x x <<69.设()1()()(),,f x x a x b a b m n =---< 为()y f x =的两个零点,且m n <,则,,,a b m n 的大小关系是A 、a m n b <<<B 、m a b n <<<C 、a b m n <<<D 、m n a b <<<70.某商店计划投入资金20万元经销甲或乙两种商品,已知经销甲、乙商品所获利润分别为P 和Q (万元),且它们与投入资金x (万元)的关系是,(0)42x ap Q x a ==>,若不管资金如何投放,经销这两种商品或其中一种商品所获利润总不小于5万元,则a的最小值为A 、5B 、5C 、3D 、3○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________ ○…………内…………○…………装…………○…………订…………○…………线…………○………… 71.定义域为R 的函数l g |2|(()1(2)x x f x x -≠⎧=⎨=⎩ 若关于x 的方程2()()0f x bf x c ++=恰有5个不同的实数解1234,,,,x x x x x ,则有12345()f x x x x x ++++等于( ) A 、0 B 、2lg 2 C 、3lg 2 D 、1 72.已知函数若c b a 、、互不相等,且)()()(c f b f a f ==,则c b a ++的取值范围是( ) A .(1,2014) B .(1,2015) C .(2,2015) D .[2,2015] 73.已知函数f (x)在区间[a ,b]上单调,且0)()(<⋅b f a f ,则函数)(x f 的图象与x 轴在区间[a ,b] 内( ) A .至多有一个交点 B .必有唯一个交点 C .至少有一个交点 D .没有交点 74.设函数⎩⎨⎧++=2)(2c bx x x f 00>≤x x ,若)0()4(f f =-,2)2(-=-f ,则关于x 的方程x x f =)(的解的个数为( ) (A )1 (B )2 (C )3 (D )4 75.偶函数()f x 满足(1)(1)f x f x -=+,且在x ∈[0,1]时,2()2f x x x =-,若直线0(0)kx y k k -+=>与函数()f x 的图象有且仅有三个交点,则k 的取值范围是( ) A .153(,)153 B .35(,)53 C .11(,)32 D .11(,)153 76.已知函数32()31f x ax x =-+,若f (x )存在唯一的零点0x ,且00x >,则a 的取值范围是( ) A.(2,+∞) B.(一∞,-2) C.(1,+∞) D.(一∞,一1) 77.已知函数的值域为[0,+∞),若关于x 的不等式f(x)<c 的解集为(m ,m +6),则实数c 的值为( ) A. 7 B. 8 C. 9 D. 10 78.设函数2()2,()ln 3x f x e x g x x x =+-=+-,若实数,a b 满足()()0f a g b ==,则( ) A.()0()g a f b << B.()0()f b g a << ()2014sin (01)(),log 1x x f x x x π⎧≤≤⎪=⎨>⎪⎩○…………外…………○…………装…………○…………订…………○…………线…………○………… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※ ○…………内…………○…………装…………○…………订…………○…………线…………○………… C.0()()g a f b << D.()()0f b g a << 79.已知R m ∈,函数2|21|,1,()log (1),1,x x f x x x +<⎧=⎨->⎩2()221g x x x m =-+-,若函数(())y f g x m =-有6个零点,则实数m 的取值范围是 (A )3(0,)5 (B )33(,)54 (C )3(,1)4 (D )(1,3) 80.在直角坐标系中,横、纵坐标均为整数的点称为格点,如果函数f (x )的图象恰好通过k (k ∈N *)个格点,则称函数f (x )为k 阶格点函数.对下列4个函数: ①f (x )=-cos (2π-x );②f (x )=1()3x ;③f (x )=-log 2x ;④f (x )=2π(x -3)2+5.其中是一阶格点函数的有( )A.①③B.②③C.③④D.①④81.函数f (x )=x +lnx 的零点所在的区间为( )A.(-1,0)B.(1e ,1)C.(1,2)D.(1,e )82.若函数3()3f x x x a =--有3个不同零点,则实数a 的取值范围是( )A .(2,2)-B .[]2,2-C .(,1)-∞-D .(1,)+∞83.已知函数()()21,f x x g x kx =-+=,若方程()()f x g x =有两个不相等的实根,则实数k 的取值范围是( )A .10,2⎛⎫⎪⎝⎭ B .1,12⎛⎫⎪⎝⎭ C .()1,2 D .()2,+∞84.方程()()2ln10,0x x x +-=>的根存在的大致区间是( )A .)1,0(B .)2,1(C .),2(eD .)4,3(85. 已知函数⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x = ( )(A )3 (B )3- (C ) -5或-3 (D )-5-33或或86.拟定从甲地到乙地通话m 分钟的电话费由)1][5.0(06.1)(+=m m f 给出,其中0>m ,][m 是不超过m 的最大整数(如3]3[=,[3.7]3=,[3.1]3=),则从甲到乙通话6.5分钟的话费为( )(A )3.71 (B )3.97 (C )4.24 (D )4.7787. 若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同2○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________ ○…………内…………○…………装…………○…………订…………○…………线…………○………… A.7个 B.8个 C.9个 D.10个 88.已知实系数一元二次方程()2110x a x a b +++++=的两个实根为12,x x ,且 1201,1x x <<>,则b a 的取值范围是( ) A .11,2⎛⎫-- ⎪⎝⎭ B .11,2⎛⎤-- ⎥⎝⎦ C .12,2⎛⎤-- ⎥⎝⎦ D . 12,2⎛⎫-- ⎪⎝⎭ 89.函数x x x f 2ln )(-=的零点所在的大致区间是 ( ) A 、)2,1( B 、)3,2( C 、)1,1(e 和)4,3( D 、),(+∞e 90.设函数2()f x x =,()(01)x g x a a a =>≠且,()log (01)a h x x a a =>≠且,则对在其定义域内的任意实数12,x x , 下列不等式总成立的是( ) ① 1212()()()22x x f x f x f ++≤ ②1212()()()22x x f x f x f ++≥ ③1212()()()22x x g x g x g ++≤ ④ 1212()()()22x x h x h x h ++≥ A. ② ④ B. ② ③ C. ① ④ D. ① ③ 91.已知某一种物质每100年其质量就减少10%.设其物质质量为m ,则过x 年后,其物 质的质量y 与x 的函数关系式为( ) A. 1000.9x y m = B. 1000.9x y m = C. 100(10.1)x m - D. 100(10.1)x y m =- 92.函数)(x f 的定义域为R ,且⎪⎩⎪⎨⎧+--=,11,2|1|)(2x x x f .1||,1||>≤x x ,则)]21([f f 的值是 A .21 B .134 C .59- D .4125 93.下列各式能用完全平方公式进行分解因式的是( ) A .x 2+1 B .x 2+2x ﹣1 C .x 2+x+1 D .x 2+4x+4 94.下列各式的因式分解中正确的是( ) A .-a 2+ab -ac=-a (a+b -c ) B .9xy -6x 2y 2=3xy (3-2xy ) C .3a 2x -6bx+3x=3x (a 2-2b ) D .()22111222xy x y xy x y +=-○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※ ○…………内…………○…………装…………○…………订…………○…………线…………○………… 3分钟漏完.已知圆柱中液面上升的速度是一个常量,H 是圆锥形漏斗中液面下落的距离,则H 与下落时间t (分)的函数关系表示的图象只可能是( )A .B .C .D .96.函数34log 2)(2+⋅+=x a x a x f 在区间)1,21(上有零点,则实数a 的取值范围是( )A .21-<a B .23-<a C .43-<a D .2123-<<-a97.函数⎪⎩⎪⎨⎧≤-->+-=)0(32)0(2ln )(22x x x x x x x x f 的零点个数为 ( )A .1 个B .2个C .3个D .4个98.已知定义在R 上的函数 f (x)满足(2)()f x f x +=-,当(]1,3x ∈-时,(](]21,1,1()(12),1,3x x f x t x x ⎧-∈-⎪=⎨--∈⎪⎩,其中t>0,若方程()3x f x =恰有3个不同的实数根,则f 的取值范围为( )A .4(0,)3B .2(,2)3C .4(,3)3D .2(,)3+∞99.己知e 是自然对数的底数,函数()2x f x e x =+-的零点为a ,函数g(x)=lnx+x-2的零点为b ,则下列不等式中成立的( )A,(1)()()f f a f b << B .()()(1)f a f b f <<C .()(1)()f a f f b <<D .()(1)()f b f f a <<100.己知函数()ln 4xf x x =-,则函数()f x 的零点所在的区间是( )A .(0,1)B (1,2)C .(2,3) D(3,4)○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________ ○…………内…………○…………装…………○…………订…………○…………线…………○………… 第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人 得分 二、填空题(题型注释) 评卷人 得分 三、解答题(题型注释) 评卷人 得分 四、新添加的题型参考答案1.B【解析】试题分析:由题意函数的定义域为),0(+∞,且函数xx x f 1lg )(-=在),0(+∞单调递增,又01)1(<-=f ,0109)10(>=f ,所以由零点存在性定理及函数单调递增,存在唯一)10,1(0∈x ,使得0)(0=x f考点:函数的零点2.C【解析】试题分析:1)(3--=x x x f ,01)1(,07)2(<-=-<-=-f f ,023)3(,05)2(>=>=f f ,01)1(,01)0(<-=<-=f f ,所以0)2()1(<⋅f f ,由零点存在性定理,存在)2,1(0∈x ,使得0)(0=x f考点:零点存在性定理3.B【解析】试题分析:∵2(1)ln1201f =-=-<,2(2)ln 2ln 2102f =-=-<,22(e)lne 10f e e=-=->, ∴(2)()0f f e ⋅<,∴函数2()ln f x x x =-的零点所在的大致区间是)e ,2( 考点:零点的存在性定理.4.B【解析】试题分析:函数321()2x y x y -==与的图象的交点的横坐标0x 即函数()2312x f x x -⎛⎫=- ⎪⎝⎭的零点,根据函数零点存在定理,若()2312x f x x -⎛⎫=- ⎪⎝⎭若在区间(),a b 上存在零点,则()()0f a f b <,对四个答案中的区间进行判断,即可得到答案.当1x =时,()23102x f x x -⎛⎫=-< ⎪⎝⎭,当2x =时,()23102x f x x -⎛⎫=-> ⎪⎝⎭ 即(1)(2)0f f <又∵函数()2312x f x x -⎛⎫=- ⎪⎝⎭为连续函数,故函数()2312x f x x -⎛⎫=- ⎪⎝⎭的零点一定位于区间()1,2. 考点:函数与方程.5.C【解析】试题分析:因为根据已知条件可知费用满足分段函数,所以需付车费7+4 1.6+5.2 2.2+1=25.8426⨯⨯≈考点:函数及其表示6.A【解析】试题分析:由题意得224(x 1)y =--,即22(x 1)4y -+=,由于24(1)0y x =---≤故2)1(4---=x y 的图像表示圆22(x 1)4y -+=的下半圆,如下图所示,设点Q 的坐标为(x,y),则23x a y a =⎧⎨=-⎩,消去a 得260x y --=,因此点Q 是直线260x y --=上的动点,由于圆心(1,0)到直线260x y --=的距离22|1206|521(2)d -⨯-==>+-,所以直线和圆相离,因此||PQ 的最小值是52-,故正确答案为A.考点:圆的标准方程,直线和圆的位置关系.7.A【解析】试题分析:画出函数[],0(),(1),0x x x f x f x x -≥⎧=⎨+<⎩10g x k x k =+()()(>)的图象,若直线0y kx k k =+(>)与函数,y f x =()的图象恰有三个不同的交点, 结合图象可得:P B P A k k k ≤<,()()11111121331443PA PB k k k ∴≤----==,==.<.故选A .考点:1.取整函数、分段函数;2.直线的斜率.8.B【解析】试题分析:由于函数是递增,根据零点定理(0)1f =,所以考虑11(1)212f --=-=-.所以(0)(1)0f f ⋅-<.故选B.考点:1.函数的零点.2.估算的数学思想.9.C【解析】试题分析:由函数()122,0,log ,0.x a x f x x x ⎧⋅≤⎪=⎨>⎪⎩可知,在0x ≤部分.当0a >时20x a ⋅>.当0a <时20x a ⋅<.当0a =时20x a ⋅=恒成立.因为关于x 的方程()()0f f x =有且仅有一个实数解,所以只能是()1f x =只有一个解.当0x >时有一个解12x =.所以要使在0x <上没解,有前面可得0a <成立.当0a >时要使01a <<才能成立.故选C.考点:1.分段函数的性质.2.方程的解的问题.10.A.【解析】试题分析:先画函数2()|23|f x x x =+-的图象如下图:所以t ∈(0,4)时,方程t x f =)(有4个根;4=t 时,方程t x f =)(有3个根; t ∈(4,+∞)或0=t 时,方程t x f =)(有2个根.要使原方程有5个根,t 的值应取两个值,其中一个为4,另一个为0或在(4,+∞)取, 所以将4)(==x f t 代入原方程得:024)2(422=-+⨯+-a a a ,整理得0862=+-a a ,解得2=a 或4=a . 检验:当2=a 时,代入原方程得出4)(=x f 与0)(=x f ,符合要求;当4=a 时,代入原方程得出4)(=x f 与2)(=x f ,不符合要求;所以2=a .故应选A . 考点:函数的图象.11.C【解析】试题分析:因为)()2(x f x f =+,根据[)[)⎩⎨⎧-∈-∈+=0,1,21,0,2)(22x x x x x f ,可画出()f x 在区间[]1,5-的图象,再画出251222x y x x +==+++在区间[]1,5-的图象,四图象可知两个函数的图象有三个公共点,其中一个公共点的横坐标为13x =-,另两个交点关于点(2,2)-对称,,所以另两个交点的横坐标满足234x x +=-,所以 252)(++=x x x f 在区间[]1,5-上的所有实根之和为1237x x x ++=-,选C考点:函数周期性,图象,零点,数形结合思想12.C【解析】试题分析:由题意第四年造林为17280)2.01(100003=+⨯考点:函数模型及应用 13.D 【解析】试题分析:设原方程为20x px q ++=,根据方程根与系数的关系得:35q =-⨯,(26)((26))p -=++-,解得4,15p q =-=-,所以原方程24150x x --=,故选择D.考点:一元二次方程的解法及根与系数的关系. 14.D 【解析】试题分析:在从A 地到达B 地的过程中,时间满足0 2.5t ≤≤,距离与时间的关系为60x t =;在B 地停留1小时,则2.5 3.5t <≤,而150x =不变;返回A 地的过程中,时间满足3.5 6.5t <≤,距离与时间的关系为15050x t =-.故选择D. 考点:分段函数及其实际应用. 15.D . 【解析】试题分析:因为当0≤x 时,2)()(a x x f -=,因为)0(f 是)(x f 的最小值,所以0≥a ;又因为当0>x 时,221)(a a a xx x f ≥+≥++=,即21≤≤-a .综上所述,a 的取值范围为[]2,0.故应选D .考点:1、分段函数;2、函数的最小值. 16.D . 【解析】试题分析:因为对于任意的R x ∈,都有)2()2(+=-x f x f ,所以函数)(x f 的图象关于直线x=2对称,又因为当[]02,-∈x 时,1)21()(-=x x f ,且函数)(x f 是定义在R 上的偶函数,若在区间]62(,-内关于x 的方程)1(0)2(log )(>=+-a x x f a 恰有3个不同的实数解,则函数)(x f y =与)2(log +=x y a 在区间(-2,6)上有三个不同的交点,如下图所示:又3)2()2(==-f f ,则有3)22(log <+a ,且3)26(log ≥+a ,解得)2,4(3∈a . 考点:1.指数函数与对数函数的图象与性质;2.函数的零点与方程根的关系. 17.B .【解析】试题分析:根据零点存在性定理分别验证各选项即可,即对于A 选项,0231)0(<-=-=f ,02)41(41<-=e f ,所以不能判断)41,0(上函数是否有零点;对于B 选项,02)41(41<-=e f ,01)21(21>-=e f ,所以在区间)41,0(上函数有零点;对于C 选项,01)21(21>-=e f ,0)43(43>=e f ,所以不能判断)43,21(上函数是否有零点,所以C 选项不正确;对于D 选项,0)43(43>=e f ,01)1(>+=e f ,所以不能判断)1,43(上函数是否有零点,所以D 选项不正确.综上所述,应选B .考点:函数与方程. 18.B 【解析】试题分析:由题意,分流前每年创造的产值为100t (万元),分流后x 人后,每年创造的产值为()()1001 1.2%x x t -+,则由()()01001001 1.2%100x x x t t<<-+≥⎧⎨⎩,解得:5003x <<.所以x 的最大值为16. 故选:B .考点: 函数模型的选择与应用. 19.D 【解析】试题分析: 对于①结论是正确的.∵对任意实数12,x x 都有12121()()()()()f x f x g x g x g x x ⋅+⋅=-且(1)1f -=-,(0)0f =,(1)1f =,令121x x ==,得()()()22110[][]f g g +=,∴()()2[]110g g += ,∴()()2[01]1g g =﹣ 令1210x x ==,,得()()()()()10101f fg g g +=,∴()()()()()101,101]0[g g g g g =-=, 解方程组()()()()2101[]1]01[0g g g g -=⎪=⎧⎪⎨⎩﹣得()()0110g g =⎧⎪⎨=⎪⎩;对于②结论是不正确的,令1201x x ==,﹣,得()()()()()01011f f g g g +=﹣﹣,∴()10g =﹣;令1211x x ==,﹣,得()()()()()11112f f g g g +=﹣﹣,()()1221g g ∴=∴≠﹣,对于③结论是正确的,令121x x ==,得()()()2201fx g x g +==,对于④结论是正确的,由③可知()21fx ≤,∴()11f x ≤≤﹣,()11g x ≤≤﹣∴()()()()22||||n n f x f x g x g x ≤≤,对*2n n N ∈>,时恒成立,()()()()22]1[][n n f x g x f x g x +≤+= 综上,①③④是正确的.故选:D考点:新定义. 20.B 【解析】试题分析:设房子减少量租出量为()070x x x N ≤≤∈,套,利润为y 元,则由题意可知,租金为30x +元,则()()()7030005010070y x x x =+﹣﹣﹣()()25870505870502x x x x ++-⎛⎫=+≤ ⎪⎝⎭﹣,当且仅当5870x x +=﹣时,即6x =时,取等号,故每月租金定为3000+300=3300(元),故选B .考点:基本不等式的应用. 21.B.【解析】根据函数y=101022---x x (如下图),再结合y=1图像交点共7个. 故选B .考点:函数的零点. 22.B【解析】⎪⎩⎪⎨⎧<<--=>-=)10(,ln 1)1(,0)1(,ln 1)(22x x x x x x f ,1>x 时,0ln 1)(2=-=x x f ,解得e x =;当1=x 时,0)(=x f ;当10<<x 时,0ln 1)(2=--=x x f ,即1ln 2-=x 无解.故函数)(x f 的零点有2个.故选B .考点:函数性质,零点 23.B【解析】由于4()26f x x x '=+-,则在点P 处切线的斜率=切k 642)(000/-+=x x x f .所以切线方程为()20000004()2664ln y g x x x x x x x x ⎛⎫==+--+-+ ⎪⎝⎭200004264ln 4x x x x x ⎛⎫=+--+- ⎪⎝⎭()()()()()22000000464ln 2664ln x f x g x x x x x x x x x x x ϕ⎛⎫=-=-+-+----+ ⎪⎝⎭, 则0()0x ϕ=,)2)((2)21)((2)642(642)('000000x x x x x x x x x x x x x x --=--=-+--+=ϕ. 当02x <时,()x ϕ在002,x x ⎛⎫⎪⎝⎭上单调递减,所以当002,x x x ⎛⎫∈ ⎪⎝⎭时,0()()0.x x ϕϕ<= 从而有002,x x x ⎛⎫∈ ⎪⎝⎭时,0)(0<-x x x ϕ;当02x >时,()x ϕ在002,x x ⎛⎫ ⎪⎝⎭上单调递减,所以当002,x x x⎛⎫∈ ⎪⎝⎭时,0()()0.x x ϕϕ>= 从而有002,x x x ⎛⎫∈ ⎪⎝⎭时,()00x x x ϕ<-; 所以在(0,2)(2,)+∞上不存在“类对称点”. 当02x =时,()22()2x x xϕ'=-,所以()x ϕ在(0,)+∞上是增函数,故0()0.x x x ϕ>-所以2x =是一个类对称点的横坐标. (可以利用二阶导函数为0,求出24()20f x x ''=-=,则2=x )故选择B考点:函数性质,新定义问题 24.B. 【解析】试题分析:根据题意,将()f x 的图象画出,从而可知当直线1y kx =+与曲线11y x =-相切时,联立方程,消去y 可得,2211(1)20(1)803221kx kx k x k k k x +=⇒+--=⇒∆=-+=⇒=-±-,又∵切于第一象限,∴322k =-+,从而实数k 的取值范围是(322,0)(0,)-++∞.考点:函数与方程的综合运用. 25.D. 【解析】试题分析:A :若()2=x f 是 “关于t 函数”,则221t t =-⋅⇒=-,∴假设成立,A 错误; B :若()f x x =是 “关于t 函数”,则对任意x R ∈,都存在常数t 使得x t tx +=-成立,而取1x =-,等式显然不成立,∴假设不成立,∴B 错误;C :若()f x 是“关于12函数”,则有()1122f x f x ⎛⎫+=-⎪⎝⎭,根据零点存在定理可知,()f x 至少存在一个零点,∴C 正确;D :若()sin f x x π=是 “关于t 函数”,则对于任意x R ∈,都存在常数t 使得s i n [()]s i n (x t t x ππ+=-成立,取1t =,即可知等式对于任意x R ∈恒成立,∴假设成立,D 错误,故选C.考点:函数新定义问题. 26.D 【解析】试题分析:由(1)(1)f x f x -=+得,函数()f x 是周期函数,且周期2T =,又()f x 是偶函数,[0,1]x ∈时,()f x x =,可画出()f x 在定义域内的图象,在同一坐标系内再作出4|log |,(0,4]y x x =∈的图象,由图可知,两个函数图象有4个公共点。